{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n", "
\n", "

Ekstrakcja informacji

\n", "

9. Sequence labeling [ćwiczenia]

\n", "

Jakub Pokrywka (2021)

\n", "
\n", "\n", "![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Klasyfikacja wieloklasowa i sequence labelling" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import gensim\n", "import torch\n", "import pandas as pd\n", "import seaborn as sns\n", "from sklearn.model_selection import train_test_split\n", "\n", "from datasets import load_dataset\n", "from torchtext.vocab import Vocab\n", "from collections import Counter\n", "\n", "from sklearn.datasets import fetch_20newsgroups\n", "# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n", "\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.metrics import accuracy_score" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Klasyfikacja" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Klasfikacja binarna- 2 klasy" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "CATEGORIES = ['soc.religion.christian', 'alt.atheism']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "newsgroups = fetch_20newsgroups(categories=CATEGORIES)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "X = newsgroups['data']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Y = newsgroups['target']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Y_names = newsgroups['target_names']" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "X[0:1]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Y" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "Y_names" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "del CATEGORIES, newsgroups, X, Y, Y_names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### klasyfikacja wieloklasowa" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "newsgroups_train_dev = fetch_20newsgroups(subset = 'train')\n", "newsgroups_test = fetch_20newsgroups(subset = 'test')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "newsgroups_train_dev_text = newsgroups_train_dev['data']\n", "newsgroups_test_text = newsgroups_test['data']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Y_train_dev = newsgroups_train_dev['target']\n", "Y_test = newsgroups_test['target']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "newsgroups_train_text, newsgroups_dev_text, Y_train, Y_dev = train_test_split(newsgroups_train_dev_text, Y_train_dev, random_state=42)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Y_names = newsgroups_train_dev['target_names']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Y_train_dev" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Y_names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Jaki baseline?**" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "pd.value_counts(Y_train)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "accuracy_score(Y_test, np.ones_like(Y_test) * 10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "**Pytanie** - w jaki sposób stworzyć taki klasyfikator na podstawie tylko wiedzy z poprzednich ćwiczeń?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Zadanie - stworzyć klasyfikator regresji logistycznej one vs rest na podstawie tfdif. TFIDF powinien mieć słownik o wielkości 10000\n", "\n", "https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html\n", "https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html\n", "https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.multiclass import OneVsRestClassifier\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.feature_extraction.text import TfidfVectorizer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Podejście softmax na tfidif" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Zadanie** Na podstawie poprzednich zajęć stworzyć sieć w pytorch bez warstw ukrytych, z jedną warstwą *output* z funkcją softmax (bez trenowania i ewaluacji sieci)\n", "\n", "Użyć https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html?highlight=softmax" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "X_train" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class NeuralNetworkModel(torch.nn.Module):\n", "\n", " pass" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "OUTPUT_SIZE = len(Y_names)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nn_model = NeuralNetworkModel(FEAUTERES, OUTPUT_SIZE)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nn_model(torch.Tensor(X_train[0:3].astype(np.float32).todense()))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "BATCH_SIZE = 5" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "criterion = torch.nn.NLLLoss()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.2)\n", "#optimizer = torch.optim.Adam(nn_model.parameters())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def get_loss_acc(model, X_dataset, Y_dataset):\n", " loss_score = 0\n", " acc_score = 0\n", " items_total = 0\n", " model.eval()\n", " for i in range(0, Y_dataset.shape[0], BATCH_SIZE):\n", " X = X_dataset[i:i+BATCH_SIZE]\n", " X = torch.tensor(X.astype(np.float32).todense())\n", " Y = Y_dataset[i:i+BATCH_SIZE]\n", " Y = torch.tensor(Y)\n", " Y_predictions = model(X)\n", " acc_score += torch.sum(torch.argmax(Y_predictions,dim=1) == Y).item()\n", " items_total += Y.shape[0] \n", "\n", " loss = criterion(Y_predictions, Y)\n", "\n", " loss_score += loss.item() * Y.shape[0] \n", " return (loss_score / items_total), (acc_score / items_total)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "for epoch in range(5):\n", " loss_score = 0\n", " acc_score = 0\n", " items_total = 0\n", " nn_model.train()\n", " for i in range(0, Y_train.shape[0], BATCH_SIZE):\n", " X = X_train[i:i+BATCH_SIZE]\n", " X = torch.tensor(X.astype(np.float32).todense())\n", " Y = Y_train[i:i+BATCH_SIZE]\n", "\n", " Y = torch.tensor(Y)\n", " Y_predictions = nn_model(X)\n", " acc_score += torch.sum(torch.argmax(Y_predictions,dim=1) == Y).item()\n", " items_total += Y.shape[0] \n", "\n", " optimizer.zero_grad()\n", " loss = criterion(Y_predictions, Y)\n", " loss.backward()\n", " optimizer.step()\n", "\n", "\n", " loss_score += loss.item() * Y.shape[0]\n", "\n", " \n", " display(epoch)\n", " display(get_loss_acc(nn_model, X_train, Y_train))\n", " display(get_loss_acc(nn_model, X_dev, Y_dev))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "X.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "newsgroups_train_text" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Podejście softmax z embeddingami na przykładzie NER" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "# !pip install torchtext\n", "# !pip install datasets" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "https://www.aclweb.org/anthology/W03-0419.pdf" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "dataset = load_dataset(\"conll2003\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def build_vocab(dataset):\n", " counter = Counter()\n", " for document in dataset:\n", " counter.update(document)\n", " return Vocab(counter, specials=['', '', '', ''])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "vocab = build_vocab(dataset['train']['tokens'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dataset['train']['tokens']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "len(vocab.itos)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "vocab['on']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def data_process(dt):\n", " return [ torch.tensor([vocab['']] +[vocab[token] for token in document ] + [vocab['']], dtype = torch.long) for document in dt]\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def labels_process(dt):\n", " return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "train_tokens_ids = data_process(dataset['train']['tokens'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "test_tokens_ids = data_process(dataset['test']['tokens'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "train_labels = labels_process(dataset['train']['ner_tags'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "test_labels = labels_process(dataset['test']['ner_tags'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "train_tokens_ids[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "max([max(x) for x in dataset['train']['ner_tags'] ])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class NERModel(torch.nn.Module):\n", "\n", " def __init__(self,):\n", " super(NERModel, self).__init__()\n", " self.emb = torch.nn.Embedding(23627,200)\n", " self.fc1 = torch.nn.Linear(600,9)\n", " #self.softmax = torch.nn.Softmax(dim=0)\n", " # nie trzeba, bo używamy https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html\n", " # jako kryterium\n", " \n", "\n", " def forward(self, x):\n", " x = self.emb(x)\n", " x = x.reshape(600) \n", " x = self.fc1(x)\n", " #x = self.softmax(x)\n", " return x" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "train_tokens_ids[0][1:4]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ner_model = NERModel()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ner_model(train_tokens_ids[0][1:4])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "criterion = torch.nn.CrossEntropyLoss()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "optimizer = torch.optim.Adam(ner_model.parameters())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "len(train_labels)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for epoch in range(2):\n", " loss_score = 0\n", " acc_score = 0\n", " prec_score = 0\n", " selected_items = 0\n", " recall_score = 0\n", " relevant_items = 0\n", " items_total = 0\n", " nn_model.train()\n", " #for i in range(len(train_labels)):\n", " for i in range(100):\n", " for j in range(1, len(train_labels[i]) - 1):\n", " \n", " X = train_tokens_ids[i][j-1: j+2]\n", " Y = train_labels[i][j: j+1]\n", "\n", " Y_predictions = ner_model(X)\n", " \n", " \n", " acc_score += int(torch.argmax(Y_predictions) == Y)\n", " \n", " if torch.argmax(Y_predictions) != 0:\n", " selected_items +=1\n", " if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():\n", " prec_score += 1\n", " \n", " if Y.item() != 0:\n", " relevant_items +=1\n", " if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():\n", " recall_score += 1\n", " \n", " items_total += 1\n", "\n", " \n", " optimizer.zero_grad()\n", " loss = criterion(Y_predictions.unsqueeze(0), Y)\n", " loss.backward()\n", " optimizer.step()\n", "\n", "\n", " loss_score += loss.item() \n", " \n", " precision = prec_score / selected_items\n", " recall = recall_score / relevant_items\n", " f1_score = (2*precision * recall) / (precision + recall)\n", " display('epoch: ', epoch)\n", " display('loss: ', loss_score / items_total)\n", " display('acc: ', acc_score / items_total)\n", " display('prec: ', precision)\n", " display('recall: : ', recall)\n", " display('f1: ', f1_score)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "loss_score = 0\n", "acc_score = 0\n", "prec_score = 0\n", "selected_items = 0\n", "recall_score = 0\n", "relevant_items = 0\n", "items_total = 0\n", "nn_model.eval()\n", "for i in range(100):\n", "#for i in range(len(test_labels)):\n", " for j in range(1, len(test_labels[i]) - 1):\n", "\n", " X = test_tokens_ids[i][j-1: j+2]\n", " Y = test_labels[i][j: j+1]\n", "\n", " Y_predictions = ner_model(X)\n", "\n", "\n", " acc_score += int(torch.argmax(Y_predictions) == Y)\n", "\n", " if torch.argmax(Y_predictions) != 0:\n", " selected_items +=1\n", " if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():\n", " prec_score += 1\n", "\n", " if Y.item() != 0:\n", " relevant_items +=1\n", " if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():\n", " recall_score += 1\n", "\n", " items_total += 1\n", "\n", "\n", " loss = criterion(Y_predictions.unsqueeze(0), Y)\n", "\n", "\n", "\n", " loss_score += loss.item() \n", "\n", "precision = prec_score / selected_items\n", "recall = recall_score / relevant_items\n", "f1_score = (2*precision * recall) / (precision + recall)\n", "display('loss: ', loss_score / items_total)\n", "display('acc: ', acc_score / items_total)\n", "display('prec: ', precision)\n", "display('recall: : ', recall)\n", "display('f1: ', f1_score)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Zadanie domowe\n", "\n", "- sklonować repozytorium https://git.wmi.amu.edu.pl/kubapok/en-ner-conll-2003\n", "- stworzyć klasyfikator bazujący na sieci neuronowej feed forward w pytorchu (można bazować na tym jupyterze lub nie).\n", "- klasyfikator powinien obejmować dodatkowe cechy (np. długość wyrazu, czy wyraz zaczyna się od wielkiej litery, stemmming słowa, czy zawiera cyfrę)\n", "- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n", "- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.60\n", "- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n", "termin 08.06, 80 punktów\n" ] } ], "metadata": { "author": "Jakub Pokrywka", "email": "kubapok@wmi.amu.edu.pl", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "lang": "pl", "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" }, "subtitle": "9.Sequence labeling[ćwiczenia]", "title": "Ekstrakcja informacji", "year": "2021" }, "nbformat": 4, "nbformat_minor": 4 }