+ Entropia
This commit is contained in:
parent
a2fff7b2b5
commit
f85fbdbad8
File diff suppressed because one or more lines are too long
BIN
wyk/01_Jezyk.org
BIN
wyk/01_Jezyk.org
Binary file not shown.
@ -364,7 +364,6 @@ dramatycznie na analizę statystyczną.
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
9 OR 9FAM ZO8 QOAR9 Q*R 8ARAM 29 [O82*]OM OPCC9 OP
|
||||
:end:
|
||||
|
||||
#+BEGIN_SRC python :session mysession :results file
|
||||
@ -491,3 +490,303 @@ trypletu STOP (_ powyżej). Taka sekwencja to /gen/.
|
||||
|
||||
#+RESULTS:
|
||||
[[file:dna_length.png]]
|
||||
|
||||
** Entropia
|
||||
|
||||
*Entropia* ($E$) to miara nieuporządkowania, niepewności, niewiedzy. Im
|
||||
większa entropia, tym mniej wiemy. Pojęcie to pierwotnie wywodzi się z
|
||||
termodynamiki, później znaleziono wiele zaskakujących zastosowań w
|
||||
innych dyscyplinach nauki.
|
||||
|
||||
*** Entropia w fizyce
|
||||
|
||||
W termodynamice entropia jest miarą nieuporządkowania układów
|
||||
fizycznych, na przykład pojemników z gazem. Przykładowo, wyobraźmy
|
||||
sobie dwa pojemniki z gazem, w którym panuje różne temperatury.
|
||||
|
||||
[[./02_Jezyki/gas-low-entropy.drawio.png]]
|
||||
|
||||
Jeśli usuniemy przegrodę między pojemnikami, temperatura się wyrówna,
|
||||
a uporządkowanie się zmniejszy.
|
||||
|
||||
[[./02_Jezyki/gas-high-entropy.drawio.png]]
|
||||
|
||||
Innymi słowy, zwiększy się stopień uporządkowania układu, czyli właśnie entropia.
|
||||
|
||||
*** II prawo termodynamiki
|
||||
|
||||
Jedno z najbardziej fundamentalnych praw fizyki, II prawo
|
||||
termodynamiki głosi, że w układzie zamkniętym entropia nie spada.
|
||||
|
||||
**Pytanie**: Czy to, że napisałem te materiały do wykładu i
|
||||
/uporządkowałem/ wiedzę odnośnie do statystycznych własności języka, nie
|
||||
jest sprzeczne z II prawem termodynamiki?
|
||||
|
||||
Konsekwencją II prawa termodynamiki jest śmierć cieplna Wszechświata
|
||||
(zob. [wizualizacja przyszłości Wszechświata](https://www.youtube.com/watch?v=uD4izuDMUQA)).
|
||||
|
||||
*** Entropia w teorii informacji
|
||||
|
||||
Pojęcie entropii zostało „odkryte” na nowo przez Claude'a Shannona,
|
||||
gdy wypracował ogólną teorię informacji.
|
||||
|
||||
Teoria informacji zajmuje się między innymi zagadnieniem optymalnego kodowania komunikatów.
|
||||
|
||||
Wyobraźmy sobie pewne źródło (generator) losowych komunikatów z
|
||||
zamkniętego zbioru symboli ($\Sigma$; nieprzypadkowo używamy oznaczeń
|
||||
z poprzedniego wykładu). Nadawca $N$ chce przesłać komunikat o wyniku
|
||||
losowania do odbiorcy $O$ używając zer i jedynek (bitów).
|
||||
Teorioinformacyjną entropię można zdefiniować jako średnią liczbę
|
||||
bitów wymaganych do przesłania komunikatu.
|
||||
|
||||
*** Obliczanie entropii — proste przykłady
|
||||
|
||||
Załóżmy, że nadawca chce przekazać odbiorcy informację o wyniku rzutu monetą.
|
||||
Entropia wynosi wówczas rzecz jasna 1 — na jedno losowanie wystarczy jeden bit
|
||||
(informację o tym, że wypadł orzeł, możemy zakodować na przykład za pomocą zera,
|
||||
zaś to, że wypadła reszka — za pomocą jedynki).
|
||||
|
||||
Rozpatrzmy przypadek, gdy nadawca ośmiościenną kością. Aby przekazać
|
||||
wynik, potrzebuje wówczas 3 bity (a więc entropia ośmiościennej kości
|
||||
wynosi 3 bity). Przykładowe kodowanie może mieć następującą postać.
|
||||
|
||||
+-------+-----------+
|
||||
| Wynik | Kodowanie |
|
||||
+-------+-----------+
|
||||
| 1 | 001 |
|
||||
| 2 | 010 |
|
||||
| 3 | 011 |
|
||||
| 4 | 100 |
|
||||
| 5 | 101 |
|
||||
| 6 | 110 |
|
||||
| 7 | 111 |
|
||||
| 8 | 000 |
|
||||
+-------+-----------+
|
||||
|
||||
*** Obliczenie entropii — trudniejszy przykład
|
||||
|
||||
Załóżmy, że $\Sigma = \{A, B, C, D\}$, natomiast poszczególne komunikaty
|
||||
są losowane zgodnie z następujących rozkładem prawdopodobieństwa:
|
||||
$P(A)=1/2$, $P(B)=1/4$, $P(C)=1/8$, $P(D)=1/8$. Ile wynosi entropia w
|
||||
takim przypadku? Można by sądzić, że 2, skoro wystarczą 2 bity do
|
||||
przekazania wyniku losowania przy zastosowaniu następującego kodowania:
|
||||
|
||||
+-------+-----------+
|
||||
| Wynik | Kodowanie |
|
||||
+-------+-----------+
|
||||
| A | 00 |
|
||||
| B | 01 |
|
||||
| C | 10 |
|
||||
| D | 11 |
|
||||
+-------+-----------+
|
||||
|
||||
Problem w tym, że w rzeczywistości nie jest to /optymalne/ kodowanie.
|
||||
Możemy sprytnie zmniejszyć średnią liczbę bitów wymaganych do
|
||||
przekazania losowego wyniku przypisując częstszym wynikom krótsze
|
||||
kody, rzadszym zaś — dłuższe. Oto takie optymalne kodowanie:
|
||||
|
||||
+-------+-----------+
|
||||
| Wynik | Kodowanie |
|
||||
+-------+-----------+
|
||||
| A | 0 |
|
||||
| B | 10 |
|
||||
| C | 110 |
|
||||
| D | 111 |
|
||||
+-------+-----------+
|
||||
|
||||
Używając takiego kodowanie średnio potrzebujemy:
|
||||
|
||||
$$\frac{1}{2}1 + \frac{1}{4}2 + \frac{1}{8}3 + \frac{1}{8}3 = 1,75$$
|
||||
|
||||
bita. Innymi słowy, entropia takiego źródła wynosi 1,75 bita.
|
||||
|
||||
*** Kodowanie musi być jednoznaczne!
|
||||
|
||||
Można by sądzić, że da się stworzyć jeszcze krótsze kodowanie dla omawianego rozkładu nierównomiernego:
|
||||
|
||||
+-------+-----------+
|
||||
| Wynik | Kodowanie |
|
||||
+-------+-----------+
|
||||
| A | 0 |
|
||||
| B | 1 |
|
||||
| C | 01 |
|
||||
| D | 11 |
|
||||
+-------+-----------+
|
||||
|
||||
Niestety, nie jest to właściwe rozwiązanie — kodowanie musi być
|
||||
jednoznaczne nie tylko dla pojedynczego komunikatu, lecz dla całej sekwencji.
|
||||
Na przykład ciąg 0111 nie jest jednoznaczny przy tym kodowaniu (ABBB czy CD?).
|
||||
Podane wcześniej kodowanie spełnia warunek jednoznaczności, ciąg 0111 można odkodować tylko
|
||||
jako AD.
|
||||
|
||||
|
||||
*** Ogólny wzór na entropię.
|
||||
|
||||
Na podstawie poprzedniego przykładu można dojść do intuicyjnego wniosku, że
|
||||
optymalny kod dla wyniku o prawdopodobieństwie $p$ ma długość $-\log_2(p)$, a zatem ogólnie
|
||||
entropia źródła o rozkładzie prawdopodobieństwa $\{p_1,\ldots,p_|\Sigma|\}$ wynosi:
|
||||
|
||||
$$E = -\Sum_{i=1}^{|\Sigma|} p_i\log_2(p_i)$$.
|
||||
|
||||
Zauważmy, że jest to jeden z nielicznych przypadków, gdy w nauce naturalną
|
||||
podstawą logarytmu jest 2 zamiast… podstawy logarytmu naturalnego ($e$).
|
||||
|
||||
Teoretycznie można mierzyć entropię używając logarytmu naturalnego
|
||||
($\ln$), jednostką entropii będzie wówczas *nat* zamiast bita,
|
||||
niewiele to jednak zmienia i jest mniej poręczne i trudniejsze do interpretacji
|
||||
(przynajmniej w kontekście informatyki) niż operowanie na bitach.
|
||||
|
||||
**Pytanie** Ile wynosi entropia sześciennej kostki? Jak wygląda
|
||||
optymalne kodowanie wyników rzutu taką kostką?
|
||||
|
||||
*** Entropia dla próby Bernoulliego
|
||||
|
||||
Wiemy już, że entropia dla rzutu monetą wynosi 1 bit. A jaki będzie wynik dla źle wyważonej monety?
|
||||
|
||||
#+BEGIN_SRC python :session mysession :results file
|
||||
import matplotlib.pyplot as plt
|
||||
from math import log
|
||||
import numpy as np
|
||||
|
||||
def binomial_entropy(p):
|
||||
return -(p * log(p, 2) + (1-p) * log(1-p, 2))
|
||||
|
||||
x = list(np.arange(0.001,1,0.001))
|
||||
y = [binomial_entropy(x) for x in x]
|
||||
plt.figure().clear()
|
||||
plt.plot(x, y)
|
||||
|
||||
fname = f'binomial-entropy.png'
|
||||
|
||||
plt.savefig(fname)
|
||||
|
||||
fname
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
[[file:binomial-entropy.png]]
|
||||
|
||||
*Pytanie* Dla oszukańczej monety (np. dla której wypada zawsze orzeł) entropia
|
||||
wynosi 0, czy to wynik zgodny z intuicją?
|
||||
|
||||
** Entropia a język
|
||||
|
||||
Tekst w danym języku możemy traktować jako ciąg symboli (komunikatów) losowanych według jakiegoś
|
||||
rozkładu prawdopodobieństwa. W tym sensie możemy mówić o entropii języka.
|
||||
|
||||
Oczywiście, jak zawsze, musimy jasno stwierdzić, czym są symbole
|
||||
języka: literami, wyrazami czy jeszcze jakimiś innymi jednostkami.
|
||||
|
||||
*** Pomiar entropii języka — pierwsze przybliżenie
|
||||
|
||||
Załóżmy, że chcemy zmierzyć entropię języka polskiego na przykładzie
|
||||
„Pana Tadeusza” — na poziomie znaków. W pierwszym przybliżeniu można
|
||||
by policzyć liczbę wszystkich znaków…
|
||||
|
||||
#+BEGIN_SRC python :session mysession :exports both :results raw drawer
|
||||
chars_in_pan_tadeusz = len(set(get_characters(pan_tadeusz)))
|
||||
chars_in_pan_tadeusz
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
95
|
||||
:end:
|
||||
|
||||
… założyć jednostajny rozkład prawdopodobieństwa i w ten sposób policzyć entropię:
|
||||
|
||||
#+BEGIN_SRC python :session mysession :exports both :results raw drawer
|
||||
from math import log
|
||||
|
||||
95 * (1/95) * log(95, 2)
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
6.569855608330948
|
||||
:end:
|
||||
|
||||
*** Mniej rozrzutne kodowanie
|
||||
|
||||
Przypomnijmy sobie jednak, że rozkład jednostek języka jest zawsze
|
||||
skrajnie nierównomierny! Jeśli uwzględnić ten nierównomierny rozkład
|
||||
znaków, można opracować o wiele efektywniejszy sposób zakodowania znaków składających się na „Pana Tadeusza”
|
||||
(częste litery, np. „a” i „e” powinny mieć krótkie kody, a rzadkie, np. „ź” — dłuższe kody).
|
||||
|
||||
Policzmy entropię przy takim założeniu:
|
||||
|
||||
#+BEGIN_SRC python :session mysession :exports both :results raw drawer
|
||||
from collections import Counter
|
||||
from math import log
|
||||
|
||||
def unigram_entropy(t):
|
||||
counter = Counter(t)
|
||||
|
||||
total = counter.total()
|
||||
return -sum((p := count / total) * log(p, 2) for count in counter.values())
|
||||
|
||||
unigram_entropy(get_characters(pan_tadeusz))
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
4.938605272823633
|
||||
:end:
|
||||
|
||||
*** Ile wynosi entropia rękopisu Wojnicza?
|
||||
|
||||
#+BEGIN_SRC python :session mysession :exports both :results raw drawer
|
||||
unigram_entropy(get_characters(voynich))
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
4.973808176335181
|
||||
:end:
|
||||
|
||||
Wartość zaskakująco zbliżona do „Pana Tadeusza”!
|
||||
|
||||
*** Rzeczywista entropia?
|
||||
|
||||
W rzeczywistości entropia jest jeszcze mniejsza, tekst nie jest
|
||||
generowany przecież według rozkładu wielomianowego. Istnieją rzecz
|
||||
jasna pewne zależności między znakami, np. niemożliwe, żeby po „ń”
|
||||
wystąpiły litera „a” czy „e”. Na poziomie wyrazów zależności mogę mieć
|
||||
jeszcze bardziej skrajny charakter, np. po wyrazie „przede” prawie na
|
||||
pewno wystąpi „wszystkim”, co oznacza w takiej sytuacji słowo
|
||||
„wszystkim” może zostać zakodowane za pomocą 0 (!) bitów.
|
||||
|
||||
Można uwzględnić takie zależności i uzyskać jeszcze lepsze kodowanie,
|
||||
a co za tym idzie lepsze oszacowanie entropii.
|
||||
|
||||
*** Rozmiar skompresowanego pliku jako przybliżenie entropii
|
||||
|
||||
Cele algorytmów kompresji jest właściwie wyznaczanie efektywnych
|
||||
sposobów kodowania danych. Możemy więc użyć rozmiaru skompresowanego pliku w bitach
|
||||
(po podzieleniu przez oryginalną długość) jako dobrego przybliżenia entropii.
|
||||
|
||||
#+BEGIN_SRC python :session mysession :exports both :results raw drawer
|
||||
import zlib
|
||||
|
||||
def entropy_by_compression(t):
|
||||
compressed = zlib.compress(t.encode('utf-8'))
|
||||
return 8 * len(compressed) / len(t)
|
||||
|
||||
entropy_by_compression(pan_tadeusz)
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
3.673019884633768
|
||||
:end:
|
||||
|
||||
Dla porównania wynik dla rękopisu Wojnicza:
|
||||
|
||||
#+BEGIN_SRC python :session mysession :exports both :results raw drawer
|
||||
entropy_by_compression(voynich)
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
:results:
|
||||
2.90721912311904
|
||||
:end:
|
||||
|
1
wyk/02_Jezyki/gas-high-entropy.drawio
Normal file
1
wyk/02_Jezyki/gas-high-entropy.drawio
Normal file
@ -0,0 +1 @@
|
||||
<mxfile host="app.diagrams.net" modified="2022-03-05T10:14:12.443Z" agent="5.0 (X11)" etag="UjtYN9dZJ1n-mtJw7vZr" version="16.2.2" type="device"><diagram id="zkchOmJWayHcCaytrl_I" name="Page-1">jZPfb4MgEMf/Gh+bKFS3vs513bLsqUv2TIQKLXiO0mr31w/l/JVmydAofO444HtHRHPT7iyr5QdwoSMS8zaizxEhm3Xivx24BZCSNIDSKh5QMoG9+hEIY6QXxcV54egAtFP1EhZQVaJwC8ashWbpdgC9XLVmpbgD+4Lpe/qluJOBPpKHib8KVcph5STbBIthgzOGOEvGoQmoPxzdRjS3AC70TJsL3Wk36BIUePnDOm7Misr9Z8LpuNrG5ppe31ylDf1+P+6yFR7jyvQFDxyRtX8/ww937m6DHBYuFRddxDiiT41UTuxrVnTWxuffM+mM9qPEd8/OwmmUjXpyUFrnoMH20egh7Z6OQ+VmPLQxwsyS9c1bcN/COtH+KUgyyuzLU4ARzt68C04gFGsMS5OmOG6mRJM1MjlLcoaMYW2VY+hJft/BDAzDKdO9bXZd6PYX</diagram></mxfile>
|
BIN
wyk/02_Jezyki/gas-high-entropy.drawio.png
Normal file
BIN
wyk/02_Jezyki/gas-high-entropy.drawio.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 2.0 KiB |
1
wyk/02_Jezyki/gas-low-entropy.drawio
Normal file
1
wyk/02_Jezyki/gas-low-entropy.drawio
Normal file
@ -0,0 +1 @@
|
||||
<mxfile host="app.diagrams.net" modified="2022-03-05T10:11:11.528Z" agent="5.0 (X11)" etag="-eu0Wo5sdhkbwVuXUHS7" version="16.2.2" type="device"><diagram id="zkchOmJWayHcCaytrl_I" name="Page-1">5ZVRT8IwEMc/zR5NtpUVeBRENMYnTHw0db1t1W7FUhj46b3RbmMwEk3UmJgQcv3f7a79/QvzyDTfzjVbZveKg/RCn289cuWF4XgQ4Hcl7KwQhZEVUi24lYJWWIh3cKLv1LXgsOoUGqWkEcuuGKuigNh0NKa1KrtliZLdqUuWwomwiJk8VR8FN5lVR+Gw1W9ApFk9OaBjm8lZXexarDLGVWml/eHIzCNTrZSxUb6dgqzY1Vwsgesz2WZjGgrzmQdeXy5mfr6JNremkDl5u3uZ04vQdtkwuXYHdps1u5qAVuuCQ9XE98ikzISBxZLFVbZEy1HLTC5xFWC4Mlq9NqQIKomQcqqk0vtuJEmAxnFTeZDhw/GzX41wWwJtYHv2rEFDEG8eqByM3mGJeyAk7vrsjtZl62HgePnZgX/Uacxdm7Rp3ZLFwMH9Amjy26A5g1HSC5rGI3hOvgc0if4a6KgHNJU4dcLFBsPU7E8+wM/DU2CDugIHdoqODEJMps+Fmm2hCjgywklMirTAZYxYAfVJBV3gv8ylS+SC82pMr+3di/EdPw965NogOnGN9phGfso0+hXTwv9pGhn9mmm4bN9L+9zBy53MPgA=</diagram></mxfile>
|
BIN
wyk/02_Jezyki/gas-low-entropy.drawio.png
Normal file
BIN
wyk/02_Jezyki/gas-low-entropy.drawio.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 2.8 KiB |
Loading…
Reference in New Issue
Block a user