{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Podejście softmax z embeddingami na przykładzie NER" ] }, { "cell_type": "markdown", "metadata": { "scrolled": true }, "source": [ "https://pytorch-crf.readthedocs.io/en/stable/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "https://www.aclweb.org/anthology/W03-0419.pdf" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import gensim\n", "import torch\n", "import pandas as pd\n", "import seaborn as sns\n", "from sklearn.model_selection import train_test_split\n", "\n", "from datasets import load_dataset\n", "from torchtext.vocab import Vocab\n", "from collections import Counter\n", "\n", "from sklearn.datasets import fetch_20newsgroups\n", "# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n", "\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.metrics import accuracy_score\n", "\n", "from tqdm.notebook import tqdm\n", "\n", "import torch\n", "from torchcrf import CRF" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "dataset = load_dataset(\"conll2003\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def build_vocab(dataset):\n", " counter = Counter()\n", " for document in dataset:\n", " counter.update(document)\n", " return Vocab(counter, specials=['', '', '', ''])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "vocab = build_vocab(dataset['train']['tokens'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "len(vocab.itos)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "vocab['on']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def data_process(dt):\n", " return [ torch.tensor([vocab['']] +[vocab[token] for token in document ] + [vocab['']], dtype = torch.long) for document in dt]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def labels_process(dt):\n", " return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "train_tokens_ids = data_process(dataset['train']['tokens'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "test_tokens_ids = data_process(dataset['test']['tokens'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "validation_tokens_ids = data_process(dataset['validation']['tokens'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "train_labels = labels_process(dataset['train']['ner_tags'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "validation_labels = labels_process(dataset['validation']['ner_tags'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "test_labels = labels_process(dataset['test']['ner_tags'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "train_tokens_ids[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def get_scores(y_true, y_pred):\n", " acc_score = 0\n", " tp = 0\n", " fp = 0\n", " selected_items = 0\n", " relevant_items = 0 \n", "\n", " for p,t in zip(y_pred, y_true):\n", " if p == t:\n", " acc_score +=1\n", "\n", " if p > 0 and p == t:\n", " tp +=1\n", "\n", " if p > 0:\n", " selected_items += 1\n", "\n", " if t > 0 :\n", " relevant_items +=1\n", "\n", " \n", " \n", " if selected_items == 0:\n", " precision = 1.0\n", " else:\n", " precision = tp / selected_items\n", " \n", " \n", " if relevant_items == 0:\n", " recall = 1.0\n", " else:\n", " recall = tp / relevant_items\n", " \n", " \n", " if precision + recall == 0.0 :\n", " f1 = 0.0\n", " else:\n", " f1 = 2* precision * recall / (precision + recall)\n", "\n", " return precision, recall, f1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "num_tags = max([max(x) for x in dataset['train']['ner_tags'] ]) + 1 " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class FF(torch.nn.Module):\n", "\n", " def __init__(self,):\n", " super(FF, self).__init__()\n", " self.emb = torch.nn.Embedding(23627,200)\n", " self.fc1 = torch.nn.Linear(200,num_tags)\n", " \n", "\n", " def forward(self, x):\n", " x = self.emb(x)\n", " x = self.fc1(x)\n", " return x" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ff = FF()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "crf = CRF(num_tags)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "params = list(ff.parameters()) + list(crf.parameters())\n", "\n", "optimizer = torch.optim.Adam(params)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def eval_model(dataset_tokens, dataset_labels):\n", " Y_true = []\n", " Y_pred = []\n", " ff.eval()\n", " crf.eval()\n", " for i in tqdm(range(len(dataset_labels))):\n", " batch_tokens = dataset_tokens[i]\n", " tags = list(dataset_labels[i].numpy())\n", " emissions = ff(batch_tokens).unsqueeze(1)\n", " Y_pred += crf.decode(emissions)[0]\n", " Y_true += tags\n", "\n", " return get_scores(Y_true, Y_pred)\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "NUM_EPOCHS = 4" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "for i in range(NUM_EPOCHS):\n", " ff.train()\n", " crf.train()\n", " for i in tqdm(range(len(train_labels))):\n", " batch_tokens = train_tokens_ids[i]\n", " tags = train_labels[i].unsqueeze(1)\n", " emissions = ff(batch_tokens).unsqueeze(1)\n", "\n", " optimizer.zero_grad()\n", " loss = -crf(emissions,tags)\n", " loss.backward()\n", " optimizer.step()\n", " \n", " ff.eval()\n", " crf.eval()\n", " print(eval_model(validation_tokens_ids, validation_labels))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "eval_model(validation_tokens_ids, validation_labels)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "eval_model(test_tokens_ids, test_labels)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "len(train_tokens_ids)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Zadanie domowe\n", "\n", "- sklonować repozytorium https://git.wmi.amu.edu.pl/kubapok/en-ner-conll-2003\n", "- stworzyć klasyfikator bazujący na sieci neuronowej feed forward w pytorchu + CRF (można bazować na tym jupyterze lub nie).\n", "- sieć feedforward powinna obejmować aktualne słowo, poprzednie i następne + dodatkowe cechy (np. długość wyrazu, czy wyraz zaczyna się od wielkiej litery, stemmming słowa, czy zawiera cyfrę)\n", "- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n", "- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.65\n", "- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n", "termin 15.06, 60 punktów, za najlepszy wynik- 100 punktów\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }