1
0

added description of two functions

This commit is contained in:
urojony 2020-04-12 10:14:06 +02:00
parent fbb1f8e434
commit 5832f57474
3 changed files with 214 additions and 6 deletions

View File

@ -759,10 +759,10 @@
"From weighted AM-GM inequality:\n", "From weighted AM-GM inequality:\n",
"$$2a^2b^2c^3d \\le a^3bc^2d^2+ab^3c^4$$\n", "$$2a^2b^2c^3d \\le a^3bc^2d^2+ab^3c^4$$\n",
"$$2a^2c^3d \\le a^3c^2d^2+ac^4$$\n", "$$2a^2c^3d \\le a^3c^2d^2+ac^4$$\n",
"$$4a^2bc^3d \\le a^3bc^2d^2+a^3c^2d^2+ab^3c^4+ac^4$$\n", "$$4a^2bc^3d \\le a^3bc^2d^2+a^3c^2d^2+ab^2c^4+abc^4$$\n",
"\n", "\n",
"$$ 0 \\le \n", "$$ 0 \\le \n",
"4a^3bcd^3+2a^3bd^4+2a^3cd^3+2a^2b^2cd^3+4a^2bc^2d^2+12a^2bcd^3+6a^2bd^4+4a^2c^2d^2+6a^2cd^3+4ab^3c^3d+2ab^3c^2d^2+6ab^2c^4+8ab^2c^3d+4ab^2c^2d^2+4ab^2cd^3+6abc^4+4abc^3d+6abc^2d^2+12abcd^3+6abd^4+4ac^2d^2+6acd^3+2b^3c^3d+2b^3c^2d^2+4b^2c^3d+4b^2c^2d^2+2b^2cd^3+2bc^3d+4bc^2d^2+4bcd^3+2bd^4+2c^2d^2+2cd^3 $$\n", "4a^3bcd^3+2a^3bd^4+2a^3cd^3+2a^2b^2cd^3+4a^2bc^2d^2+12a^2bcd^3+6a^2bd^4+4a^2c^2d^2+6a^2cd^3+ab^3c^4+4ab^3c^3d+2ab^3c^2d^2+5ab^2c^4+8ab^2c^3d+4ab^2c^2d^2+4ab^2cd^3+5abc^4+4abc^3d+6abc^2d^2+12abcd^3+6abd^4+ac^4+4ac^2d^2+6acd^3+2b^3c^3d+2b^3c^2d^2+4b^2c^3d+4b^2c^2d^2+2b^2cd^3+2bc^3d+4bc^2d^2+4bcd^3+2bd^4+2c^2d^2+2cd^3 $$\n",
"The sum of all inequalities gives us a proof of the inequality.\n" "The sum of all inequalities gives us a proof of the inequality.\n"
] ]
}, },
@ -781,6 +781,214 @@
"prove(makesubs(formula,'[0,c],[0,d]')*2)" "prove(makesubs(formula,'[0,c],[0,d]')*2)"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Function `powerprove` is a shortcut for splitting domain $R_+^n$ on several subdomains and proving the inequality for each of them. This function uses $2^n$ of $n$-dimensional intervals with a common point (by default it's $(1,1,...,1)$), where $n$ is a number of variables. Here there are two examples of using it. As you can see, proofs are very long."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"numerator: $$x^4-4x^3+6x^2-4x+1$$\n",
"denominator: $$1$$\n",
"\n",
"\\hline\n",
"\n",
"Substitute $x\\to 1+x$\n",
"Numerator after substitutions: x^4\n",
"status: 0\n",
"\n",
"$$ 0 \\le \n",
"x^4 $$\n",
"The sum of all inequalities gives us a proof of the inequality.\n",
"\n",
"\\hline\n",
"\n",
"Substitute $x\\to 1/(1+x)$\n",
"Numerator after substitutions: x^4\n",
"status: 0\n",
"\n",
"$$ 0 \\le \n",
"x^4 $$\n",
"The sum of all inequalities gives us a proof of the inequality.\n"
]
}
],
"source": [
"powerprove('(x-1)^4')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"numerator: $$4a^5+4a^4b+4a^4c-6a^4-4a^3b-2a^3c+4ab^3-9ab^2+4ac^2-18ac+9a+4b^4+4b^3c-6b^3-3b^2c+4bc^2-12bc+10b+4c^3-6c^2+11c$$\n",
"denominator: $$1$$\n",
"\n",
"\\hline\n",
"\n",
"Substitute $a\\to 1+a,b\\to 1+b,c\\to 1+c$\n",
"Numerator after substitutions: 4a^5+4a^4b+4a^4c+22a^4+12a^3b+14a^3c+42a^3+12a^2b+18a^2c+34a^2+4ab^3+3ab^2-2ab+4ac^2+4b^4+4b^3c+18b^3+9b^2c+18b^2+4bc^2+2bc+4c^3+14c^2\n",
"status: 0\n",
"From weighted AM-GM inequality:\n",
"$$2ab \\le a^2+b^2$$\n",
"\n",
"$$ 0 \\le \n",
"4a^5+4a^4b+4a^4c+22a^4+12a^3b+14a^3c+42a^3+12a^2b+18a^2c+33a^2+4ab^3+3ab^2+4ac^2+4b^4+4b^3c+18b^3+9b^2c+17b^2+4bc^2+2bc+4c^3+14c^2 $$\n",
"The sum of all inequalities gives us a proof of the inequality.\n",
"\n",
"\\hline\n",
"\n",
"Substitute $a\\to 1/(1+a),b\\to 1+b,c\\to 1+c$\n",
"Numerator after substitutions: 4a^5b^4+4a^5b^3c+14a^5b^3+9a^5b^2c+15a^5b^2+4a^5bc^2+2a^5bc+6a^5b+4a^5c^3+10a^5c^2+8a^5c+10a^5+20a^4b^4+20a^4b^3c+74a^4b^3+45a^4b^2c+78a^4b^2+20a^4bc^2+10a^4bc+24a^4b+20a^4c^3+54a^4c^2+30a^4c+40a^4+40a^3b^4+40a^3b^3c+156a^3b^3+90a^3b^2c+162a^3b^2+40a^3bc^2+20a^3bc+36a^3b+40a^3c^3+116a^3c^2+40a^3c+60a^3+40a^2b^4+40a^2b^3c+164a^2b^3+90a^2b^2c+168a^2b^2+40a^2bc^2+20a^2bc+20a^2b+40a^2c^3+124a^2c^2+18a^2c+34a^2+20ab^4+20ab^3c+86ab^3+45ab^2c+87ab^2+20abc^2+10abc+2ab+20ac^3+66ac^2+4b^4+4b^3c+18b^3+9b^2c+18b^2+4bc^2+2bc+4c^3+14c^2\n",
"status: 0\n",
"\n",
"$$ 0 \\le \n",
"4a^5b^4+4a^5b^3c+14a^5b^3+9a^5b^2c+15a^5b^2+4a^5bc^2+2a^5bc+6a^5b+4a^5c^3+10a^5c^2+8a^5c+10a^5+20a^4b^4+20a^4b^3c+74a^4b^3+45a^4b^2c+78a^4b^2+20a^4bc^2+10a^4bc+24a^4b+20a^4c^3+54a^4c^2+30a^4c+40a^4+40a^3b^4+40a^3b^3c+156a^3b^3+90a^3b^2c+162a^3b^2+40a^3bc^2+20a^3bc+36a^3b+40a^3c^3+116a^3c^2+40a^3c+60a^3+40a^2b^4+40a^2b^3c+164a^2b^3+90a^2b^2c+168a^2b^2+40a^2bc^2+20a^2bc+20a^2b+40a^2c^3+124a^2c^2+18a^2c+34a^2+20ab^4+20ab^3c+86ab^3+45ab^2c+87ab^2+20abc^2+10abc+2ab+20ac^3+66ac^2+4b^4+4b^3c+18b^3+9b^2c+18b^2+4bc^2+2bc+4c^3+14c^2 $$\n",
"The sum of all inequalities gives us a proof of the inequality.\n",
"\n",
"\\hline\n",
"\n",
"Substitute $a\\to 1+a,b\\to 1/(1+b),c\\to 1+c$\n",
"Numerator after substitutions: 4a^5b^4+16a^5b^3+24a^5b^2+16a^5b+4a^5+4a^4b^4c+18a^4b^4+16a^4b^3c+76a^4b^3+24a^4b^2c+120a^4b^2+16a^4bc+84a^4b+4a^4c+22a^4+14a^3b^4c+30a^3b^4+56a^3b^3c+132a^3b^3+84a^3b^2c+216a^3b^2+56a^3bc+156a^3b+14a^3c+42a^3+18a^2b^4c+22a^2b^4+72a^2b^3c+100a^2b^3+108a^2b^2c+168a^2b^2+72a^2bc+124a^2b+18a^2c+34a^2+4ab^4c^2+ab^4+16ab^3c^2+8ab^3+24ab^2c^2+9ab^2+16abc^2+2ab+4ac^2+4b^4c^3+10b^4c^2+3b^4c+4b^4+16b^3c^3+44b^3c^2+8b^3c+18b^3+24b^2c^3+72b^2c^2+3b^2c+18b^2+16bc^3+52bc^2-2bc+4c^3+14c^2\n",
"status: 0\n",
"From weighted AM-GM inequality:\n",
"$$2bc \\le b^2+c^2$$\n",
"\n",
"$$ 0 \\le \n",
"4a^5b^4+16a^5b^3+24a^5b^2+16a^5b+4a^5+4a^4b^4c+18a^4b^4+16a^4b^3c+76a^4b^3+24a^4b^2c+120a^4b^2+16a^4bc+84a^4b+4a^4c+22a^4+14a^3b^4c+30a^3b^4+56a^3b^3c+132a^3b^3+84a^3b^2c+216a^3b^2+56a^3bc+156a^3b+14a^3c+42a^3+18a^2b^4c+22a^2b^4+72a^2b^3c+100a^2b^3+108a^2b^2c+168a^2b^2+72a^2bc+124a^2b+18a^2c+34a^2+4ab^4c^2+ab^4+16ab^3c^2+8ab^3+24ab^2c^2+9ab^2+16abc^2+2ab+4ac^2+4b^4c^3+10b^4c^2+3b^4c+4b^4+16b^3c^3+44b^3c^2+8b^3c+18b^3+24b^2c^3+72b^2c^2+3b^2c+17b^2+16bc^3+52bc^2+4c^3+13c^2 $$\n",
"The sum of all inequalities gives us a proof of the inequality.\n",
"\n",
"\\hline\n",
"\n",
"Substitute $a\\to 1/(1+a),b\\to 1/(1+b),c\\to 1+c$\n",
"Numerator after substitutions: 4a^5b^4c^3+6a^5b^4c^2+11a^5b^4c+9a^5b^4+16a^5b^3c^3+28a^5b^3c^2+40a^5b^3c+38a^5b^3+24a^5b^2c^3+48a^5b^2c^2+51a^5b^2c+57a^5b^2+16a^5bc^3+36a^5bc^2+30a^5bc+34a^5b+4a^5c^3+10a^5c^2+8a^5c+10a^5+20a^4b^4c^3+34a^4b^4c^2+45a^4b^4c+40a^4b^4+80a^4b^3c^3+156a^4b^3c^2+160a^4b^3c+170a^4b^3+120a^4b^2c^3+264a^4b^2c^2+195a^4b^2c+246a^4b^2+80a^4bc^3+196a^4bc^2+110a^4bc+136a^4b+20a^4c^3+54a^4c^2+30a^4c+40a^4+40a^3b^4c^3+76a^3b^4c^2+70a^3b^4c+70a^3b^4+160a^3b^3c^3+344a^3b^3c^2+240a^3b^3c+300a^3b^3+240a^3b^2c^3+576a^3b^2c^2+270a^3b^2c+414a^3b^2+160a^3bc^3+424a^3bc^2+140a^3bc+204a^3b+40a^3c^3+116a^3c^2+40a^3c+60a^3+40a^2b^4c^3+84a^2b^4c^2+48a^2b^4c+58a^2b^4+160a^2b^3c^3+376a^2b^3c^2+152a^2b^3c+248a^2b^3+240a^2b^2c^3+624a^2b^2c^2+138a^2b^2c+312a^2b^2+160a^2bc^3+456a^2bc^2+52a^2bc+116a^2b+40a^2c^3+124a^2c^2+18a^2c+34a^2+20ab^4c^3+46ab^4c^2+15ab^4c+19ab^4+80ab^3c^3+204ab^3c^2+40ab^3c+82ab^3+120ab^2c^3+336ab^2c^2+15ab^2c+81ab^2+80abc^3+244abc^2-10abc-2ab+20ac^3+66ac^2+4b^4c^3+10b^4c^2+3b^4c+4b^4+16b^3c^3+44b^3c^2+8b^3c+18b^3+24b^2c^3+72b^2c^2+3b^2c+18b^2+16bc^3+52bc^2-2bc+4c^3+14c^2\n",
"status: 0\n",
"From weighted AM-GM inequality:\n",
"$$2ab \\le a^2+b^2$$\n",
"$$2bc \\le b^2+c^2$$\n",
"$$10abc \\le 5a^2b+5bc^2$$\n",
"\n",
"$$ 0 \\le \n",
"4a^5b^4c^3+6a^5b^4c^2+11a^5b^4c+9a^5b^4+16a^5b^3c^3+28a^5b^3c^2+40a^5b^3c+38a^5b^3+24a^5b^2c^3+48a^5b^2c^2+51a^5b^2c+57a^5b^2+16a^5bc^3+36a^5bc^2+30a^5bc+34a^5b+4a^5c^3+10a^5c^2+8a^5c+10a^5+20a^4b^4c^3+34a^4b^4c^2+45a^4b^4c+40a^4b^4+80a^4b^3c^3+156a^4b^3c^2+160a^4b^3c+170a^4b^3+120a^4b^2c^3+264a^4b^2c^2+195a^4b^2c+246a^4b^2+80a^4bc^3+196a^4bc^2+110a^4bc+136a^4b+20a^4c^3+54a^4c^2+30a^4c+40a^4+40a^3b^4c^3+76a^3b^4c^2+70a^3b^4c+70a^3b^4+160a^3b^3c^3+344a^3b^3c^2+240a^3b^3c+300a^3b^3+240a^3b^2c^3+576a^3b^2c^2+270a^3b^2c+414a^3b^2+160a^3bc^3+424a^3bc^2+140a^3bc+204a^3b+40a^3c^3+116a^3c^2+40a^3c+60a^3+40a^2b^4c^3+84a^2b^4c^2+48a^2b^4c+58a^2b^4+160a^2b^3c^3+376a^2b^3c^2+152a^2b^3c+248a^2b^3+240a^2b^2c^3+624a^2b^2c^2+138a^2b^2c+312a^2b^2+160a^2bc^3+456a^2bc^2+52a^2bc+111a^2b+40a^2c^3+124a^2c^2+18a^2c+33a^2+20ab^4c^3+46ab^4c^2+15ab^4c+19ab^4+80ab^3c^3+204ab^3c^2+40ab^3c+82ab^3+120ab^2c^3+336ab^2c^2+15ab^2c+81ab^2+80abc^3+244abc^2+20ac^3+66ac^2+4b^4c^3+10b^4c^2+3b^4c+4b^4+16b^3c^3+44b^3c^2+8b^3c+18b^3+24b^2c^3+72b^2c^2+3b^2c+16b^2+16bc^3+47bc^2+4c^3+13c^2 $$\n",
"The sum of all inequalities gives us a proof of the inequality.\n",
"\n",
"\\hline\n",
"\n",
"Substitute $a\\to 1+a,b\\to 1+b,c\\to 1/(1+c)$\n",
"Numerator after substitutions: 4a^5c^3+12a^5c^2+12a^5c+4a^5+4a^4bc^3+12a^4bc^2+12a^4bc+4a^4b+18a^4c^3+58a^4c^2+62a^4c+22a^4+12a^3bc^3+36a^3bc^2+36a^3bc+12a^3b+28a^3c^3+98a^3c^2+112a^3c+42a^3+12a^2bc^3+36a^2bc^2+36a^2bc+12a^2b+16a^2c^3+66a^2c^2+84a^2c+34a^2+4ab^3c^3+12ab^3c^2+12ab^3c+4ab^3+3ab^2c^3+9ab^2c^2+9ab^2c+3ab^2-2abc^3-6abc^2-6abc-2ab+4ac^3+4ac^2+4b^4c^3+12b^4c^2+12b^4c+4b^4+14b^3c^3+46b^3c^2+50b^3c+18b^3+9b^2c^3+36b^2c^2+45b^2c+18b^2+2bc^3-2bc+10c^3+14c^2\n",
"status: 0\n",
"From weighted AM-GM inequality:\n",
"$$6abc \\le 2a^3+2b^2+2bc^3$$\n",
"$$2ab \\le a^2+b^2$$\n",
"$$2bc \\le b^2+c^2$$\n",
"$$6abc^2 \\le 3a^2c^2+2b^2c^3+b^2$$\n",
"$$2abc^3 \\le a^2c^3+b^2c^3$$\n",
"\n",
"$$ 0 \\le \n",
"4a^5c^3+12a^5c^2+12a^5c+4a^5+4a^4bc^3+12a^4bc^2+12a^4bc+4a^4b+18a^4c^3+58a^4c^2+62a^4c+22a^4+12a^3bc^3+36a^3bc^2+36a^3bc+12a^3b+28a^3c^3+98a^3c^2+112a^3c+40a^3+12a^2bc^3+36a^2bc^2+36a^2bc+12a^2b+15a^2c^3+63a^2c^2+84a^2c+33a^2+4ab^3c^3+12ab^3c^2+12ab^3c+4ab^3+3ab^2c^3+9ab^2c^2+9ab^2c+3ab^2+4ac^3+4ac^2+4b^4c^3+12b^4c^2+12b^4c+4b^4+14b^3c^3+46b^3c^2+50b^3c+18b^3+6b^2c^3+36b^2c^2+45b^2c+13b^2+10c^3+13c^2 $$\n",
"The sum of all inequalities gives us a proof of the inequality.\n",
"\n",
"\\hline\n",
"\n",
"Substitute $a\\to 1/(1+a),b\\to 1+b,c\\to 1/(1+c)$\n",
"Numerator after substitutions: 4a^5b^4c^3+12a^5b^4c^2+12a^5b^4c+4a^5b^4+10a^5b^3c^3+34a^5b^3c^2+38a^5b^3c+14a^5b^3+6a^5b^2c^3+27a^5b^2c^2+36a^5b^2c+15a^5b^2+8a^5bc^3+18a^5bc^2+16a^5bc+6a^5b+8a^5c^3+24a^5c^2+22a^5c+10a^5+20a^4b^4c^3+60a^4b^4c^2+60a^4b^4c+20a^4b^4+54a^4b^3c^3+182a^4b^3c^2+202a^4b^3c+74a^4b^3+33a^4b^2c^3+144a^4b^2c^2+189a^4b^2c+78a^4b^2+34a^4bc^3+72a^4bc^2+62a^4bc+24a^4b+44a^4c^3+114a^4c^2+90a^4c+40a^4+40a^3b^4c^3+120a^3b^4c^2+120a^3b^4c+40a^3b^4+116a^3b^3c^3+388a^3b^3c^2+428a^3b^3c+156a^3b^3+72a^3b^2c^3+306a^3b^2c^2+396a^3b^2c+162a^3b^2+56a^3bc^3+108a^3bc^2+88a^3bc+36a^3b+96a^3c^3+216a^3c^2+140a^3c+60a^3+40a^2b^4c^3+120a^2b^4c^2+120a^2b^4c+40a^2b^4+124a^2b^3c^3+412a^2b^3c^2+452a^2b^3c+164a^2b^3+78a^2b^2c^3+324a^2b^2c^2+414a^2b^2c+168a^2b^2+40a^2bc^3+60a^2bc^2+40a^2bc+20a^2b+100a^2c^3+190a^2c^2+84a^2c+34a^2+20ab^4c^3+60ab^4c^2+60ab^4c+20ab^4+66ab^3c^3+218ab^3c^2+238ab^3c+86ab^3+42ab^2c^3+171ab^2c^2+216ab^2c+87ab^2+12abc^3+6abc^2-4abc+2ab+46ac^3+66ac^2+4b^4c^3+12b^4c^2+12b^4c+4b^4+14b^3c^3+46b^3c^2+50b^3c+18b^3+9b^2c^3+36b^2c^2+45b^2c+18b^2+2bc^3-2bc+10c^3+14c^2\n",
"status: 0\n",
"From weighted AM-GM inequality:\n",
"$$2bc \\le b^2+c^2$$\n",
"$$4abc \\le 2a^2+b^4c^2+c^2$$\n",
"\n",
"$$ 0 \\le \n",
"4a^5b^4c^3+12a^5b^4c^2+12a^5b^4c+4a^5b^4+10a^5b^3c^3+34a^5b^3c^2+38a^5b^3c+14a^5b^3+6a^5b^2c^3+27a^5b^2c^2+36a^5b^2c+15a^5b^2+8a^5bc^3+18a^5bc^2+16a^5bc+6a^5b+8a^5c^3+24a^5c^2+22a^5c+10a^5+20a^4b^4c^3+60a^4b^4c^2+60a^4b^4c+20a^4b^4+54a^4b^3c^3+182a^4b^3c^2+202a^4b^3c+74a^4b^3+33a^4b^2c^3+144a^4b^2c^2+189a^4b^2c+78a^4b^2+34a^4bc^3+72a^4bc^2+62a^4bc+24a^4b+44a^4c^3+114a^4c^2+90a^4c+40a^4+40a^3b^4c^3+120a^3b^4c^2+120a^3b^4c+40a^3b^4+116a^3b^3c^3+388a^3b^3c^2+428a^3b^3c+156a^3b^3+72a^3b^2c^3+306a^3b^2c^2+396a^3b^2c+162a^3b^2+56a^3bc^3+108a^3bc^2+88a^3bc+36a^3b+96a^3c^3+216a^3c^2+140a^3c+60a^3+40a^2b^4c^3+120a^2b^4c^2+120a^2b^4c+40a^2b^4+124a^2b^3c^3+412a^2b^3c^2+452a^2b^3c+164a^2b^3+78a^2b^2c^3+324a^2b^2c^2+414a^2b^2c+168a^2b^2+40a^2bc^3+60a^2bc^2+40a^2bc+20a^2b+100a^2c^3+190a^2c^2+84a^2c+32a^2+20ab^4c^3+60ab^4c^2+60ab^4c+20ab^4+66ab^3c^3+218ab^3c^2+238ab^3c+86ab^3+42ab^2c^3+171ab^2c^2+216ab^2c+87ab^2+12abc^3+6abc^2+2ab+46ac^3+66ac^2+4b^4c^3+11b^4c^2+12b^4c+4b^4+14b^3c^3+46b^3c^2+50b^3c+18b^3+9b^2c^3+36b^2c^2+45b^2c+17b^2+2bc^3+10c^3+12c^2 $$\n",
"The sum of all inequalities gives us a proof of the inequality.\n",
"\n",
"\\hline\n",
"\n",
"Substitute $a\\to 1+a,b\\to 1/(1+b),c\\to 1/(1+c)$\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Numerator after substitutions: 4a^5b^4c^3+12a^5b^4c^2+12a^5b^4c+4a^5b^4+16a^5b^3c^3+48a^5b^3c^2+48a^5b^3c+16a^5b^3+24a^5b^2c^3+72a^5b^2c^2+72a^5b^2c+24a^5b^2+16a^5bc^3+48a^5bc^2+48a^5bc+16a^5b+4a^5c^3+12a^5c^2+12a^5c+4a^5+14a^4b^4c^3+46a^4b^4c^2+50a^4b^4c+18a^4b^4+60a^4b^3c^3+196a^4b^3c^2+212a^4b^3c+76a^4b^3+96a^4b^2c^3+312a^4b^2c^2+336a^4b^2c+120a^4b^2+68a^4bc^3+220a^4bc^2+236a^4bc+84a^4b+18a^4c^3+58a^4c^2+62a^4c+22a^4+16a^3b^4c^3+62a^3b^4c^2+76a^3b^4c+30a^3b^4+76a^3b^3c^3+284a^3b^3c^2+340a^3b^3c+132a^3b^3+132a^3b^2c^3+480a^3b^2c^2+564a^3b^2c+216a^3b^2+100a^3bc^3+356a^3bc^2+412a^3bc+156a^3b+28a^3c^3+98a^3c^2+112a^3c+42a^3+4a^2b^4c^3+30a^2b^4c^2+48a^2b^4c+22a^2b^4+28a^2b^3c^3+156a^2b^3c^2+228a^2b^3c+100a^2b^3+60a^2b^2c^3+288a^2b^2c^2+396a^2b^2c+168a^2b^2+52a^2bc^3+228a^2bc^2+300a^2bc+124a^2b+16a^2c^3+66a^2c^2+84a^2c+34a^2+5ab^4c^3+7ab^4c^2+3ab^4c+ab^4+24ab^3c^3+40ab^3c^2+24ab^3c+8ab^3+33ab^2c^3+51ab^2c^2+27ab^2c+9ab^2+18abc^3+22abc^2+6abc+2ab+4ac^3+4ac^2+7b^4c^3+16b^4c^2+9b^4c+4b^4+38b^3c^3+82b^3c^2+46b^3c+18b^3+63b^2c^3+120b^2c^2+51b^2c+18b^2+38bc^3+56bc^2+2bc+10c^3+14c^2\n",
"status: 0\n",
"\n",
"$$ 0 \\le \n",
"4a^5b^4c^3+12a^5b^4c^2+12a^5b^4c+4a^5b^4+16a^5b^3c^3+48a^5b^3c^2+48a^5b^3c+16a^5b^3+24a^5b^2c^3+72a^5b^2c^2+72a^5b^2c+24a^5b^2+16a^5bc^3+48a^5bc^2+48a^5bc+16a^5b+4a^5c^3+12a^5c^2+12a^5c+4a^5+14a^4b^4c^3+46a^4b^4c^2+50a^4b^4c+18a^4b^4+60a^4b^3c^3+196a^4b^3c^2+212a^4b^3c+76a^4b^3+96a^4b^2c^3+312a^4b^2c^2+336a^4b^2c+120a^4b^2+68a^4bc^3+220a^4bc^2+236a^4bc+84a^4b+18a^4c^3+58a^4c^2+62a^4c+22a^4+16a^3b^4c^3+62a^3b^4c^2+76a^3b^4c+30a^3b^4+76a^3b^3c^3+284a^3b^3c^2+340a^3b^3c+132a^3b^3+132a^3b^2c^3+480a^3b^2c^2+564a^3b^2c+216a^3b^2+100a^3bc^3+356a^3bc^2+412a^3bc+156a^3b+28a^3c^3+98a^3c^2+112a^3c+42a^3+4a^2b^4c^3+30a^2b^4c^2+48a^2b^4c+22a^2b^4+28a^2b^3c^3+156a^2b^3c^2+228a^2b^3c+100a^2b^3+60a^2b^2c^3+288a^2b^2c^2+396a^2b^2c+168a^2b^2+52a^2bc^3+228a^2bc^2+300a^2bc+124a^2b+16a^2c^3+66a^2c^2+84a^2c+34a^2+5ab^4c^3+7ab^4c^2+3ab^4c+ab^4+24ab^3c^3+40ab^3c^2+24ab^3c+8ab^3+33ab^2c^3+51ab^2c^2+27ab^2c+9ab^2+18abc^3+22abc^2+6abc+2ab+4ac^3+4ac^2+7b^4c^3+16b^4c^2+9b^4c+4b^4+38b^3c^3+82b^3c^2+46b^3c+18b^3+63b^2c^3+120b^2c^2+51b^2c+18b^2+38bc^3+56bc^2+2bc+10c^3+14c^2 $$\n",
"The sum of all inequalities gives us a proof of the inequality.\n",
"\n",
"\\hline\n",
"\n",
"Substitute $a\\to 1/(1+a),b\\to 1/(1+b),c\\to 1/(1+c)$\n",
"Numerator after substitutions: 11a^5b^4c^2+16a^5b^4c+9a^5b^4+10a^5b^3c^3+62a^5b^3c^2+74a^5b^3c+38a^5b^3+30a^5b^2c^3+117a^5b^2c^2+120a^5b^2c+57a^5b^2+24a^5bc^3+78a^5bc^2+72a^5bc+34a^5b+8a^5c^3+24a^5c^2+22a^5c+10a^5+9a^4b^4c^3+64a^4b^4c^2+75a^4b^4c+40a^4b^4+86a^4b^3c^3+346a^4b^3c^2+350a^4b^3c+170a^4b^3+195a^4b^2c^3+612a^4b^2c^2+543a^4b^2c+246a^4b^2+142a^4bc^3+384a^4bc^2+298a^4bc+136a^4b+44a^4c^3+114a^4c^2+90a^4c+40a^4+36a^3b^4c^3+146a^3b^4c^2+140a^3b^4c+70a^3b^4+244a^3b^3c^3+764a^3b^3c^2+660a^3b^3c+300a^3b^3+480a^3b^2c^3+1278a^3b^2c^2+972a^3b^2c+414a^3b^2+328a^3bc^3+756a^3bc^2+472a^3bc+204a^3b+96a^3c^3+216a^3c^2+140a^3c+60a^3+54a^2b^4c^3+162a^2b^4c^2+126a^2b^4c+58a^2b^4+312a^2b^3c^3+816a^2b^3c^2+592a^2b^3c+248a^2b^3+558a^2b^2c^3+1284a^2b^2c^2+798a^2b^2c+312a^2b^2+360a^2bc^3+700a^2bc^2+296a^2bc+116a^2b+100a^2c^3+190a^2c^2+84a^2c+34a^2+30ab^4c^3+73ab^4c^2+42ab^4c+19ab^4+166ab^3c^3+370ab^3c^2+206ab^3c+82ab^3+282ab^2c^3+549ab^2c^2+228ab^2c+81ab^2+172abc^3+258abc^2+4abc-2ab+46ac^3+66ac^2+7b^4c^3+16b^4c^2+9b^4c+4b^4+38b^3c^3+82b^3c^2+46b^3c+18b^3+63b^2c^3+120b^2c^2+51b^2c+18b^2+38bc^3+56bc^2+2bc+10c^3+14c^2\n",
"status: 0\n",
"From weighted AM-GM inequality:\n",
"$$2ab \\le a^2+b^2$$\n",
"\n",
"$$ 0 \\le \n",
"11a^5b^4c^2+16a^5b^4c+9a^5b^4+10a^5b^3c^3+62a^5b^3c^2+74a^5b^3c+38a^5b^3+30a^5b^2c^3+117a^5b^2c^2+120a^5b^2c+57a^5b^2+24a^5bc^3+78a^5bc^2+72a^5bc+34a^5b+8a^5c^3+24a^5c^2+22a^5c+10a^5+9a^4b^4c^3+64a^4b^4c^2+75a^4b^4c+40a^4b^4+86a^4b^3c^3+346a^4b^3c^2+350a^4b^3c+170a^4b^3+195a^4b^2c^3+612a^4b^2c^2+543a^4b^2c+246a^4b^2+142a^4bc^3+384a^4bc^2+298a^4bc+136a^4b+44a^4c^3+114a^4c^2+90a^4c+40a^4+36a^3b^4c^3+146a^3b^4c^2+140a^3b^4c+70a^3b^4+244a^3b^3c^3+764a^3b^3c^2+660a^3b^3c+300a^3b^3+480a^3b^2c^3+1278a^3b^2c^2+972a^3b^2c+414a^3b^2+328a^3bc^3+756a^3bc^2+472a^3bc+204a^3b+96a^3c^3+216a^3c^2+140a^3c+60a^3+54a^2b^4c^3+162a^2b^4c^2+126a^2b^4c+58a^2b^4+312a^2b^3c^3+816a^2b^3c^2+592a^2b^3c+248a^2b^3+558a^2b^2c^3+1284a^2b^2c^2+798a^2b^2c+312a^2b^2+360a^2bc^3+700a^2bc^2+296a^2bc+116a^2b+100a^2c^3+190a^2c^2+84a^2c+33a^2+30ab^4c^3+73ab^4c^2+42ab^4c+19ab^4+166ab^3c^3+370ab^3c^2+206ab^3c+82ab^3+282ab^2c^3+549ab^2c^2+228ab^2c+81ab^2+172abc^3+258abc^2+4abc+46ac^3+66ac^2+7b^4c^3+16b^4c^2+9b^4c+4b^4+38b^3c^3+82b^3c^2+46b^3c+18b^3+63b^2c^3+120b^2c^2+51b^2c+17b^2+38bc^3+56bc^2+2bc+10c^3+14c^2 $$\n",
"The sum of all inequalities gives us a proof of the inequality.\n"
]
}
],
"source": [
"formula=Sm('-(3a + 2b + c)(2a^3 + 3b^2 + 6c + 1) + (4a + 4b + 4c)(a^4 + b^3 + c^2 + 3)')\n",
"powerprove(formula)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's take a look at slightly another kind of the problem.\n",
"#### Problem\n",
"Let $f:R^3\\to R$ be a convex function. Prove that\n",
"$$f(1,2,3)+f(2,3,1)+f(3,1,2)\\le f(4,3,-1)+f(3,-1,4)+f(-1,4,3).$$\n",
"\n",
"To create a proof, we will use `provef` function. It assumes that $f$ is convex and nonnegative, then it tries to find a proof. However, if the last inequality is $0\\le 0$, then the proof works for any convex function."
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"numerator: $$21f(-1,4,3)-21f(1,2,3)-21f(2,3,1)+21f(3,-1,4)-21f(3,1,2)+21f(4,3,-1)$$\n",
"denominator: $$1$$\n",
"status: 0\n",
"From Jensen inequality:\n",
"$$21f(1, 2, 3) \\le 11f(-1, 4, 3)+8f(3, -1, 4)+2f(4, 3, -1)$$\n",
"$$21f(2, 3, 1) \\le 8f(-1, 4, 3)+2f(3, -1, 4)+11f(4, 3, -1)$$\n",
"$$21f(3, 1, 2) \\le 2f(-1, 4, 3)+11f(3, -1, 4)+8f(4, 3, -1)$$\n",
"\n",
"$$ 0 \\le \n",
"0 $$\n",
"The sum of all inequalities gives us a proof of the inequality.\n"
]
}
],
"source": [
"provef('(-f(1,2,3)-f(2,3,1)-f(3,1,2)+f(4,3,-1)+f(3,-1,4)+f(-1,4,3))*21')"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": null,

View File

@ -15,7 +15,7 @@ translationList=['numerator:','denominator:','status:',
"Program couldn't find any proof.", "Program couldn't find any proof.",
"Try to set higher linprogiter parameter.", "Try to set higher linprogiter parameter.",
"It looks like the formula is symmetric. You can assume without loss of"+ "It looks like the formula is symmetric. You can assume without loss of"+
" generality that ","Try" " generality that ","Try", 'From Jensen inequality:'
] ]
#Initialize english-english dictionary. #Initialize english-english dictionary.
for phrase in translationList: for phrase in translationList:
@ -123,7 +123,7 @@ def _formula2list(formula,variables):
rcoef+=[coef] rcoef+=[coef]
rfun+=[powers] rfun+=[powers]
return(lcoef,lfun,rcoef,rfun) return(lcoef,lfun,rcoef,rfun)
def _list2proof(lcoef,lfun,rcoef,rfun,variables,itermax,linprogiter,_writ2=_writ2): def _list2proof(lcoef,lfun,rcoef,rfun,variables,itermax,linprogiter,_writ2=_writ2,theorem="From weighted AM-GM inequality:"):
#Now the formula is splitted on two polynomials with positive coefficients. #Now the formula is splitted on two polynomials with positive coefficients.
#we will call them LHS and RHS and our inequality to prove would #we will call them LHS and RHS and our inequality to prove would
#be LHS<=RHS (instead of 0<=RHS-LHS). #be LHS<=RHS (instead of 0<=RHS-LHS).
@ -198,7 +198,7 @@ def _list2proof(lcoef,lfun,rcoef,rfun,variables,itermax,linprogiter,_writ2=_writ
if itern==1: if itern==1:
print(sTranslation['status:'],status) print(sTranslation['status:'],status)
if status==0: if status==0:
print(sTranslation['From weighted AM-GM inequality:']) print(sTranslation[theorem])
if status==2: #if real solution of current inequality doesn't exist if status==2: #if real solution of current inequality doesn't exist
if foundreal==0: #if this is the first inequality, then break if foundreal==0: #if this is the first inequality, then break
break break
@ -397,7 +397,7 @@ def provef(formula,niter=200,linprogiter=10000):
#provides a proof of nonnegativity. #provides a proof of nonnegativity.
formula=S(formula) formula=S(formula)
num,den=_input2fraction(formula,[],[]) num,den=_input2fraction(formula,[],[])
_list2proof(*(_formula2listf(num)+(None,niter,linprogiter,_writ))) _list2proof(*(_formula2listf(num)+(None,niter,linprogiter,_writ,'From Jensen inequality:')))
def issymetric(formula): #checks if formula is symmetric def issymetric(formula): #checks if formula is symmetric
#and has at least two variables #and has at least two variables
if len(formula.free_symbols)<2: if len(formula.free_symbols)<2: