2020-04-10 23:38:12 +02:00
|
|
|
from __future__ import (absolute_import, division,
|
|
|
|
print_function, unicode_literals)
|
2020-04-10 22:44:54 +02:00
|
|
|
import warnings,operator
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
#Seed is needed to select the weights in linprog function.
|
|
|
|
#None means that the seed is random.
|
|
|
|
sSeed=None
|
|
|
|
sTranslation={}
|
|
|
|
translationList=['numerator:','denominator:','status:',
|
|
|
|
'Substitute',"Formula after substitution:",
|
|
|
|
"Numerator after substitutions:","From weighted AM-GM inequality:",
|
|
|
|
'The sum of all inequalities gives us a proof of the inequality.',
|
|
|
|
"Program couldn't find a solution with integer coefficients. Try "+
|
|
|
|
"to multiple the formula by some integer and run this function again.",
|
|
|
|
"Program couldn't find any proof.",
|
|
|
|
"Try to set higher linprogiter parameter.",
|
|
|
|
"It looks like the formula is symmetric. You can assume without loss of"+
|
|
|
|
" generality that ","Try"
|
|
|
|
]
|
|
|
|
#Initialize english-english dictionary.
|
|
|
|
for phrase in translationList:
|
|
|
|
sTranslation[phrase]=phrase
|
|
|
|
from scipy.optimize import linprog
|
|
|
|
import random
|
|
|
|
from sympy import S,cancel,fraction,Pow,expand,solve,latex
|
|
|
|
import re
|
|
|
|
def _remzero(coef,fun):
|
|
|
|
#coef, fun represents an expression.
|
|
|
|
#For example, if expression=5f(2,3)+0f(4,6)+8f(1,4)
|
|
|
|
#then coef=[5,0,8], fun=[[2,3],[4,6],[1,4]]
|
|
|
|
#_remzero removes addends with coefficient equal to zero.
|
|
|
|
#In this example ncoef=[5,8], nfun=[[2,3],[1,4]]
|
|
|
|
ncoef=[]
|
|
|
|
nfun=[]
|
|
|
|
for c,f in zip(coef,fun):
|
|
|
|
if c>0:
|
|
|
|
ncoef+=[c]
|
|
|
|
nfun+=[f]
|
|
|
|
return ncoef,nfun
|
|
|
|
def slatex(formula): #fancy function which makes latex code more readable, but still correct
|
2020-04-11 09:23:21 +02:00
|
|
|
formula=re.sub(r'\^{(.)}',r'^\1',latex(formula,fold_short_frac=True).replace(' ','').replace('\\left(','(').replace('\\right)',')'))
|
|
|
|
return re.sub(r'\{(\(.+?\))\}',r'\1',formula)
|
2020-04-10 22:44:54 +02:00
|
|
|
def _writ2(coef,fun,variables):
|
|
|
|
return slatex(S((str(coef)+'*'+'*'.join([str(x)+'^'+str(y) for x,y in zip(variables,fun)]))))
|
|
|
|
def _writ(coef,fun,nullvar):
|
|
|
|
return str(coef)+'f('+str(fun)[1:-1-(len(fun)==1)]+')'
|
|
|
|
def _check(coef,fun,res,rfun):
|
|
|
|
#checks if rounding and all the floating point stuff works
|
|
|
|
res2=[int(round(x)) for x in res]
|
|
|
|
b1=[coef*x for x in fun]
|
|
|
|
b2=[[x*y for y in rfuni] for x,rfuni in zip(res2,rfun)]
|
|
|
|
return b1==[sum(x) for x in zip(*b2)] and coef==sum(res2)
|
|
|
|
def _powr(formula):
|
|
|
|
if formula.func==Pow:
|
|
|
|
return formula.args
|
|
|
|
else:
|
|
|
|
return [formula,S('1')]
|
|
|
|
def fractioncancel(formula):
|
|
|
|
#workaround for buggy cancel function
|
|
|
|
num,den=fraction(cancel(formula/S('tmp')))
|
2020-04-11 09:23:21 +02:00
|
|
|
den=den.subs(S('tmp'),S('1'))
|
2020-04-10 22:44:54 +02:00
|
|
|
return num,den
|
|
|
|
def ssolve(formula,variables):
|
|
|
|
#workaround for inconsistent solve function
|
|
|
|
result=solve(formula,variables)
|
|
|
|
if type(result)==dict:
|
|
|
|
result=[[result[var] for var in variables]]
|
|
|
|
return result
|
|
|
|
def sstr(formula):
|
|
|
|
return str(formula).replace('**','^').replace('*','').replace(' ','')
|
|
|
|
def Sm(formula):
|
|
|
|
#Adds multiplication signs and sympifies a formula.
|
|
|
|
#For example, Sm('(2x+y)(7+5xz)') -> S('(2*x+y)*(7+5*x*z)')
|
|
|
|
if type(formula)==str:
|
|
|
|
formula.replace(' ','')
|
|
|
|
for i in range(2):
|
|
|
|
formula=re.sub(r'([0-9a-zA-Z)])([(a-zA-Z])',r'\1*\2',formula)
|
|
|
|
formula=S(formula)
|
|
|
|
return formula
|
|
|
|
def _input2fraction(formula,variables,values):
|
|
|
|
#makes some substitutions and converts formula to a fraction
|
|
|
|
#with expanded numerator and denominator
|
|
|
|
formula=S(formula)
|
|
|
|
subst=[]
|
|
|
|
for x,y in zip(variables,values):
|
|
|
|
if y!=1:
|
|
|
|
print(sTranslation['Substitute'],'$',x,'\\to',slatex(S(y)*S(x)),'$')
|
|
|
|
subst+=[(x,x*y)]
|
|
|
|
formula=formula.subs(subst)
|
|
|
|
numerator,denominator=fractioncancel(formula)
|
|
|
|
print(sTranslation['numerator:'],'$$'+slatex(numerator)+'$$')
|
|
|
|
print(sTranslation['denominator:'],'$$'+slatex(denominator)+'$$')
|
|
|
|
return (numerator,denominator)
|
|
|
|
def _formula2list(formula,variables):
|
|
|
|
#Splits a polynomial to a difference of two polynomials with positive
|
|
|
|
#coefficients and extracts coefficients and powers of both polynomials.
|
|
|
|
#'variables' is used to set order of powers
|
|
|
|
#For example, If formula=5x^2-4xy+8y^3, variables=[x,y], then
|
|
|
|
#the program tries to prove that
|
|
|
|
#0<=5x^2-4xy+8y^3
|
|
|
|
#4xy<=5x^2+8y^3
|
|
|
|
#lcoef=[4]
|
|
|
|
#lfun=[[1,1]]
|
|
|
|
#rcoef=[5,8]
|
|
|
|
#rfun=[[2,0],[0,3]]
|
|
|
|
lfun=[]
|
|
|
|
lcoef=[]
|
|
|
|
rfun=[]
|
|
|
|
rcoef=[]
|
|
|
|
varorder=dict(zip(variables,range(len(variables))))
|
|
|
|
for addend in formula.as_ordered_terms():
|
|
|
|
coef,facts=addend.as_coeff_mul()
|
|
|
|
powers=[0]*len(variables)
|
|
|
|
for var in variables:
|
|
|
|
powers[varorder[var]]=0
|
|
|
|
for fact in facts:
|
|
|
|
var,pw=_powr(fact)
|
|
|
|
powers[varorder[var]]=int(pw)
|
|
|
|
if(coef<0):
|
|
|
|
lcoef+=[-coef]
|
|
|
|
lfun+=[powers]
|
|
|
|
else:
|
|
|
|
rcoef+=[coef]
|
|
|
|
rfun+=[powers]
|
|
|
|
return(lcoef,lfun,rcoef,rfun)
|
|
|
|
def _list2proof(lcoef,lfun,rcoef,rfun,variables,itermax,linprogiter,_writ2=_writ2):
|
|
|
|
#Now the formula is splitted on two polynomials with positive coefficients.
|
|
|
|
#we will call them LHS and RHS and our inequality to prove would
|
|
|
|
#be LHS<=RHS (instead of 0<=RHS-LHS).
|
|
|
|
|
|
|
|
#suppose we are trying to prove that
|
|
|
|
#30x^2y^2+60xy^4<=48x^3+56y^6 (assuming x,y>0)
|
|
|
|
#program will try to find some a,b,c,d such that
|
|
|
|
#30x^2y^2<=ax^3+by^6
|
|
|
|
#60xy^4<=cx^3+dy^6
|
|
|
|
#where a+c<=48 and b+d<=56 (assumption 1)
|
|
|
|
#We need some additional equalities to meet assumptions
|
|
|
|
#of the weighted AM-GM inequality.
|
|
|
|
#a+b=30 and c+d=60 (assumption 2)
|
|
|
|
#3a+0b=30*2, 0a+6b=30*2, 3c+0d=60*1, 0c+6d=60*4 (assumption 3)
|
|
|
|
|
|
|
|
#The sketch of the algorithm.
|
|
|
|
# for i in range(itermax):
|
|
|
|
#1. Create a vector of random numbers (weights).
|
|
|
|
#2. Try to find real solution of the problem (with linprog).
|
|
|
|
#3. If there is no solution (status: 2)
|
|
|
|
#3a. If the solution was never found, break.
|
|
|
|
#3b. Else, step back (to the bigger inequality)
|
|
|
|
#4. If the soltuion was found (status: 0)
|
|
|
|
#Check out which of variables (in example: a,b,c,d) looks like integer.
|
|
|
|
#If there are some inequalities with all integer coefficients, subtract
|
|
|
|
#them from the original one.
|
|
|
|
#If LHS is empty, then break.
|
|
|
|
localseed=sSeed
|
|
|
|
bufer=''
|
|
|
|
itern=0
|
|
|
|
if len(lcoef)==0: #if LHS is empty
|
|
|
|
print(sTranslation['status:'], 0)
|
|
|
|
status=0
|
|
|
|
elif len(rcoef)==0:
|
|
|
|
#if RHS is empty, but LHS is not
|
|
|
|
print(sTranslation['status:'], 2)
|
|
|
|
status=2
|
|
|
|
itermax=0
|
|
|
|
foundreal=0
|
|
|
|
while len(lcoef)>0 and itern<itermax:
|
|
|
|
itern+=1
|
|
|
|
m=len(lcoef)
|
|
|
|
n=len(rcoef)
|
|
|
|
#lfunt=transposed matrix lfun (in fact, it's
|
|
|
|
#a list of lists)
|
|
|
|
lfunt=list(map(list, zip(*lfun)))
|
|
|
|
rfunt=list(map(list, zip(*rfun)))
|
|
|
|
#A,b, - set of linear equalities
|
|
|
|
#A_ub,b_ub - set of linear inequalities
|
|
|
|
#from linear program
|
|
|
|
A=[]
|
|
|
|
b=[]
|
|
|
|
A_ub=[]
|
|
|
|
b_ub=[]
|
|
|
|
for i in range(m):
|
|
|
|
for j in range(len(rfunt)): #assumption 3
|
|
|
|
A+=[[0]*(m*n)]
|
|
|
|
A[-1][i*n:i*n+n]=rfunt[j]
|
|
|
|
b+=[lfun[i][j]*lcoef[i]]
|
|
|
|
A+=[[0]*(m*n)] #assumption 2
|
|
|
|
A[-1][i*n:i*n+n]=[1]*n
|
|
|
|
b+=[lcoef[i]]
|
|
|
|
for j in range(n): #assumption 1
|
|
|
|
A_ub+=[[0]*(m*n)]
|
|
|
|
A_ub[-1][j::n]=[1]*m
|
|
|
|
b_ub+=[rcoef[j]]
|
|
|
|
random.seed(localseed)
|
|
|
|
vecc=[random.random() for i in range(m*n)]
|
|
|
|
localseed=random.randint(1,1000000000)
|
|
|
|
res=linprog(vecc,A_eq=A,b_eq=b,A_ub=A_ub,b_ub=b_ub,options={'maxiter':linprogiter})
|
|
|
|
status=res.status
|
|
|
|
if itern==1:
|
|
|
|
print(sTranslation['status:'],status)
|
|
|
|
if status==0:
|
|
|
|
print(sTranslation['From weighted AM-GM inequality:'])
|
|
|
|
if status==2: #if real solution of current inequality doesn't exist
|
|
|
|
if foundreal==0: #if this is the first inequality, then break
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
#step back
|
|
|
|
lcoef,lfun=oldlcoef,oldlfun
|
|
|
|
rcoef,rfun=oldrcoef,oldrfun
|
|
|
|
bufer=''
|
|
|
|
continue
|
|
|
|
if status==0:#if found a solution with real coefficients
|
|
|
|
print(bufer,end='')
|
|
|
|
foundreal=1
|
|
|
|
bufer=''
|
|
|
|
oldlfun,oldrfun=lfun,rfun
|
|
|
|
oldlcoef,oldrcoef=lcoef[:],rcoef[:]
|
|
|
|
for i in range(m):
|
|
|
|
c=0
|
|
|
|
for j in res.x[i*n:i*n+n]:#check if all coefficients
|
|
|
|
#in an equality looks like integers
|
|
|
|
if(abs(round(j)-j)>0.0001):
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
#checks if rounding all coefficients doesn't make
|
|
|
|
#inequality false
|
|
|
|
isok=_check(lcoef[i],lfun[i],res.x[i*n:i*n+n],rfun)
|
|
|
|
if not isok:
|
|
|
|
continue
|
|
|
|
bufer+='$$'+_writ2(lcoef[i],lfun[i],variables)+' \\le '
|
|
|
|
lcoef[i]=0
|
|
|
|
for j in range(n):
|
|
|
|
rcoef[j]-=int(round(res.x[i*n+j]))
|
|
|
|
for j,k in zip(res.x[i*n:i*n+n],rfun):
|
|
|
|
if j<0.0001:
|
|
|
|
continue
|
|
|
|
if(c):bufer+='+'
|
|
|
|
else:c=1
|
|
|
|
bufer+=_writ2(int(round(j)),k,variables)
|
|
|
|
bufer+='$$\n'
|
|
|
|
lcoef,lfun=_remzero(lcoef,lfun)
|
|
|
|
rcoef,rfun=_remzero(rcoef,rfun)
|
|
|
|
print(bufer)
|
|
|
|
lhs='+'.join([_writ2(c,f,variables) for c,f in zip(lcoef,lfun)])
|
|
|
|
if lhs=='':
|
|
|
|
lhs='0'
|
|
|
|
elif status==0:
|
|
|
|
print(sTranslation[
|
|
|
|
"Program couldn't find a solution with integer coefficients. Try "+
|
|
|
|
"to multiple the formula by some integer and run this function again."])
|
|
|
|
elif(status==2):
|
|
|
|
print(sTranslation["Program couldn't find any proof."])
|
|
|
|
#return res.status
|
|
|
|
elif status==1:
|
|
|
|
print(sTranslation["Try to set higher linprogiter parameter."])
|
|
|
|
print('$$ ',slatex(lhs),' \\le ')
|
|
|
|
rhs='+'.join([_writ2(c,f,variables) for c,f in zip(rcoef,rfun)])
|
|
|
|
if rhs=='':
|
|
|
|
rhs='0'
|
|
|
|
print(slatex(rhs),' $$')
|
|
|
|
if lhs=='0':
|
|
|
|
print(sTranslation['The sum of all inequalities gives us a proof of the inequality.'])
|
|
|
|
return status
|
|
|
|
def _isiterable(obj):
|
|
|
|
try:
|
|
|
|
_ = (e for e in obj)
|
|
|
|
return True
|
|
|
|
except TypeError:
|
|
|
|
return False
|
|
|
|
def _smakeiterable(x):
|
|
|
|
x=S(x)
|
|
|
|
if _isiterable(x):
|
|
|
|
return x
|
|
|
|
return (x,)
|
|
|
|
def _smakeiterable2(x):
|
|
|
|
x=S(x)
|
|
|
|
if _isiterable(x[0]):
|
|
|
|
return x
|
|
|
|
return (x,)
|
|
|
|
def prove(formula,values=None,variables=None,niter=200,linprogiter=10000):
|
|
|
|
#tries to prove that formula>=0 assuming all variables are positive
|
|
|
|
formula=S(formula)
|
|
|
|
if variables: variables=_smakeiterable(variables)
|
|
|
|
else: variables=sorted(formula.free_symbols,key=str)
|
|
|
|
if values: values=_smakeiterable(values)
|
|
|
|
else: values=[1]*len(variables)
|
|
|
|
num,den=_input2fraction(formula,variables,values)
|
|
|
|
st=_list2proof(*(_formula2list(num,variables)+(variables,niter,linprogiter)))
|
|
|
|
if st==2 and issymetric(num):
|
|
|
|
fs=sorted([str(x) for x in num.free_symbols])
|
|
|
|
print(sTranslation["It looks like the formula is symmetric. "+
|
|
|
|
"You can assume without loss of generality that "],
|
|
|
|
' >= '.join([str(x) for x in fs]),sTranslation['Try'])
|
|
|
|
print('prove(makesubs(S("',num,'"),',
|
|
|
|
[(str(x),'inf') for x in variables[1:]],')')
|
|
|
|
return st
|
|
|
|
def powerprove(formula,values=None,variables=None,niter=200,linprogiter=10000):
|
|
|
|
#This is a bruteforce and ineffective function for proving inequalities.
|
|
|
|
#It can be used as the last resort.
|
|
|
|
formula=S(formula)
|
|
|
|
if variables: variables=_smakeiterable(variables)
|
|
|
|
else: variables=sorted(formula.free_symbols,key=str)
|
|
|
|
if values: values=_smakeiterable(values)
|
|
|
|
else: values=[1]*len(variables)
|
|
|
|
num,den=_input2fraction(formula,variables,values)
|
|
|
|
subst2=[]
|
|
|
|
for j in range(len(variables)):
|
|
|
|
subst2+=[(variables[j],1+variables[j])]
|
|
|
|
for i in range(1<<len(variables)): #tricky substitutions to improve speed
|
|
|
|
print('\n\\hline\n')
|
|
|
|
subst1=[]
|
|
|
|
substout=[]
|
|
|
|
for j in range(len(variables)):
|
|
|
|
if i&(1<<j):
|
|
|
|
subst1+=[(variables[j],1/variables[j])]
|
|
|
|
substout+=[str(variables[j])+'\\to 1/(1+'+str(variables[j])+')']
|
|
|
|
else:
|
|
|
|
substout+=[str(variables[j])+'\\to 1+'+str(variables[j])]
|
|
|
|
print(sTranslation['Substitute'], '$'+','.join(substout)+'$')
|
|
|
|
num1=fractioncancel(num.subs(subst1))[0]
|
|
|
|
num2=expand(num1.subs(subst2))
|
|
|
|
print(sTranslation["Numerator after substitutions:"],slatex(num2))
|
|
|
|
_list2proof(*(_formula2list(num2,variables)+(variables,niter,linprogiter)))
|
|
|
|
def makesubs(formula,intervals,values=None,variables=None,numden=False):
|
|
|
|
#This function generates a new formula which satisfies this condition:
|
|
|
|
#for all positive variables new formula is nonnegative iff
|
|
|
|
#for all variables in corresponding intervals old formula is nonnegative
|
|
|
|
formula=S(formula)
|
|
|
|
intervals=_smakeiterable2(intervals)
|
|
|
|
if variables: variables=_smakeiterable(variables)
|
|
|
|
else: variables=sorted(formula.free_symbols,key=str)
|
|
|
|
if values!=None:
|
|
|
|
values=_smakeiterable(values)
|
|
|
|
equations=[var-value for var,value in zip(variables,values)]
|
|
|
|
else:
|
|
|
|
equations=[]
|
|
|
|
for var,interval in zip(variables,intervals):
|
|
|
|
end1,end2=interval
|
|
|
|
if end1 in {S('-inf'),S('inf')}:
|
|
|
|
end1,end2=end2,end1
|
|
|
|
if {end1,end2}=={S('-inf'),S('inf')}:
|
|
|
|
formula=formula.subs(var,var-1/var)
|
|
|
|
equations=[equation.subs(var,var-1/var) for equation in equations]
|
|
|
|
print(sTranslation['Substitute'],'$',var,'\\to',var-1/var,'$')
|
|
|
|
elif end2==S('inf'):
|
|
|
|
formula=formula.subs(var,end1+var)
|
|
|
|
equations=[equation.subs(var,end1+var) for equation in equations]
|
|
|
|
print(sTranslation['Substitute'],'$',var,'\\to',sstr(end1+var),'$')
|
|
|
|
elif end2==S('-inf'):
|
|
|
|
formula=formula.subs(var,end1-var)
|
|
|
|
equations=[equation.subs(var,end1-var) for equation in equations]
|
|
|
|
print(sTranslation['Substitute'], "$",var,'\\to',sstr(end1-var),'$')
|
|
|
|
else:
|
|
|
|
formula=formula.subs(var,end2+(end1-end2)/var)
|
|
|
|
print(sTranslation['Substitute'], "$",var,'\\to',sstr(end2+(end1-end2)/(1+var)),'$')
|
|
|
|
equations=[equation.subs(var,end2+(end1-end2)/var) for equation in equations]
|
|
|
|
num,den=fractioncancel(formula)
|
|
|
|
for var,interval in zip(variables,intervals):
|
|
|
|
if {interval[0],interval[1]} & {S('inf'),S('-inf')}==set():
|
|
|
|
num=num.subs(var,var+1)
|
|
|
|
den=den.subs(var,var+1)
|
|
|
|
equations=[equation.subs(var,var+1) for equation in equations]
|
|
|
|
if values:
|
|
|
|
values=ssolve(equations,variables)
|
|
|
|
if len(values):
|
|
|
|
values=values[0]
|
|
|
|
num,den=expand(num),expand(den)
|
|
|
|
#print(sTranslation["Formula after substitution:"],"$$",slatex(num/den),'$$')
|
|
|
|
if values and numden:
|
|
|
|
return num,den,values
|
|
|
|
elif values:
|
|
|
|
return num/den,values
|
|
|
|
elif numden:
|
|
|
|
return num,den
|
|
|
|
else:
|
|
|
|
return num/den
|
|
|
|
def _formula2listf(formula):
|
|
|
|
#Splits a polynomial to a difference of two formulas with positive
|
|
|
|
#coefficients and extracts coefficients and function
|
|
|
|
#arguments of both formulas.
|
|
|
|
lfun=[]
|
|
|
|
lcoef=[]
|
|
|
|
rfun=[]
|
|
|
|
rcoef=[]
|
|
|
|
for addend in formula.as_ordered_terms():
|
|
|
|
coef,facts=addend.as_coeff_mul()
|
|
|
|
if(coef<0):
|
|
|
|
lcoef+=[-coef]
|
|
|
|
lfun+=[facts[0].args]
|
|
|
|
else:
|
|
|
|
rcoef+=[coef]
|
|
|
|
rfun+=[facts[0].args]
|
|
|
|
return(lcoef,lfun,rcoef,rfun)
|
|
|
|
def provef(formula,niter=200,linprogiter=10000):
|
|
|
|
#this function is similar to prove, formula is a linear combination of
|
|
|
|
#values of f:R^k->R instead of a polynomial. provef checks if a formula
|
|
|
|
#is nonnegative for any nonnegative and convex function f. If so, it
|
|
|
|
#provides a proof of nonnegativity.
|
|
|
|
formula=S(formula)
|
|
|
|
num,den=_input2fraction(formula,[],[])
|
|
|
|
_list2proof(*(_formula2listf(num)+(None,niter,linprogiter,_writ)))
|
|
|
|
def issymetric(formula): #checks if formula is symmetric
|
|
|
|
#and has at least two variables
|
|
|
|
if len(formula.free_symbols)<2:
|
|
|
|
return False
|
|
|
|
ls=list(formula.free_symbols)
|
|
|
|
a=ls[0]
|
|
|
|
for b in ls[1:]:
|
|
|
|
if expand(formula-formula.subs({a:b, b:a}, simultaneous=True))!=S(0):
|
|
|
|
return False
|
|
|
|
return True
|
|
|
|
def cyclize(formula,oper=operator.add,variables=None,init=None):
|
|
|
|
#cyclize('a^2*b')=S('a^2*b+b^2*a')
|
|
|
|
#cyclize('a^2*b',variables='a,b,c')=S('a^2*b+b^2*c+c^2*a')
|
|
|
|
formula=S(formula)
|
|
|
|
if variables==None:
|
|
|
|
variables=sorted(formula.free_symbols,key=str)
|
|
|
|
else:
|
|
|
|
variables=S(variables)
|
|
|
|
if len(variables)==0:
|
|
|
|
return init
|
|
|
|
variables=list(variables) #if variables is a tuple, change it to a list
|
|
|
|
variables+=[variables[0]]
|
|
|
|
subst=list(zip(variables[:-1],variables[1:]))
|
|
|
|
if init==None:
|
|
|
|
init=formula
|
|
|
|
else:
|
|
|
|
init=oper(init,formula)
|
|
|
|
for _ in variables[2:]:
|
|
|
|
formula=formula.subs(subst,simultaneous=True)
|
|
|
|
init=oper(init,formula)
|
|
|
|
return init
|
|
|
|
def symmetrize(formula,oper=operator.add,variables=None,init=None):
|
|
|
|
#symmetrize('a^2*b')=S('a^2*b+b^2*a')
|
|
|
|
#symmetrize('a^2*b',variables='a,b,c')=
|
|
|
|
#=S('a^2*b+a^2*c+b^2*a+b^2*c+c^2*a+c^2*b')
|
|
|
|
formula=S(formula)
|
|
|
|
if variables==None:
|
|
|
|
variables=sorted(formula.free_symbols,key=str)
|
|
|
|
else:
|
|
|
|
variables=S(variables)
|
|
|
|
for i in range(1,len(variables)):
|
|
|
|
formula=cyclize(formula,oper,variables[:i+1])
|
|
|
|
return formula
|