11 in progress
This commit is contained in:
parent
7f9f08d078
commit
6f19489a13
764
cw/11_Model_rekurencyjny_z_atencją.ipynb
Normal file
764
cw/11_Model_rekurencyjny_z_atencją.ipynb
Normal file
@ -0,0 +1,764 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
|
||||
"<div class=\"alert alert-block alert-info\">\n",
|
||||
"<h1> Modelowanie Języka</h1>\n",
|
||||
"<h2> 10. <i>Model rekurencyjny z atencją</i> [ćwiczenia]</h2> \n",
|
||||
"<h3> Jakub Pokrywka (2022)</h3>\n",
|
||||
"</div>\n",
|
||||
"\n",
|
||||
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from __future__ import unicode_literals, print_function, division\n",
|
||||
"from io import open\n",
|
||||
"import unicodedata\n",
|
||||
"import string\n",
|
||||
"import re\n",
|
||||
"import random\n",
|
||||
"\n",
|
||||
"import torch\n",
|
||||
"import torch.nn as nn\n",
|
||||
"from torch import optim\n",
|
||||
"import torch.nn.functional as F\n",
|
||||
"\n",
|
||||
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"SOS_token = 0\n",
|
||||
"EOS_token = 1\n",
|
||||
"\n",
|
||||
"class Lang:\n",
|
||||
" def __init__(self):\n",
|
||||
" self.word2index = {}\n",
|
||||
" self.word2count = {}\n",
|
||||
" self.index2word = {0: \"SOS\", 1: \"EOS\"}\n",
|
||||
" self.n_words = 2 # Count SOS and EOS\n",
|
||||
"\n",
|
||||
" def addSentence(self, sentence):\n",
|
||||
" for word in sentence.split(' '):\n",
|
||||
" self.addWord(word)\n",
|
||||
"\n",
|
||||
" def addWord(self, word):\n",
|
||||
" if word not in self.word2index:\n",
|
||||
" self.word2index[word] = self.n_words\n",
|
||||
" self.word2count[word] = 1\n",
|
||||
" self.index2word[self.n_words] = word\n",
|
||||
" self.n_words += 1\n",
|
||||
" else:\n",
|
||||
" self.word2count[word] += 1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def unicodeToAscii(s):\n",
|
||||
" return ''.join(\n",
|
||||
" c for c in unicodedata.normalize('NFD', s)\n",
|
||||
" if unicodedata.category(c) != 'Mn'\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pairs = []\n",
|
||||
"with open('data/eng-fra.txt') as f:\n",
|
||||
" for line in f:\n",
|
||||
" eng_line, fra_line = line.lower().rstrip().split('\\t')\n",
|
||||
"\n",
|
||||
" eng_line = re.sub(r\"([.!?])\", r\" \\1\", eng_line)\n",
|
||||
" eng_line = re.sub(r\"[^a-zA-Z.!?]+\", r\" \", eng_line)\n",
|
||||
"\n",
|
||||
" fra_line = re.sub(r\"([.!?])\", r\" \\1\", fra_line)\n",
|
||||
" fra_line = re.sub(r\"[^a-zA-Z.!?]+\", r\" \", fra_line)\n",
|
||||
" \n",
|
||||
" eng_line = unicodeToAscii(eng_line)\n",
|
||||
" fra_line = unicodeToAscii(fra_line)\n",
|
||||
"\n",
|
||||
" pairs.append([eng_line, fra_line])\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['run !', 'cours !']"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"pairs[1]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"MAX_LENGTH = 10\n",
|
||||
"eng_prefixes = (\n",
|
||||
" \"i am \", \"i m \",\n",
|
||||
" \"he is\", \"he s \",\n",
|
||||
" \"she is\", \"she s \",\n",
|
||||
" \"you are\", \"you re \",\n",
|
||||
" \"we are\", \"we re \",\n",
|
||||
" \"they are\", \"they re \"\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"pairs = [p for p in pairs if len(p[0].split(' ')) < MAX_LENGTH and len(p[1].split(' ')) < MAX_LENGTH]\n",
|
||||
"pairs = [p for p in pairs if p[0].startswith(eng_prefixes)]\n",
|
||||
"\n",
|
||||
"eng_lang = Lang()\n",
|
||||
"fra_lang = Lang()\n",
|
||||
"\n",
|
||||
"for pair in pairs:\n",
|
||||
" eng_lang.addSentence(pair[0])\n",
|
||||
" fra_lang.addSentence(pair[1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['i m .', 'j ai ans .']"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"pairs[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['i m ok .', 'je vais bien .']"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"pairs[1]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['i m ok .', ' a va .']"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"pairs[2]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class EncoderRNN(nn.Module):\n",
|
||||
" def __init__(self, input_size, hidden_size):\n",
|
||||
" super(EncoderRNN, self).__init__()\n",
|
||||
" self.hidden_size = hidden_size\n",
|
||||
"\n",
|
||||
" self.embedding = nn.Embedding(input_size, hidden_size)\n",
|
||||
" self.gru = nn.GRU(hidden_size, hidden_size)\n",
|
||||
"\n",
|
||||
" def forward(self, input, hidden):\n",
|
||||
" embedded = self.embedding(input).view(1, 1, -1)\n",
|
||||
" output = embedded\n",
|
||||
" output, hidden = self.gru(output, hidden)\n",
|
||||
" return output, hidden\n",
|
||||
"\n",
|
||||
" def initHidden(self):\n",
|
||||
" return torch.zeros(1, 1, self.hidden_size, device=device)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class DecoderRNN(nn.Module):\n",
|
||||
" def __init__(self, hidden_size, output_size):\n",
|
||||
" super(DecoderRNN, self).__init__()\n",
|
||||
" self.hidden_size = hidden_size\n",
|
||||
"\n",
|
||||
" self.embedding = nn.Embedding(output_size, hidden_size)\n",
|
||||
" self.gru = nn.GRU(hidden_size, hidden_size)\n",
|
||||
" self.out = nn.Linear(hidden_size, output_size)\n",
|
||||
" self.softmax = nn.LogSoftmax(dim=1)\n",
|
||||
"\n",
|
||||
" def forward(self, input, hidden):\n",
|
||||
" output = self.embedding(input).view(1, 1, -1)\n",
|
||||
" output = F.relu(output)\n",
|
||||
" output, hidden = self.gru(output, hidden)\n",
|
||||
" output = self.softmax(self.out(output[0]))\n",
|
||||
" return output, hidden\n",
|
||||
"\n",
|
||||
" def initHidden(self):\n",
|
||||
" return torch.zeros(1, 1, self.hidden_size, device=device)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class AttnDecoderRNN(nn.Module):\n",
|
||||
" def __init__(self, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH):\n",
|
||||
" super(AttnDecoderRNN, self).__init__()\n",
|
||||
" self.hidden_size = hidden_size\n",
|
||||
" self.output_size = output_size\n",
|
||||
" self.dropout_p = dropout_p\n",
|
||||
" self.max_length = max_length\n",
|
||||
"\n",
|
||||
" self.embedding = nn.Embedding(self.output_size, self.hidden_size)\n",
|
||||
" self.attn = nn.Linear(self.hidden_size * 2, self.max_length)\n",
|
||||
" self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)\n",
|
||||
" self.dropout = nn.Dropout(self.dropout_p)\n",
|
||||
" self.gru = nn.GRU(self.hidden_size, self.hidden_size)\n",
|
||||
" self.out = nn.Linear(self.hidden_size, self.output_size)\n",
|
||||
"\n",
|
||||
" def forward(self, input, hidden, encoder_outputs):\n",
|
||||
" embedded = self.embedding(input).view(1, 1, -1)\n",
|
||||
" embedded = self.dropout(embedded)\n",
|
||||
"\n",
|
||||
" attn_weights = F.softmax(\n",
|
||||
" self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1)\n",
|
||||
" attn_applied = torch.bmm(attn_weights.unsqueeze(0),\n",
|
||||
" encoder_outputs.unsqueeze(0))\n",
|
||||
"\n",
|
||||
" output = torch.cat((embedded[0], attn_applied[0]), 1)\n",
|
||||
" output = self.attn_combine(output).unsqueeze(0)\n",
|
||||
"\n",
|
||||
" output = F.relu(output)\n",
|
||||
" output, hidden = self.gru(output, hidden)\n",
|
||||
"\n",
|
||||
" output = F.log_softmax(self.out(output[0]), dim=1)\n",
|
||||
" return output, hidden, attn_weights\n",
|
||||
"\n",
|
||||
" def initHidden(self):\n",
|
||||
" return torch.zeros(1, 1, self.hidden_size, device=device)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def tensorFromSentence(sentence, lang):\n",
|
||||
" indexes = [lang.word2index[word] for word in sentence.split(' ')]\n",
|
||||
" indexes.append(EOS_token)\n",
|
||||
" return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"teacher_forcing_ratio = 0.5\n",
|
||||
"\n",
|
||||
"def train_one_batch(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH):\n",
|
||||
" encoder_hidden = encoder.initHidden()\n",
|
||||
"\n",
|
||||
" encoder_optimizer.zero_grad()\n",
|
||||
" decoder_optimizer.zero_grad()\n",
|
||||
"\n",
|
||||
" input_length = input_tensor.size(0)\n",
|
||||
" target_length = target_tensor.size(0)\n",
|
||||
"\n",
|
||||
" encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)\n",
|
||||
"\n",
|
||||
" loss = 0\n",
|
||||
"\n",
|
||||
" for ei in range(input_length):\n",
|
||||
" encoder_output, encoder_hidden = encoder(\n",
|
||||
" input_tensor[ei], encoder_hidden)\n",
|
||||
" encoder_outputs[ei] = encoder_output[0, 0]\n",
|
||||
"\n",
|
||||
" decoder_input = torch.tensor([[SOS_token]], device=device)\n",
|
||||
"\n",
|
||||
" decoder_hidden = encoder_hidden\n",
|
||||
"\n",
|
||||
" use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False\n",
|
||||
"\n",
|
||||
" if use_teacher_forcing:\n",
|
||||
" # Teacher forcing: Feed the target as the next input\n",
|
||||
" for di in range(target_length):\n",
|
||||
" decoder_output, decoder_hidden, decoder_attention = decoder(\n",
|
||||
" decoder_input, decoder_hidden, encoder_outputs)\n",
|
||||
" loss += criterion(decoder_output, target_tensor[di])\n",
|
||||
" decoder_input = target_tensor[di] # Teacher forcing\n",
|
||||
"\n",
|
||||
" else:\n",
|
||||
" # Without teacher forcing: use its own predictions as the next input\n",
|
||||
" for di in range(target_length):\n",
|
||||
" decoder_output, decoder_hidden, decoder_attention = decoder(\n",
|
||||
" decoder_input, decoder_hidden, encoder_outputs)\n",
|
||||
" topv, topi = decoder_output.topk(1)\n",
|
||||
" decoder_input = topi.squeeze().detach() # detach from history as input\n",
|
||||
"\n",
|
||||
" loss += criterion(decoder_output, target_tensor[di])\n",
|
||||
" if decoder_input.item() == EOS_token:\n",
|
||||
" break\n",
|
||||
"\n",
|
||||
" loss.backward()\n",
|
||||
"\n",
|
||||
" encoder_optimizer.step()\n",
|
||||
" decoder_optimizer.step()\n",
|
||||
"\n",
|
||||
" return loss.item() / target_length"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def trainIters(encoder, decoder, n_iters, print_every=1000, learning_rate=0.01):\n",
|
||||
" print_loss_total = 0 # Reset every print_every\n",
|
||||
"\n",
|
||||
" encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)\n",
|
||||
" decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)\n",
|
||||
" \n",
|
||||
" training_pairs = [random.choice(pairs) for _ in range(n_iters)]\n",
|
||||
" training_pairs = [(tensorFromSentence(p[0], eng_lang), tensorFromSentence(p[1], fra_lang)) for p in training_pairs]\n",
|
||||
" \n",
|
||||
" criterion = nn.NLLLoss()\n",
|
||||
"\n",
|
||||
" for i in range(1, n_iters + 1):\n",
|
||||
" training_pair = training_pairs[i - 1]\n",
|
||||
" input_tensor = training_pair[0]\n",
|
||||
" target_tensor = training_pair[1]\n",
|
||||
"\n",
|
||||
" loss = train_one_batch(input_tensor,\n",
|
||||
" target_tensor,\n",
|
||||
" encoder,\n",
|
||||
" encoder,\n",
|
||||
" encoder_optimizer,\n",
|
||||
" decoder_optimizer,\n",
|
||||
" criterion)\n",
|
||||
" \n",
|
||||
" print_loss_total += loss\n",
|
||||
"\n",
|
||||
" if i % print_every == 0:\n",
|
||||
" print_loss_avg = print_loss_total / print_every\n",
|
||||
" print_loss_total = 0\n",
|
||||
" print(f'iter: {i}, loss: {print_loss_avg}')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):\n",
|
||||
" with torch.no_grad():\n",
|
||||
" input_tensor = tensorFromSentence(sentence, eng_lang)\n",
|
||||
" input_length = input_tensor.size()[0]\n",
|
||||
" encoder_hidden = encoder.initHidden()\n",
|
||||
"\n",
|
||||
" encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)\n",
|
||||
"\n",
|
||||
" for ei in range(input_length):\n",
|
||||
" encoder_output, encoder_hidden = encoder(input_tensor[ei],\n",
|
||||
" encoder_hidden)\n",
|
||||
" encoder_outputs[ei] += encoder_output[0, 0]\n",
|
||||
"\n",
|
||||
" decoder_input = torch.tensor([[SOS_token]], device=device) # SOS\n",
|
||||
"\n",
|
||||
" decoder_hidden = encoder_hidden\n",
|
||||
"\n",
|
||||
" decoded_words = []\n",
|
||||
" decoder_attentions = torch.zeros(max_length, max_length)\n",
|
||||
"\n",
|
||||
" for di in range(max_length):\n",
|
||||
" decoder_output, decoder_hidden, decoder_attention = decoder(\n",
|
||||
" decoder_input, decoder_hidden, encoder_outputs)\n",
|
||||
" decoder_attentions[di] = decoder_attention.data\n",
|
||||
" topv, topi = decoder_output.data.topk(1)\n",
|
||||
" if topi.item() == EOS_token:\n",
|
||||
" decoded_words.append('<EOS>')\n",
|
||||
" break\n",
|
||||
" else:\n",
|
||||
" decoded_words.append(fra_lang.index2word[topi.item()])\n",
|
||||
"\n",
|
||||
" decoder_input = topi.squeeze().detach()\n",
|
||||
"\n",
|
||||
" return decoded_words, decoder_attentions[:di + 1]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def evaluateRandomly(encoder, decoder, n=10):\n",
|
||||
" for i in range(n):\n",
|
||||
" pair = random.choice(pairs)\n",
|
||||
" print('>', pair[0])\n",
|
||||
" print('=', pair[1])\n",
|
||||
" output_words, attentions = evaluate(encoder, decoder, pair[0])\n",
|
||||
" output_sentence = ' '.join(output_words)\n",
|
||||
" print('<', output_sentence)\n",
|
||||
" print('')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"iter: 50, loss: 4.78930813773473\n",
|
||||
"iter: 100, loss: 4.554949267220875\n",
|
||||
"iter: 150, loss: 4.238516052685087\n",
|
||||
"iter: 200, loss: 4.279887475513276\n",
|
||||
"iter: 250, loss: 4.1802274973884455\n",
|
||||
"iter: 300, loss: 4.2113521892305394\n",
|
||||
"iter: 350, loss: 4.266180963228619\n",
|
||||
"iter: 400, loss: 4.225914733432588\n",
|
||||
"iter: 450, loss: 4.1369073431075565\n",
|
||||
"iter: 500, loss: 3.9906799076019768\n",
|
||||
"iter: 550, loss: 3.842005534717016\n",
|
||||
"iter: 600, loss: 4.081443620484972\n",
|
||||
"iter: 650, loss: 4.030401878296383\n",
|
||||
"iter: 700, loss: 3.869014380984837\n",
|
||||
"iter: 750, loss: 3.8505467753031906\n",
|
||||
"iter: 800, loss: 3.855170104072209\n",
|
||||
"iter: 850, loss: 3.675745445599631\n",
|
||||
"iter: 900, loss: 3.9147777624584386\n",
|
||||
"iter: 950, loss: 3.766264297788106\n",
|
||||
"iter: 1000, loss: 3.6813155986997814\n",
|
||||
"iter: 1050, loss: 3.9307321495934144\n",
|
||||
"iter: 1100, loss: 3.9047770059525027\n",
|
||||
"iter: 1150, loss: 3.655722749588981\n",
|
||||
"iter: 1200, loss: 3.540693810886806\n",
|
||||
"iter: 1250, loss: 3.790360960324605\n",
|
||||
"iter: 1300, loss: 3.7472636015907153\n",
|
||||
"iter: 1350, loss: 3.641857419574072\n",
|
||||
"iter: 1400, loss: 3.717327400631375\n",
|
||||
"iter: 1450, loss: 3.4848567311423166\n",
|
||||
"iter: 1500, loss: 3.56774485397339\n",
|
||||
"iter: 1550, loss: 3.460277635226175\n",
|
||||
"iter: 1600, loss: 3.241899683013796\n",
|
||||
"iter: 1650, loss: 3.50151977614751\n",
|
||||
"iter: 1700, loss: 3.621569488313462\n",
|
||||
"iter: 1750, loss: 3.3851226735947626\n",
|
||||
"iter: 1800, loss: 3.346289497057597\n",
|
||||
"iter: 1850, loss: 3.5180823354569695\n",
|
||||
"iter: 1900, loss: 3.433616197676886\n",
|
||||
"iter: 1950, loss: 3.6162788327080864\n",
|
||||
"iter: 2000, loss: 3.4990604458763492\n",
|
||||
"iter: 2050, loss: 3.3144700173423405\n",
|
||||
"iter: 2100, loss: 3.2962356294980135\n",
|
||||
"iter: 2150, loss: 3.1448448797861728\n",
|
||||
"iter: 2200, loss: 3.6958242581534018\n",
|
||||
"iter: 2250, loss: 3.5269318538241925\n",
|
||||
"iter: 2300, loss: 3.180744191850934\n",
|
||||
"iter: 2350, loss: 3.317159715145354\n",
|
||||
"iter: 2400, loss: 3.638545340795366\n",
|
||||
"iter: 2450, loss: 3.7591161967988995\n",
|
||||
"iter: 2500, loss: 3.3513535446742218\n",
|
||||
"iter: 2550, loss: 3.4554441847271393\n",
|
||||
"iter: 2600, loss: 2.9394915195343994\n",
|
||||
"iter: 2650, loss: 3.370902210848673\n",
|
||||
"iter: 2700, loss: 3.4259227318839423\n",
|
||||
"iter: 2750, loss: 3.4058353806904393\n",
|
||||
"iter: 2800, loss: 3.467306881359647\n",
|
||||
"iter: 2850, loss: 3.222254538074372\n",
|
||||
"iter: 2900, loss: 3.3392559226808087\n",
|
||||
"iter: 2950, loss: 3.4203980594362533\n",
|
||||
"iter: 3000, loss: 3.3507530433563955\n",
|
||||
"iter: 3050, loss: 3.4326547555317966\n",
|
||||
"iter: 3100, loss: 3.1755515496390205\n",
|
||||
"iter: 3150, loss: 3.3925877854634847\n",
|
||||
"iter: 3200, loss: 3.223531436912598\n",
|
||||
"iter: 3250, loss: 3.3089625614862603\n",
|
||||
"iter: 3300, loss: 3.367763715501815\n",
|
||||
"iter: 3350, loss: 3.4278301871163497\n",
|
||||
"iter: 3400, loss: 3.373292277381534\n",
|
||||
"iter: 3450, loss: 3.3497054475829717\n",
|
||||
"iter: 3500, loss: 3.402910869681646\n",
|
||||
"iter: 3550, loss: 3.072571641732776\n",
|
||||
"iter: 3600, loss: 3.2611226563832116\n",
|
||||
"iter: 3650, loss: 3.231520605495998\n",
|
||||
"iter: 3700, loss: 3.3788801974569043\n",
|
||||
"iter: 3750, loss: 3.176644308181036\n",
|
||||
"iter: 3800, loss: 3.2255533708693496\n",
|
||||
"iter: 3850, loss: 3.2362594686387083\n",
|
||||
"iter: 3900, loss: 3.095807164230044\n",
|
||||
"iter: 3950, loss: 3.2343999077024916\n",
|
||||
"iter: 4000, loss: 3.3681417366512245\n",
|
||||
"iter: 4050, loss: 3.0732023419879737\n",
|
||||
"iter: 4100, loss: 3.0663742440617283\n",
|
||||
"iter: 4150, loss: 3.396770855048347\n",
|
||||
"iter: 4200, loss: 3.4262332421522292\n",
|
||||
"iter: 4250, loss: 3.060121847773354\n",
|
||||
"iter: 4300, loss: 2.895130627753243\n",
|
||||
"iter: 4350, loss: 3.017712699065133\n",
|
||||
"iter: 4400, loss: 3.1289404028559487\n",
|
||||
"iter: 4450, loss: 3.163725920904249\n",
|
||||
"iter: 4500, loss: 3.3627441662606743\n",
|
||||
"iter: 4550, loss: 3.409984823173947\n",
|
||||
"iter: 4600, loss: 2.8944704760899618\n",
|
||||
"iter: 4650, loss: 3.0016444209568083\n",
|
||||
"iter: 4700, loss: 2.8574393688837683\n",
|
||||
"iter: 4750, loss: 3.1946328716656525\n",
|
||||
"iter: 4800, loss: 2.768447057353125\n",
|
||||
"iter: 4850, loss: 3.075327144675784\n",
|
||||
"iter: 4900, loss: 3.268370175997416\n",
|
||||
"iter: 4950, loss: 3.1798231331053235\n",
|
||||
"iter: 5000, loss: 3.3217560536218063\n",
|
||||
"iter: 5050, loss: 3.006732604223585\n",
|
||||
"iter: 5100, loss: 3.3575944598061698\n",
|
||||
"iter: 5150, loss: 2.9057663469655175\n",
|
||||
"iter: 5200, loss: 2.8928466574502374\n",
|
||||
"iter: 5250, loss: 3.061066797528948\n",
|
||||
"iter: 5300, loss: 3.35562970057745\n",
|
||||
"iter: 5350, loss: 2.9118076042901895\n",
|
||||
"iter: 5400, loss: 2.9514354321918783\n",
|
||||
"iter: 5450, loss: 2.9334804391406832\n",
|
||||
"iter: 5500, loss: 3.204634138440329\n",
|
||||
"iter: 5550, loss: 2.8140748963961526\n",
|
||||
"iter: 5600, loss: 3.011708143741365\n",
|
||||
"iter: 5650, loss: 3.323859388586074\n",
|
||||
"iter: 5700, loss: 2.8442912295810756\n",
|
||||
"iter: 5750, loss: 2.80684267281729\n",
|
||||
"iter: 5800, loss: 3.1174840584860903\n",
|
||||
"iter: 5850, loss: 2.6991389470478837\n",
|
||||
"iter: 5900, loss: 2.9698236653237116\n",
|
||||
"iter: 5950, loss: 3.0238281039586137\n",
|
||||
"iter: 6000, loss: 2.8812837354947645\n",
|
||||
"iter: 6050, loss: 3.1709352504639394\n",
|
||||
"iter: 6100, loss: 2.937920509209709\n",
|
||||
"iter: 6150, loss: 3.178728113076043\n",
|
||||
"iter: 6200, loss: 2.8974244089429337\n",
|
||||
"iter: 6250, loss: 2.809626478180052\n",
|
||||
"iter: 6300, loss: 2.781241159703996\n",
|
||||
"iter: 6350, loss: 2.9004218400395105\n",
|
||||
"iter: 6400, loss: 2.9118271145669246\n",
|
||||
"iter: 6450, loss: 2.8842602037096787\n",
|
||||
"iter: 6500, loss: 2.9489114957536966\n",
|
||||
"iter: 6550, loss: 2.9503131193130736\n",
|
||||
"iter: 6600, loss: 2.8961831474304187\n",
|
||||
"iter: 6650, loss: 3.002027267266834\n",
|
||||
"iter: 6700, loss: 3.0047303264103236\n",
|
||||
"iter: 6750, loss: 2.958453589060949\n",
|
||||
"iter: 6800, loss: 2.9524990789852446\n",
|
||||
"iter: 6850, loss: 2.935619188210321\n",
|
||||
"iter: 6900, loss: 2.9734530233807033\n",
|
||||
"iter: 6950, loss: 2.785320390822396\n",
|
||||
"iter: 7000, loss: 3.1911680922054106\n",
|
||||
"iter: 7050, loss: 2.7732513120363635\n",
|
||||
"iter: 7100, loss: 2.7432456348282948\n",
|
||||
"iter: 7150, loss: 2.823985375283256\n",
|
||||
"iter: 7200, loss: 2.927504679808541\n",
|
||||
"iter: 7250, loss: 3.0693400076760184\n",
|
||||
"iter: 7300, loss: 2.666468213043515\n",
|
||||
"iter: 7350, loss: 2.808132514378382\n",
|
||||
"iter: 7400, loss: 2.558679431067573\n",
|
||||
"iter: 7450, loss: 2.6974468813850763\n",
|
||||
"iter: 7500, loss: 2.8497490201223457\n",
|
||||
"iter: 7550, loss: 2.7490190564337236\n",
|
||||
"iter: 7600, loss: 2.8300208840067427\n",
|
||||
"iter: 7650, loss: 2.793417969741518\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "KeyboardInterrupt",
|
||||
"evalue": "",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
||||
"Input \u001b[0;32mIn [19]\u001b[0m, in \u001b[0;36m<cell line: 5>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m encoder1 \u001b[38;5;241m=\u001b[39m EncoderRNN(eng_lang\u001b[38;5;241m.\u001b[39mn_words, hidden_size)\u001b[38;5;241m.\u001b[39mto(device)\n\u001b[1;32m 3\u001b[0m attn_decoder1 \u001b[38;5;241m=\u001b[39m AttnDecoderRNN(hidden_size, fra_lang\u001b[38;5;241m.\u001b[39mn_words, dropout_p\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0.1\u001b[39m)\u001b[38;5;241m.\u001b[39mto(device)\n\u001b[0;32m----> 5\u001b[0m \u001b[43mtrainIters\u001b[49m\u001b[43m(\u001b[49m\u001b[43mencoder1\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattn_decoder1\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m75000\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprint_every\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m50\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
||||
"Input \u001b[0;32mIn [16]\u001b[0m, in \u001b[0;36mtrainIters\u001b[0;34m(encoder, decoder, n_iters, print_every, plot_every, learning_rate)\u001b[0m\n\u001b[1;32m 16\u001b[0m input_tensor \u001b[38;5;241m=\u001b[39m training_pair[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 17\u001b[0m target_tensor \u001b[38;5;241m=\u001b[39m training_pair[\u001b[38;5;241m1\u001b[39m]\n\u001b[0;32m---> 19\u001b[0m loss \u001b[38;5;241m=\u001b[39m \u001b[43mtrain\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_tensor\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtarget_tensor\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencoder\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 20\u001b[0m \u001b[43m \u001b[49m\u001b[43mdecoder\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencoder_optimizer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdecoder_optimizer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcriterion\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 21\u001b[0m print_loss_total \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m loss\n\u001b[1;32m 22\u001b[0m plot_loss_total \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m loss\n",
|
||||
"Input \u001b[0;32mIn [15]\u001b[0m, in \u001b[0;36mtrain\u001b[0;34m(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length)\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m decoder_input\u001b[38;5;241m.\u001b[39mitem() \u001b[38;5;241m==\u001b[39m EOS_token:\n\u001b[1;32m 46\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n\u001b[0;32m---> 48\u001b[0m \u001b[43mloss\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 50\u001b[0m encoder_optimizer\u001b[38;5;241m.\u001b[39mstep()\n\u001b[1;32m 51\u001b[0m decoder_optimizer\u001b[38;5;241m.\u001b[39mstep()\n",
|
||||
"File \u001b[0;32m~/anaconda3/envs/zajeciaei/lib/python3.10/site-packages/torch/_tensor.py:363\u001b[0m, in \u001b[0;36mTensor.backward\u001b[0;34m(self, gradient, retain_graph, create_graph, inputs)\u001b[0m\n\u001b[1;32m 354\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m has_torch_function_unary(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 355\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m handle_torch_function(\n\u001b[1;32m 356\u001b[0m Tensor\u001b[38;5;241m.\u001b[39mbackward,\n\u001b[1;32m 357\u001b[0m (\u001b[38;5;28mself\u001b[39m,),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 361\u001b[0m create_graph\u001b[38;5;241m=\u001b[39mcreate_graph,\n\u001b[1;32m 362\u001b[0m inputs\u001b[38;5;241m=\u001b[39minputs)\n\u001b[0;32m--> 363\u001b[0m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mautograd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbackward\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgradient\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/anaconda3/envs/zajeciaei/lib/python3.10/site-packages/torch/autograd/__init__.py:173\u001b[0m, in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)\u001b[0m\n\u001b[1;32m 168\u001b[0m retain_graph \u001b[38;5;241m=\u001b[39m create_graph\n\u001b[1;32m 170\u001b[0m \u001b[38;5;66;03m# The reason we repeat same the comment below is that\u001b[39;00m\n\u001b[1;32m 171\u001b[0m \u001b[38;5;66;03m# some Python versions print out the first line of a multi-line function\u001b[39;00m\n\u001b[1;32m 172\u001b[0m \u001b[38;5;66;03m# calls in the traceback and some print out the last line\u001b[39;00m\n\u001b[0;32m--> 173\u001b[0m \u001b[43mVariable\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_execution_engine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_backward\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Calls into the C++ engine to run the backward pass\u001b[39;49;00m\n\u001b[1;32m 174\u001b[0m \u001b[43m \u001b[49m\u001b[43mtensors\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgrad_tensors_\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretain_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreate_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 175\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_unreachable\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maccumulate_grad\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
|
||||
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"hidden_size = 256\n",
|
||||
"encoder1 = EncoderRNN(eng_lang.n_words, hidden_size).to(device)\n",
|
||||
"attn_decoder1 = AttnDecoderRNN(hidden_size, fra_lang.n_words, dropout_p=0.1).to(device)\n",
|
||||
"\n",
|
||||
"trainIters(encoder1, attn_decoder1, 75000, print_every=50)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"> you re sad .\n",
|
||||
"= tu es triste .\n",
|
||||
"< vous tes . . <EOS>\n",
|
||||
"\n",
|
||||
"> she is sewing a dress .\n",
|
||||
"= elle coud une robe .\n",
|
||||
"< elle est une une . . <EOS>\n",
|
||||
"\n",
|
||||
"> he is suffering from a headache .\n",
|
||||
"= il souffre d un mal de t te .\n",
|
||||
"< il est un un un un . <EOS>\n",
|
||||
"\n",
|
||||
"> i m glad to see you .\n",
|
||||
"= je suis heureux de vous voir .\n",
|
||||
"< je suis content de vous voir . <EOS>\n",
|
||||
"\n",
|
||||
"> you are only young once .\n",
|
||||
"= on n est jeune qu une fois .\n",
|
||||
"< vous tes trop plus une enfant . <EOS>\n",
|
||||
"\n",
|
||||
"> you re so sweet .\n",
|
||||
"= vous tes si gentille !\n",
|
||||
"< vous tes trop si . <EOS>\n",
|
||||
"\n",
|
||||
"> i m running out of closet space .\n",
|
||||
"= je manque d espace dans mon placard .\n",
|
||||
"< je suis un de de <EOS>\n",
|
||||
"\n",
|
||||
"> i m sort of an extrovert .\n",
|
||||
"= je suis en quelque sorte extraverti .\n",
|
||||
"< je suis un un . . <EOS>\n",
|
||||
"\n",
|
||||
"> i m out of practice .\n",
|
||||
"= je manque de pratique .\n",
|
||||
"< j ai ai pas de <EOS>\n",
|
||||
"\n",
|
||||
"> you re the last hope for humanity .\n",
|
||||
"= tu es le dernier espoir de l humanit .\n",
|
||||
"< vous tes le la la . . <EOS>\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"evaluateRandomly(encoder1, attn_decoder1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"author": "Jakub Pokrywka",
|
||||
"email": "kubapok@wmi.amu.edu.pl",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"lang": "pl",
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.4"
|
||||
},
|
||||
"subtitle": "0.Informacje na temat przedmiotu[ćwiczenia]",
|
||||
"title": "Ekstrakcja informacji",
|
||||
"year": "2021"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
Loading…
Reference in New Issue
Block a user