\documentclass{beamer} \usepackage[utf8]{inputenc} %\usepackage{polski} \newtheorem{twierdzenie}{Twierdzenie} \newtheorem{definicja}{Definicja} \usepackage{tikz} \usepackage{pgfplots} \usepackage{datapie} \usetikzlibrary{patterns} \usetikzlibrary{arrows} \usetikzlibrary{positioning} \usetikzlibrary{decorations.pathmorphing} \usetikzlibrary{decorations.pathreplacing} \usetikzlibrary{decorations.text} \usetikzlibrary{decorations.footprints} \usetikzlibrary{shapes.symbols} \usetikzlibrary{shapes.arrows} \pgfplotsset{compat=1.10} \DeclareMathOperator{\Hol}{Hol} \DeclareMathOperator{\LI}{LI} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\Cl}{Cl} \global\long\def\BC{\mathbb{C}} \global\long\def\BNZ{\mathbb{N}_{0}} \global\long\def\NPI{\mathbb{Z}\setminus\mathbb{N}} \global\long\def\BN{\mathbb{N}} \global\long\def\BZ{\mathbb{Z}} \global\long\def\BQ{\mathbb{Q}} \global\long\def\BR{\mathbb{R}} \global\long\def\BM{\mathbb{M}} \global\long\def\BP{\mathbb{P}} \global\long\def\BE{\mathbb{E}} \newcommand{\w}{\overline{w}} \usepackage{ragged2e} \newenvironment{tikzexample}[1]{\def\temp{#1}\centering}{\par\bigskip\temp\newpage} \newcommand{\nextexample}{\par\vspace{24pt}} \apptocmd{\frame}{}{\justifying}{} \makeatletter \newcommand{\cs}[1]{\texttt{\@backslashchar #1}} \makeatother % \usetheme{Frankfurt} \usetheme{Warsaw} % \usetheme{Madrid} % \usetheme{Bergen} % \usetheme{Antibes} % \usetheme{Montpellier} % \usetheme{Berkeley} % \usetheme{Ilmenau} % \usetheme{Singapore} % \usecolortheme{crane} \AtBeginSection[] % Do nothing for \section* { \begin{frame} \frametitle{Spis treści} \tableofcontents[currentsection] \end{frame} } \begin{document} \title{Shiroin package - function \textit{prove}} \author{Grzegorz Adamski} \date{\today} \begin{frame} \maketitle \end{frame} \begin{frame}{Jensen and weighted AM-GM inequalities}\begin{block}{Jensen inequality} If $f:\BR^k\to \BR$ is a convex function, $v_1,...,v_n\in \BR^k$, $w_1,...,w_n>0$ and $w=\sum_{i=1}^n w_i$, then $$\frac{\sum_{i=1}^n w_i f(v_i)}{w}\ge f\left(\frac{\sum_{i=1}^n v_i}{w} \right).$$ \end{block} If $f(w_1,w_2,...,w_n)=\prod_{i=1}^n x_i^{w_i}$ for some $x_1,...,x_n>0$, then we've got $$\frac{\sum_{i=1}^n w_i x_i}{w}\ge \sqrt[w]{\prod_{i=1}^n x_i^{w_i}}. $$ This is called inequality of weighted arithmetic and geometric means (AM-GM inequality for short). We will use an equivalent inequality $$\sum_{i=1}^n w_i x_i\ge w\prod_{i=1}^n x_i^{w_i/w}. $$ \end{frame} \begin{frame}{Example} \begin{block}{} Let $a,b>0$. Prove that $$30a^2b^2+60ab^4\le 48a^3+56b^6.$$ \end{block} \pause We will use AM-GM inequality. Let $x_1=a^3$, $x_2=b^6$. We need to find such $w_1,w_2,w_3,w_4$, that $$30a^2b^2\le w_1a^3+w_2b^6$$ $$60ab^4\le w_3 a^3+w_4 b^6$$ To fulfill assumptions of AM-GM, we need: $w_1,w_2,w_3,w_4\ge 0$ $$w_1+w_2=30$$ $$w_3+w_4=60$$ $$(a^3)^{w_1/30}(b^6)^{w_2/30}=a^2b^2$$ $$(a^3)^{w_3/30}(b^6)^{w_4/30}=ab^4$$ We also need $w_1+w_3\le 48$ and $w_2+w_4\le 56$ \end{frame} \begin{frame}{Example} $$w_1,w_2,w_3,w_4\ge 0$$ $$w_1+w_2=30$$ $$w_3+w_4=60$$ $$3w_1=30\cdot 2$$ $$6w_2=30\cdot 2$$ $$3w_3=30\cdot 1$$ $$6w_4=30\cdot 4$$ $$w_1+w_3\le 48$$ $$w_2+w_4\le 56$$ All these equations and inequalities are linear, so $w_1,w_2,w_3,w_4$ can be found using linear programming (in this case they can be found directly from equations, but this is not true in general case). \end{frame} \begin{frame}{Problem} \begin{block}{} Prove that for all $x>0$ $$4x^2 \le 4x+x^3.$$ \end{block} This inequality follows directly from AM-GM. But we can't use the same algorithm as in the previous problem. Let's try to do this. We want to find $w_1,w_2\ge 0$ such that $$4x^2\le w_1x+w_2x^3$$ $$w_1+w_2=4$$ $$1w_1+3w_2=4\cdot 2$$ $$w_1\le 4$$ $$w_2\le 1$$ From the equations we can find that $w_1=w_2=2$. But $w_2\le 1$, so there is no solution. \end{frame} \begin{frame}{Substitutions} This problem can be solved by substituting $x$ by $2y$. This way the problem can be reformulated. \begin{block}{} Prove that for all $y>0$ $$16y^2 \le 8x+8x^3.$$ \end{block} This problem can be solved using the main algorithm. \end{frame} \begin{frame}{Dealing with real coefficients in the proof} \begin{block}{} Prove that for all $x>0$ $$4x^2 \le 1+2x+3x^3+4x^4.$$ \end{block} This time the biggest problem is not finding a solution, but finding one with nice coefficients. For example, using weighted AM-GM we can show that $$4x^2\le 2x+2x^3$$ or $$4x^2\le 1+x+x^3+x^4.$$ but we can also find a less nice solution like $$4x^2\le 0.657238842+0.342761158x+0.342761158x^3+0.657238842x^4.$$ \end{frame} \begin{frame}{Dealing with real coefficients in the proof} The simplest idea is to specify a goal function with random coefficients. Algorithm choose then (almost surely) an extreme point from the set of feasible solutions. \end{frame} \begin{frame}{Set of solutions} \begin{center} \begin{figure} \includegraphics[scale=2]{solset2.png} \caption{Set of solutions projected onto the plane $w_3w_4$. $w_1,w_2$ are defined as $w_1=2w_3+3w_4-4$, $w_2=8-3w_3-4w_4$} \end{figure} \end{center} \end{frame} \begin{frame}{Function \textit{prove} - algorithm} \begin{enumerate} \item Find a proof with real coefficients.\label{itm:first} \item Check which inequalities have integer coefficients. \item Subtract them from original inequality and go back to \ref{itm:first} with the new inequality. \end{enumerate} The loop breaks when all coefficients are integer or when it has run fixed amount of times. \end{frame} \end{document}