{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Regresja logistyczna" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## import bibliotek" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/media/kuba/ssdsam/anaconda3/lib/python3.8/site-packages/gensim/similarities/__init__.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package is unavailable. Install Levenhstein (e.g. `pip install python-Levenshtein`) to suppress this warning.\n", " warnings.warn(msg)\n" ] } ], "source": [ "import numpy as np\n", "import gensim\n", "import torch\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "\n", "from sklearn.datasets import fetch_20newsgroups\n", "# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n", "\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.metrics import accuracy_score" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "CATEGORIES = ['soc.religion.christian', 'alt.atheism']" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "newsgroups_train_dev = fetch_20newsgroups(subset = 'train', categories=CATEGORIES)\n", "newsgroups_test = fetch_20newsgroups(subset = 'test', categories=CATEGORIES)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "newsgroups_train_dev_text = newsgroups_train_dev['data']\n", "newsgroups_test_text = newsgroups_test['data']" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "Y_train_dev = newsgroups_train_dev['target']\n", "Y_test = newsgroups_test['target']" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "newsgroups_train_text, newsgroups_dev_text, Y_train, Y_dev = train_test_split(newsgroups_train_dev_text, Y_train_dev, random_state=42)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "Y_names = newsgroups_train_dev['target_names']" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['alt.atheism', 'soc.religion.christian']" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y_names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## baseline" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1,\n", " 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0,\n", " 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,\n", " 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,\n", " 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1,\n", " 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0,\n", " 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0,\n", " 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,\n", " 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1,\n", " 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,\n", " 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0,\n", " 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0,\n", " 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0,\n", " 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0,\n", " 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1,\n", " 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1,\n", " 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1,\n", " 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0,\n", " 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1,\n", " 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,\n", " 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1,\n", " 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1,\n", " 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0,\n", " 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0,\n", " 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0,\n", " 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,\n", " 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n", " 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0,\n", " 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0,\n", " 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0,\n", " 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,\n", " 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1,\n", " 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1,\n", " 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1,\n", " 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,\n", " 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y_train" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1 450\n", "0 359\n", "dtype: int64" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.value_counts(Y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### train" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.5562422744128553" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "accuracy_score(np.ones_like(Y_train) * 1, Y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### dev" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.5518518518518518" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "accuracy_score(np.ones_like(Y_dev) * 1, Y_dev)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### test" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.5550906555090656" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "accuracy_score(np.ones_like(Y_test) * 1, Y_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### PYTANIE: co jest nie tak z regresją liniową?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Regresja logistyczna" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### wektoryzacja" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "FEAUTERES = 10_000" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "vectorizer = TfidfVectorizer(max_features=10_000)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "scrolled": true }, "outputs": [], "source": [ "X_train = vectorizer.fit_transform(newsgroups_train_text)\n", "X_dev = vectorizer.transform(newsgroups_dev_text)\n", "X_test = vectorizer.transform(newsgroups_test_text)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<717x10000 sparse matrix of type ''\n", "\twith 120739 stored elements in Compressed Sparse Row format>" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_test" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### model - inicjalizacja " ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "class LogisticRegressionModel(torch.nn.Module):\n", "\n", " def __init__(self):\n", " super(LogisticRegressionModel, self).__init__()\n", " self.fc = torch.nn.Linear(FEAUTERES,1)\n", "\n", " def forward(self, x):\n", " x = self.fc(x)\n", " x = torch.sigmoid(x)\n", " return x" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "lr_model = LogisticRegressionModel()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0.4989],\n", " [0.4985],\n", " [0.4970],\n", " [0.4968],\n", " [0.5007]], grad_fn=)" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lr_model(torch.Tensor(X_train[0:5].astype(np.float32).todense()))" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LogisticRegressionModel(\n", " (fc): Linear(in_features=10000, out_features=1, bias=True)\n", ")" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lr_model" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Parameter containing:\n", " tensor([[ 0.0006, -0.0076, 0.0002, ..., 0.0051, 0.0034, -0.0004]],\n", " requires_grad=True),\n", " Parameter containing:\n", " tensor([-0.0099], requires_grad=True)]" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(lr_model.parameters())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## model - trenowanie" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "BATCH_SIZE = 5" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "criterion = torch.nn.BCELoss()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "optimizer = torch.optim.SGD(lr_model.parameters(), lr = 0.1)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "809" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y_train.shape[0]" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "scrolled": true }, "outputs": [], "source": [ "loss_score = 0\n", "acc_score = 0\n", "items_total = 0\n", "lr_model.train()\n", "for i in range(0, Y_train.shape[0], BATCH_SIZE):\n", " X = X_train[i:i+BATCH_SIZE]\n", " X = torch.tensor(X.astype(np.float32).todense())\n", " Y = Y_train[i:i+BATCH_SIZE]\n", " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n", " Y_predictions = lr_model(X)\n", " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n", " items_total += Y.shape[0] \n", " \n", " optimizer.zero_grad()\n", " loss = criterion(Y_predictions, Y)\n", " loss.backward()\n", " optimizer.step()\n", " \n", "\n", " loss_score += loss.item() * Y.shape[0] " ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0.5657],\n", " [0.5827],\n", " [0.5727],\n", " [0.5672]], grad_fn=)" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y_predictions" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0.],\n", " [1.],\n", " [1.],\n", " [0.]])" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "453" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "acc_score" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "809" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "items_total" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "accuracy: 0.5599505562422744\n" ] } ], "source": [ "print(f'accuracy: {acc_score / items_total}')" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "BCE loss: 0.6745760098965412\n" ] } ], "source": [ "print(f'BCE loss: {loss_score / items_total}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### model - ewaluacja" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "def get_loss_acc(model, X_dataset, Y_dataset):\n", " loss_score = 0\n", " acc_score = 0\n", " items_total = 0\n", " model.eval()\n", " for i in range(0, Y_dataset.shape[0], BATCH_SIZE):\n", " X = X_dataset[i:i+BATCH_SIZE]\n", " X = torch.tensor(X.astype(np.float32).todense())\n", " Y = Y_dataset[i:i+BATCH_SIZE]\n", " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n", " Y_predictions = model(X)\n", " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n", " items_total += Y.shape[0] \n", "\n", " loss = criterion(Y_predictions, Y)\n", "\n", " loss_score += loss.item() * Y.shape[0] \n", " return (loss_score / items_total), (acc_score / items_total)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0.6443268107837445, 0.6254635352286774)" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_loss_acc(lr_model, X_train, Y_train)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0.6371536641209213, 0.6074074074074074)" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_loss_acc(lr_model, X_dev, Y_dev)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0.6322633745447529, 0.6485355648535565)" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_loss_acc(lr_model, X_test, Y_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### wagi modelu" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Parameter containing:\n", " tensor([[ 0.0379, -0.0485, 0.0113, ..., 0.0035, 0.0083, -0.0044]],\n", " requires_grad=True),\n", " Parameter containing:\n", " tensor([0.0556], requires_grad=True)]" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(lr_model.parameters())" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([ 0.0379, -0.0485, 0.0113, ..., 0.0035, 0.0083, -0.0044],\n", " grad_fn=)" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(lr_model.parameters())[0][0]" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.return_types.topk(\n", "values=tensor([0.3804, 0.2315, 0.2033, 0.2026, 0.2014, 0.1993, 0.1942, 0.1890, 0.1868,\n", " 0.1818, 0.1727, 0.1542, 0.1474, 0.1458, 0.1360, 0.1359, 0.1260, 0.1204,\n", " 0.1184, 0.1174], grad_fn=),\n", "indices=tensor([8942, 6336, 1865, 1852, 8208, 9056, 7820, 4039, 5002, 1857, 9709, 803,\n", " 130, 1046, 4370, 4259, 4306, 1855, 4285, 6481]))" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.topk(list(lr_model.parameters())[0][0], 20)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the\n", "of\n", "church\n", "christ\n", "sin\n", "to\n", "rutgers\n", "god\n", "jesus\n", "christians\n", "we\n", "and\n", "1993\n", "athos\n", "his\n", "he\n", "hell\n", "christian\n", "heaven\n", "our\n" ] } ], "source": [ "for i in torch.topk(list(lr_model.parameters())[0][0], 20)[1]:\n", " print(vectorizer.get_feature_names()[i])" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.return_types.topk(\n", "values=tensor([-0.3464, -0.2578, -0.2372, -0.2307, -0.2300, -0.2259, -0.2227, -0.2107,\n", " -0.2054, -0.1949, -0.1919, -0.1767, -0.1767, -0.1749, -0.1747, -0.1739,\n", " -0.1715, -0.1633, -0.1567, -0.1562], grad_fn=),\n", "indices=tensor([5119, 8096, 5420, 1627, 6194, 6901, 4436, 9970, 5946, 3116, 1036, 9906,\n", " 7869, 5654, 1991, 8329, 4925, 4926, 6373, 1039]))" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.topk(list(lr_model.parameters())[0][0], 20, largest = False)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "keith\n", "sgi\n", "livesey\n", "caltech\n", "nntp\n", "posting\n", "host\n", "you\n", "morality\n", "edu\n", "atheism\n", "wpd\n", "sandvik\n", "mathew\n", "com\n", "solntze\n", "islam\n", "islamic\n", "okcforum\n", "atheists\n" ] } ], "source": [ "for i in torch.topk(list(lr_model.parameters())[0][0], 20, largest = False)[1]:\n", " print(vectorizer.get_feature_names()[i])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### sieć neuronowa" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "class NeuralNetworkModel(torch.nn.Module):\n", "\n", " def __init__(self):\n", " super(NeuralNetworkModel, self).__init__()\n", " self.fc1 = torch.nn.Linear(FEAUTERES,500)\n", " self.fc2 = torch.nn.Linear(500,1)\n", "\n", " def forward(self, x):\n", " x = self.fc1(x)\n", " x = torch.relu(x)\n", " x = self.fc2(x)\n", " x = torch.sigmoid(x)\n", " return x" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "nn_model = NeuralNetworkModel()" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "BATCH_SIZE = 5" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [], "source": [ "criterion = torch.nn.BCELoss()" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.6734723948651398, 0.5636588380716935)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.6606645694485417, 0.5777777777777777)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "1" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.5035873688342987, 0.8677379480840544)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.43131878033832266, 0.8851851851851852)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.22238253315332793, 0.9678615574783683)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.18925935278336206, 0.9814814814814815)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "3" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.10367853983509158, 0.9913473423980222)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.09969225936327819, 0.9962962962962963)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "4" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.0588170926504491, 0.9987639060568603)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.06267384567332489, 1.0)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for epoch in range(5):\n", " loss_score = 0\n", " acc_score = 0\n", " items_total = 0\n", " nn_model.train()\n", " for i in range(0, Y_train.shape[0], BATCH_SIZE):\n", " X = X_train[i:i+BATCH_SIZE]\n", " X = torch.tensor(X.astype(np.float32).todense())\n", " Y = Y_train[i:i+BATCH_SIZE]\n", " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n", " Y_predictions = nn_model(X)\n", " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n", " items_total += Y.shape[0] \n", "\n", " optimizer.zero_grad()\n", " loss = criterion(Y_predictions, Y)\n", " loss.backward()\n", " optimizer.step()\n", "\n", "\n", " loss_score += loss.item() * Y.shape[0] \n", "\n", " display(epoch)\n", " display(get_loss_acc(nn_model, X_train, Y_train))\n", " display(get_loss_acc(nn_model, X_dev, Y_dev))" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0.17201613383874234, 0.9414225941422594)" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_loss_acc(nn_model, X_test, Y_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Zadanie domowe\n", "\n", "- wybrać jedno z poniższych repozytoriów i je sforkować:\n", " - https://git.wmi.amu.edu.pl/kubapok/paranormal-or-skeptic-ISI-public\n", " - https://git.wmi.amu.edu.pl/kubapok/sport-text-classification-ball-ISI-public\n", "- stworzyć klasyfikator bazujący na prostej sieci neuronowej feed forward w pytorchu (można bazować na tym jupyterze). Zamiast tfidf proszę skorzystać z jakieś reprezentacji gęstej (np. word2vec).\n", "- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n", "- wynik accuracy sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.67\n", "- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n", "termin 25.05, 70 punktów\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }