added findvalues function and better handling with non polynomial expressions and irrational numbers
This commit is contained in:
parent
d192eac748
commit
ee82c6c942
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
BIN
__pycache__/shiroindev.cpython-36.pyc
Normal file
BIN
__pycache__/shiroindev.cpython-36.pyc
Normal file
Binary file not shown.
Binary file not shown.
918
examples.ipynb
918
examples.ipynb
File diff suppressed because it is too large
Load Diff
2825
sandbox.ipynb
2825
sandbox.ipynb
File diff suppressed because it is too large
Load Diff
142
shiroindev.py
142
shiroindev.py
@ -4,10 +4,10 @@ import warnings,operator
|
||||
warnings.filterwarnings("ignore")
|
||||
#Seed is needed to select the weights in linprog function.
|
||||
#None means that the seed is random.
|
||||
class Empty:
|
||||
class Vars:
|
||||
pass
|
||||
sVars=Empty()
|
||||
sVars.print=print
|
||||
sVars=Vars()
|
||||
sVars.display=print
|
||||
sVars.seed=None
|
||||
sVars.translation={}
|
||||
translationList=['numerator:','denominator:','status:',
|
||||
@ -24,9 +24,10 @@ translationList=['numerator:','denominator:','status:',
|
||||
#Initialize english-english dictionary.
|
||||
for phrase in translationList:
|
||||
sVars.translation[phrase]=phrase
|
||||
from scipy.optimize import linprog
|
||||
from scipy.optimize import linprog,fmin
|
||||
import random
|
||||
from sympy import S,cancel,fraction,Pow,expand,solve,latex,oo
|
||||
from sympy import S,cancel,fraction,Pow,expand,solve,latex,oo,Poly,lambdify
|
||||
from collections import Counter
|
||||
import re
|
||||
def _remzero(coef,fun):
|
||||
#coef, fun represents an expression.
|
||||
@ -72,6 +73,28 @@ def ssolve(formula,variables):
|
||||
return result
|
||||
def sstr(formula):
|
||||
return str(formula).replace('**','^').replace('*','').replace(' ','')
|
||||
def reducegens(formula):
|
||||
pol=Poly(formula)
|
||||
newgens={}
|
||||
ind={}
|
||||
for gen in pol.gens:
|
||||
base,pw=_powr(gen)
|
||||
coef,_=pw.as_coeff_mul()
|
||||
ml=pw/coef
|
||||
if base**ml in newgens:
|
||||
newgens[base**ml]=gcd(newgens[base**ml],coef)
|
||||
else:
|
||||
newgens[base**ml]=coef
|
||||
ind[base**ml]=S('tmp'+str(len(ind)))
|
||||
for gen in pol.gens:
|
||||
base,pw=_powr(gen)
|
||||
coef,_=pw.as_coeff_mul()
|
||||
ml=pw/coef
|
||||
pol=pol.replace(gen,ind[base**ml]**(coef/newgens[base**ml]))
|
||||
newpol=Poly(pol.as_expr())
|
||||
for gen in newgens:
|
||||
newpol=newpol.replace(ind[gen],gen**newgens[gen])
|
||||
return newpol
|
||||
def Sm(formula):
|
||||
#Adds multiplication signs and sympifies a formula.
|
||||
#For example, Sm('(2x+y)(7+5xz)') -> S('(2*x+y)*(7+5*x*z)')
|
||||
@ -88,14 +111,14 @@ def _input2fraction(formula,variables,values):
|
||||
subst=[]
|
||||
for x,y in zip(variables,values):
|
||||
if y!=1:
|
||||
sVars.print(sVars.translation['Substitute']+' $'+str(x)+'\\to '+slatex(S(y)*S(x))+'$')
|
||||
sVars.display(sVars.translation['Substitute']+' $'+str(x)+'\\to '+slatex(S(y)*S(x))+'$')
|
||||
subst+=[(x,x*y)]
|
||||
formula=formula.subs(subst)
|
||||
numerator,denominator=fractioncancel(formula)
|
||||
sVars.print(sVars.translation['numerator:']+' $'+slatex(numerator)+'$')
|
||||
sVars.print(sVars.translation['denominator:']+' $'+slatex(denominator)+'$')
|
||||
sVars.display(sVars.translation['numerator:']+' $'+slatex(numerator)+'$')
|
||||
sVars.display(sVars.translation['denominator:']+' $'+slatex(denominator)+'$')
|
||||
return (numerator,denominator)
|
||||
def _formula2list(formula,variables):
|
||||
def _formula2list(formula):
|
||||
#Splits a polynomial to a difference of two polynomials with positive
|
||||
#coefficients and extracts coefficients and powers of both polynomials.
|
||||
#'variables' is used to set order of powers
|
||||
@ -103,30 +126,13 @@ def _formula2list(formula,variables):
|
||||
#the program tries to prove that
|
||||
#0<=5x^2-4xy+8y^3
|
||||
#4xy<=5x^2+8y^3
|
||||
#lcoef=[4]
|
||||
#lfun=[[1,1]]
|
||||
#rcoef=[5,8]
|
||||
#rfun=[[2,0],[0,3]]
|
||||
lfun=[]
|
||||
lcoef=[]
|
||||
rfun=[]
|
||||
rcoef=[]
|
||||
varorder=dict(zip(variables,range(len(variables))))
|
||||
for addend in formula.as_ordered_terms():
|
||||
coef,facts=addend.as_coeff_mul()
|
||||
powers=[0]*len(variables)
|
||||
for var in variables:
|
||||
powers[varorder[var]]=0
|
||||
for fact in facts:
|
||||
var,pw=_powr(fact)
|
||||
powers[varorder[var]]=int(pw)
|
||||
if(coef<0):
|
||||
lcoef+=[-coef]
|
||||
lfun+=[powers]
|
||||
else:
|
||||
rcoef+=[coef]
|
||||
rfun+=[powers]
|
||||
return(lcoef,lfun,rcoef,rfun)
|
||||
#returns [4],[(1,1)], [5,8],[(2,0),(0,3)], (x,y)
|
||||
formula=reducegens(formula)
|
||||
neg=(formula.abs()-formula)/2
|
||||
pos=(formula.abs()+formula)/2
|
||||
neg=Poly(neg,gens=formula.gens)
|
||||
pos=Poly(pos,gens=formula.gens)
|
||||
return neg.coeffs(),neg.monoms(),pos.coeffs(),pos.monoms(),Poly(formula).gens
|
||||
def _list2proof(lcoef,lfun,rcoef,rfun,variables,itermax,linprogiter,_writ2=_writ2,theorem="From weighted AM-GM inequality:"):
|
||||
#Now the formula is splitted on two polynomials with positive coefficients.
|
||||
#we will call them LHS and RHS and our inequality to prove would
|
||||
@ -157,13 +163,15 @@ def _list2proof(lcoef,lfun,rcoef,rfun,variables,itermax,linprogiter,_writ2=_writ
|
||||
#If LHS is empty, then break.
|
||||
localseed=sVars.seed
|
||||
bufer=[]
|
||||
lcoef,lfun=_remzero(lcoef,lfun)
|
||||
rcoef,rfun=_remzero(rcoef,rfun)
|
||||
itern=0
|
||||
if len(lcoef)==0: #if LHS is empty
|
||||
sVars.print(sVars.translation['status:']+' 0')
|
||||
sVars.display(sVars.translation['status:']+' 0')
|
||||
status=0
|
||||
elif len(rcoef)==0:
|
||||
#if RHS is empty, but LHS is not
|
||||
sVars.print(sVars.translation['status:']+' 2')
|
||||
sVars.display(sVars.translation['status:']+' 2')
|
||||
status=2
|
||||
itermax=0
|
||||
foundreal=0
|
||||
@ -200,9 +208,9 @@ def _list2proof(lcoef,lfun,rcoef,rfun,variables,itermax,linprogiter,_writ2=_writ
|
||||
res=linprog(vecc,A_eq=A,b_eq=b,A_ub=A_ub,b_ub=b_ub,options={'maxiter':linprogiter})
|
||||
status=res.status
|
||||
if itern==1:
|
||||
sVars.print(sVars.translation['status:']+' '+str(status))
|
||||
sVars.display(sVars.translation['status:']+' '+str(status))
|
||||
if status==0:
|
||||
sVars.print(sVars.translation[theorem])
|
||||
sVars.display(sVars.translation[theorem])
|
||||
if status==2: #if real solution of current inequality doesn't exist
|
||||
if foundreal==0: #if this is the first inequality, then break
|
||||
break
|
||||
@ -214,7 +222,7 @@ def _list2proof(lcoef,lfun,rcoef,rfun,variables,itermax,linprogiter,_writ2=_writ
|
||||
continue
|
||||
if status==0:#if found a solution with real coefficients
|
||||
for ineq in bufer:
|
||||
sVars.print(ineq)
|
||||
sVars.display(ineq)
|
||||
foundreal=1
|
||||
bufer=[]
|
||||
oldlfun,oldrfun=lfun,rfun
|
||||
@ -246,25 +254,25 @@ def _list2proof(lcoef,lfun,rcoef,rfun,variables,itermax,linprogiter,_writ2=_writ
|
||||
lcoef,lfun=_remzero(lcoef,lfun)
|
||||
rcoef,rfun=_remzero(rcoef,rfun)
|
||||
for ineq in bufer:
|
||||
sVars.print(ineq)
|
||||
sVars.display(ineq)
|
||||
lhs='+'.join([_writ2(c,f,variables) for c,f in zip(lcoef,lfun)])
|
||||
if lhs=='':
|
||||
lhs='0'
|
||||
elif status==0:
|
||||
sVars.print(sVars.translation[
|
||||
sVars.display(sVars.translation[
|
||||
"Program couldn't find a solution with integer coefficients. Try "+
|
||||
"to multiple the formula by some integer and run this function again."])
|
||||
elif(status==2):
|
||||
sVars.print(sVars.translation["Program couldn't find any proof."])
|
||||
sVars.display(sVars.translation["Program couldn't find any proof."])
|
||||
#return res.status
|
||||
elif status==1:
|
||||
sVars.print(sVars.translation["Try to set higher linprogiter parameter."])
|
||||
sVars.display(sVars.translation["Try to set higher linprogiter parameter."])
|
||||
rhs='+'.join([_writ2(c,f,variables) for c,f in zip(rcoef,rfun)])
|
||||
if rhs=='':
|
||||
rhs='0'
|
||||
sVars.print('$$ '+slatex(lhs)+' \\le '+slatex(rhs)+' $$')
|
||||
sVars.display('$$ '+slatex(lhs)+' \\le '+slatex(rhs)+' $$')
|
||||
if lhs=='0':
|
||||
sVars.print(sVars.translation['The sum of all inequalities gives us a proof of the inequality.'])
|
||||
sVars.display(sVars.translation['The sum of all inequalities gives us a proof of the inequality.'])
|
||||
return status
|
||||
def _isiterable(obj):
|
||||
try:
|
||||
@ -290,13 +298,13 @@ def prove(formula,values=None,variables=None,niter=200,linprogiter=10000):
|
||||
if values: values=_smakeiterable(values)
|
||||
else: values=[1]*len(variables)
|
||||
num,den=_input2fraction(formula,variables,values)
|
||||
st=_list2proof(*(_formula2list(num,variables)+(variables,niter,linprogiter)))
|
||||
st=_list2proof(*(_formula2list(num)+(niter,linprogiter)))
|
||||
if st==2 and issymetric(num):
|
||||
fs=sorted([str(x) for x in num.free_symbols])
|
||||
sVars.print(sVars.translation["It looks like the formula is symmetric. "+
|
||||
sVars.display(sVars.translation["It looks like the formula is symmetric. "+
|
||||
"You can assume without loss of generality that "]+
|
||||
' >= '.join([str(x) for x in fs])+'. '+sVars.translation['Try'])
|
||||
sVars.print('prove(makesubs(S("'+str(num)+'"),'+
|
||||
sVars.display('prove(makesubs(S("'+str(num)+'"),'+
|
||||
str([(str(x),'oo') for x in variables[1:]])+')')
|
||||
return st
|
||||
def powerprove(formula,values=None,variables=None,niter=200,linprogiter=10000):
|
||||
@ -309,10 +317,11 @@ def powerprove(formula,values=None,variables=None,niter=200,linprogiter=10000):
|
||||
else: values=[1]*len(variables)
|
||||
num,den=_input2fraction(formula,variables,values)
|
||||
subst2=[]
|
||||
statusses=[]
|
||||
for j in range(len(variables)):
|
||||
subst2+=[(variables[j],1+variables[j])]
|
||||
for i in range(1<<len(variables)): #tricky substitutions to improve speed
|
||||
sVars.print('\n\\hline\n')
|
||||
sVars.display('\n\\hline\n')
|
||||
subst1=[]
|
||||
substout=[]
|
||||
for j in range(len(variables)):
|
||||
@ -321,11 +330,12 @@ def powerprove(formula,values=None,variables=None,niter=200,linprogiter=10000):
|
||||
substout+=[str(variables[j])+'\\to 1/(1+'+str(variables[j])+')']
|
||||
else:
|
||||
substout+=[str(variables[j])+'\\to 1+'+str(variables[j])]
|
||||
sVars.print(sVars.translation['Substitute']+ ' $'+','.join(substout)+'$')
|
||||
sVars.display(sVars.translation['Substitute']+ ' $'+','.join(substout)+'$')
|
||||
num1=fractioncancel(num.subs(subst1))[0]
|
||||
num2=expand(num1.subs(subst2))
|
||||
sVars.print(sVars.translation["Numerator after substitutions:"]+' $'+slatex(num2)+'$')
|
||||
_list2proof(*(_formula2list(num2,variables)+(variables,niter,linprogiter)))
|
||||
sVars.display(sVars.translation["Numerator after substitutions:"]+' $'+slatex(num2)+'$')
|
||||
statusses+=[_list2proof(*(_formula2list(num2)+(niter,linprogiter)))]
|
||||
return Counter(statusses)
|
||||
def makesubs(formula,intervals,values=None,variables=None,numden=False):
|
||||
#This function generates a new formula which satisfies this condition:
|
||||
#for all positive variables new formula is nonnegative iff
|
||||
@ -346,18 +356,18 @@ def makesubs(formula,intervals,values=None,variables=None,numden=False):
|
||||
if {end1,end2}=={S('-oo'),S('oo')}:
|
||||
formula=formula.subs(var,var-1/var)
|
||||
equations=[equation.subs(var,var-1/var) for equation in equations]
|
||||
sVars.print(sVars.translation['Substitute']+' $'+str(var)+'\\to '+var-1/var+'$')
|
||||
sVars.display(sVars.translation['Substitute']+' $'+str(var)+'\\to '+sstr(var-1/var)+'$')
|
||||
elif end2==S('oo'):
|
||||
formula=formula.subs(var,end1+var)
|
||||
equations=[equation.subs(var,end1+var) for equation in equations]
|
||||
sVars.print(sVars.translation['Substitute']+' $'+str(var)+'\\to '+sstr(end1+var)+'$')
|
||||
sVars.display(sVars.translation['Substitute']+' $'+str(var)+'\\to '+sstr(end1+var)+'$')
|
||||
elif end2==S('-oo'):
|
||||
formula=formula.subs(var,end1-var)
|
||||
equations=[equation.subs(var,end1-var) for equation in equations]
|
||||
sVars.print(sVars.translation['Substitute']+" $"+str(var)+'\\to '+sstr(end1-var)+'$')
|
||||
sVars.display(sVars.translation['Substitute']+" $"+str(var)+'\\to '+sstr(end1-var)+'$')
|
||||
else:
|
||||
formula=formula.subs(var,end2+(end1-end2)/var)
|
||||
sVars.print(sVars.translation['Substitute']+" $"+str(var)+'\\to '+sstr(end2+(end1-end2)/(1+var))+'$')
|
||||
sVars.display(sVars.translation['Substitute']+" $"+str(var)+'\\to '+sstr(end2+(end1-end2)/(1+var))+'$')
|
||||
equations=[equation.subs(var,end2+(end1-end2)/var) for equation in equations]
|
||||
num,den=fractioncancel(formula)
|
||||
for var,interval in zip(variables,intervals):
|
||||
@ -370,7 +380,7 @@ def makesubs(formula,intervals,values=None,variables=None,numden=False):
|
||||
if len(values):
|
||||
values=values[0]
|
||||
num,den=expand(num),expand(den)
|
||||
#sVars.print(sVars.translation["Formula after substitution:"],"$$",slatex(num/den),'$$')
|
||||
#sVars.display(sVars.translation["Formula after substitution:"],"$$",slatex(num/den),'$$')
|
||||
if values and numden:
|
||||
return num,den,values
|
||||
elif values:
|
||||
@ -395,7 +405,7 @@ def _formula2listf(formula):
|
||||
else:
|
||||
rcoef+=[coef]
|
||||
rfun+=[facts[0].args]
|
||||
return(lcoef,lfun,rcoef,rfun)
|
||||
return(lcoef,lfun,rcoef,rfun,None)
|
||||
def provef(formula,niter=200,linprogiter=10000):
|
||||
#this function is similar to prove, formula is a linear combination of
|
||||
#values of f:R^k->R instead of a polynomial. provef checks if a formula
|
||||
@ -403,7 +413,7 @@ def provef(formula,niter=200,linprogiter=10000):
|
||||
#provides a proof of nonnegativity.
|
||||
formula=S(formula)
|
||||
num,den=_input2fraction(formula,[],[])
|
||||
_list2proof(*(_formula2listf(num)+(None,niter,linprogiter,_writ,'From Jensen inequality:')))
|
||||
return _list2proof(*(_formula2listf(num)+(niter,linprogiter,_writ,'From Jensen inequality:')))
|
||||
def issymetric(formula): #checks if formula is symmetric
|
||||
#and has at least two variables
|
||||
if len(formula.free_symbols)<2:
|
||||
@ -447,3 +457,19 @@ def symmetrize(formula,oper=operator.add,variables=None,init=None):
|
||||
for i in range(1,len(variables)):
|
||||
formula=cyclize(formula,oper,variables[:i+1])
|
||||
return formula
|
||||
def findvalues(formula,values=None,variables=None):
|
||||
formula=S(formula)
|
||||
num,den=fractioncancel(formula)
|
||||
if variables==None:
|
||||
variables=sorted(num.free_symbols,key=str)
|
||||
num=num.subs(zip(variables,list(map(lambda x:x**2,variables))))
|
||||
num=Poly(num)
|
||||
newformula=S((num.abs()+num)/(num.abs()-num))
|
||||
f=lambdify(variables,newformula)
|
||||
f2=lambda x:f(*x)
|
||||
if values==None:
|
||||
values=[1.0]*len(variables)
|
||||
else:
|
||||
values=S(values)
|
||||
tup=tuple(fmin(f2,values))
|
||||
return tuple([x*x for x in tup])
|
||||
|
BIN
shiroindev.pyc
Normal file
BIN
shiroindev.pyc
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user