19 lines
33 KiB
Plaintext
19 lines
33 KiB
Plaintext
|
|
||
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
|
||
|
"<div class=\"alert alert-block alert-info\">\n",
|
||
|
"<h1> Modelowanie języka</h1>\n",
|
||
|
"<h2> 8. <i>Neuronowy model języka</i> [wykład]</h2> \n",
|
||
|
"<h3> Filip Graliński (2022)</h3>\n",
|
||
|
"</div>\n",
|
||
|
"\n",
|
||
|
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)\n",
|
||
|
"\n"
|
||
|
]
|
||
|
},
|
||
|
{"cell_type":"markdown","metadata":{},"source":["## Neuronowy n-gramowy model języka\n\n"]},{"cell_type":"markdown","metadata":{},"source":["Omówiony w poprzedniej części neuronowy bigramowy model języka\nwarunkuje kolejny wyraz jedynie względem bezpośrednio poprzedzającego\n— jak w każdym bigramowym modelu przyjmujemy założenie, że $w_i$\nzależy tylko od $w_{i-1}$. Rzecz jasna jest to bardzo duże\nograniczenie, w rzeczywistości bardzo często prawdopodobieństwo\nkolejnego wyrazu zależy od wyrazu dwie, trzy, cztery itd. pozycje\nwstecz czy w ogólności od wszystkich wyrazów poprzedzających (bez\nwzględu na ich pozycje).\n\n**Pytanie**: Wskaż zależności o zasięgu większym niż 1 wyraz w zdaniu\n/Zatopieni w kłębach dymu cygar i pochyleni nad butelkami z ciemnego\nszkła obywatele tej dzielnicy, jedni zakładali się o wygranę lub\nprzegranę Anglii, drudzy o bankructwo Wokulskiego; jedni nazywali\ngeniuszem Bismarcka, drudzy — awanturnikiem Wokulskiego; jedni\nkrytykowali postępowanie prezydenta MacMahona, inni twierdzili, że\nWokulski jest zdecydowanym wariatem, jeżeli nie czymś gorszym…/\n\n"]},{"cell_type":"markdown","metadata":{},"source":["### Trigramowy neuronowy model języka\n\n"]},{"cell_type":"markdown","metadata":{},"source":["Spróbujmy najpierw rozszerzyć nasz model na trigramy, to znaczy\nbędziemy przewidywać słowo $w_i$ na podstawie słów $w_{i-2}$ i\n$w_{i-1}$.\n\nNajprostsze rozwiązanie polegałoby na zanurzeniu pary $(w_{i-2},\nw_{i-1})$ w całości i postępowaniu jak w przypadku modelu bigramowego.\nByłoby to jednak zupełnie niepraktyczne, jako że:\n\n- liczba zanurzeń do wyuczenia byłaby olbrzymia ($|V|^2$ — byłoby to\n ewentualnie akceptowalne dla modeli operujących na krótszych\n jednostkach niż słowa, np. na znakach),\n- w szczególności zanurzenia dla par $(v, u)$, $(u, v)$, $(u, u)$ i\n $(v, v)$ nie miałyby ze sobą nic wspólnego.\n\n"]},{"cell_type":"markdown","metadata":{},"source":["#### Konketanacja zanurzeń\n\n"]},{"cell_type":"markdown","metadata":{},"source":["Właściwsze rozwiązanie polega na zanurzeniu dalej pojedynczych słów i\nnastępnie ich **konkatenowaniu**.\n\nPrzypomnijmy, że konkatenacja wektorów $\\vec{x_1}$ i $\\vec{x_2}$ to wektor o rozmiarze\n$|\\vec{x_1}| + |\\vec{x_2}|$ powstały ze „sklejania” wektorów $\\vec{x_1}$ i $\\vec{x_2}$.\nKonkatenację wektorów $\\vec{x_1}$ i $\\vec{x_2}$ będziemy oznaczać za pomocą $[\\vec{x_1}, \\vec{x_2}]$.\n\nPrzykład: jeśli $\\vec{x_1} = [-1, 2, 0]$ i $\\vec{x_2} = [3, -3]$,\nwówczas $[\\vec{x_1}, \\vec{x_2}] = [-1, 2, 0, 3, -3]$\n\nOznacza to, że nasza macierz „kontekstowa” $C$ powinna mieć w modelu trigramowym rozmiar nie\n$|V| \\times m$, lecz $|V| \\times (m+m)$ = $|V| \\times 2m$ i wyjście będzie zdefiniowane za pomocą wzoru:\n\n$$\\vec{y} = \\operatorname{softmax}(C[E(w_{i-2}),E(w_{i-1})]),$$\n\nco można przedstawić za pomocą następującego schematu:\n\n![img](./08_Neuronowy_ngramowy_model/trigram1.drawio.png \"Diagram prostego bigramowego neuronowego modelu języka\")\n\n"]},{"cell_type":"markdown","metadata":{},"source":["##### Rozbicie macierzy $C$\n\n"]},{"cell_type":"markdown","metadata":{},"source":["Zamiast mnożyć macierz $C$ przez konkatenację dwóch wektorów, można\nrozbić macierz $C$ na dwie, powiedzmy $C_{-2}$ i $C_{-1}$, przemnażać\nje osobno przez odpowiadające im wektory i następnie **dodać** macierze,\ntak aby:\n\n$$C[E(w_{i-2}),E(w_{i-1})] = C_{-2}E(w_{i-2}) + C_{-1}E(w_{i-1}).$$\n\nMacierze $C_{-2}$ i $C_{-1}$ będą miały rozmiar $|V| \\times m$.\n\nPrzy tym podejściu możemy powiedzieć, że ostatni i przedostatni wyraz\nmają swoje osobne macierze o potencjalnie różnych wagach — co ma sens,\njako że na inne aspekty zwracamy uwagę przewidując kolejne słowo na\npodstawie wyrazu bezpośrednio poprzedzającego, a na inne — na\npodstawie słowa występującego dwie pozycje wcześniej.\n\n"]},{"cell_type":"markdown","metadata":{},"source":["### Uogólnienie na $n$-gramowy model języka dla dowol
|