16 KiB
16 KiB
Modelowanie Języka
10. Model rekurencyjny z atencją [ćwiczenia]
Jakub Pokrywka (2022)
notebook na podstawie:
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import random
import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
SOS_token = 0
EOS_token = 1
class Lang:
def __init__(self):
self.word2index = {}
self.word2count = {}
self.index2word = {0: "SOS", 1: "EOS"}
self.n_words = 2 # Count SOS and EOS
def addSentence(self, sentence):
for word in sentence.split(' '):
self.addWord(word)
def addWord(self, word):
if word not in self.word2index:
self.word2index[word] = self.n_words
self.word2count[word] = 1
self.index2word[self.n_words] = word
self.n_words += 1
else:
self.word2count[word] += 1
pairs = []
with open('data/eng-pol.txt') as f:
for line in f:
eng_line, pol_line = line.lower().rstrip().split('\t')
eng_line = re.sub(r"([.!?])", r" \1", eng_line)
eng_line = re.sub(r"[^a-zA-Z.!?]+", r" ", eng_line)
pol_line = re.sub(r"([.!?])", r" \1", pol_line)
pol_line = re.sub(r"[^a-zA-Z.!?ąćęłńóśźżĄĆĘŁŃÓŚŹŻ]+", r" ", pol_line)
pairs.append([eng_line, pol_line])
pairs[1]
MAX_LENGTH = 10
eng_prefixes = (
"i am ", "i m ",
"he is", "he s ",
"she is", "she s ",
"you are", "you re ",
"we are", "we re ",
"they are", "they re "
)
pairs = [p for p in pairs if len(p[0].split(' ')) < MAX_LENGTH and len(p[1].split(' ')) < MAX_LENGTH]
pairs = [p for p in pairs if p[0].startswith(eng_prefixes)]
eng_lang = Lang()
pol_lang = Lang()
for pair in pairs:
eng_lang.addSentence(pair[0])
pol_lang.addSentence(pair[1])
pairs[0]
pairs[1]
pairs[2]
eng_lang.n_words
pol_lang.n_words
class EncoderRNN(nn.Module):
def __init__(self, input_size, embedding_size, hidden_size):
super(EncoderRNN, self).__init__()
self.embedding_size = 200
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, self.embedding_size)
self.gru = nn.GRU(self.embedding_size, hidden_size)
def forward(self, input, hidden):
embedded = self.embedding(input).view(1, 1, -1)
output = embedded
output, hidden = self.gru(output, hidden)
return output, hidden
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
class DecoderRNN(nn.Module):
def __init__(self, embedding_size, hidden_size, output_size):
super(DecoderRNN, self).__init__()
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.embedding = nn.Embedding(output_size, self.embedding_size)
self.gru = nn.GRU(self.embedding_size, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden):
output = self.embedding(input).view(1, 1, -1)
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = self.softmax(self.out(output[0]))
return output, hidden
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
class AttnDecoderRNN(nn.Module):
def __init__(self, embedding_size, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH):
super(AttnDecoderRNN, self).__init__()
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(self.output_size, self.embedding_size)
self.attn = nn.Linear(self.hidden_size + self.embedding_size, self.max_length)
self.attn_combine = nn.Linear(self.hidden_size + self.embedding_size, self.embedding_size)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.embedding_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
attn_weights = F.softmax(
self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1)
attn_applied = torch.bmm(attn_weights.unsqueeze(0),
encoder_outputs.unsqueeze(0))
#import pdb; pdb.set_trace()
output = torch.cat((embedded[0], attn_applied[0]), 1)
output = self.attn_combine(output).unsqueeze(0)
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = F.log_softmax(self.out(output[0]), dim=1)
return output, hidden, attn_weights
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
def tensorFromSentence(sentence, lang):
indexes = [lang.word2index[word] for word in sentence.split(' ')]
indexes.append(EOS_token)
return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
teacher_forcing_ratio = 0.5
def train_one_batch(input_tensor, target_tensor, encoder, decoder, optimizer, criterion, max_length=MAX_LENGTH):
encoder_hidden = encoder.initHidden()
optimizer.zero_grad()
input_length = input_tensor.size(0)
target_length = target_tensor.size(0)
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
loss = 0
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden)
encoder_outputs[ei] = encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden = encoder_hidden
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
if use_teacher_forcing:
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_outputs)
loss += criterion(decoder_output, target_tensor[di])
decoder_input = target_tensor[di] # Teacher forcing
else:
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_outputs)
topv, topi = decoder_output.topk(1)
decoder_input = topi.squeeze().detach() # detach from history as input
loss += criterion(decoder_output, target_tensor[di])
if decoder_input.item() == EOS_token:
break
loss.backward()
optimizer.step()
return loss.item() / target_length
def trainIters(encoder, decoder, n_iters, print_every=1000, learning_rate=0.01):
print_loss_total = 0 # Reset every print_every
encoder.train()
decoder.train()
optimizer = optim.SGD(list(encoder.parameters()) + list(decoder.parameters()), lr=learning_rate)
training_pairs = [random.choice(pairs) for _ in range(n_iters)]
training_pairs = [(tensorFromSentence(p[0], eng_lang), tensorFromSentence(p[1], pol_lang)) for p in training_pairs]
criterion = nn.NLLLoss()
for i in range(1, n_iters + 1):
training_pair = training_pairs[i - 1]
input_tensor = training_pair[0]
target_tensor = training_pair[1]
loss = train_one_batch(input_tensor,
target_tensor,
encoder,
decoder,
optimizer,
criterion)
print_loss_total += loss
if i % print_every == 0:
print_loss_avg = print_loss_total / print_every
print_loss_total = 0
print(f'iter: {i}, loss: {print_loss_avg}')
def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
encoder.eval()
decoder.eval()
with torch.no_grad():
input_tensor = tensorFromSentence(sentence, eng_lang)
input_length = input_tensor.size()[0]
encoder_hidden = encoder.initHidden()
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden)
encoder_outputs[ei] += encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden = encoder_hidden
decoded_words = []
decoder_attentions = torch.zeros(max_length, max_length)
for di in range(max_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
decoder_attentions[di] = decoder_attention.data
topv, topi = decoder_output.data.topk(1)
if topi.item() == EOS_token:
decoded_words.append('<EOS>')
break
else:
decoded_words.append(pol_lang.index2word[topi.item()])
decoder_input = topi.squeeze().detach()
return decoded_words, decoder_attentions[:di + 1]
def evaluateRandomly(encoder, decoder, n=10):
for i in range(n):
pair = random.choice(pairs)
print('>', pair[0])
print('=', pair[1])
output_words, attentions = evaluate(encoder, decoder, pair[0])
output_sentence = ' '.join(output_words)
print('<', output_sentence)
print('')
embedding_size = 200
hidden_size = 256
encoder1 = EncoderRNN(eng_lang.n_words, embedding_size, hidden_size).to(device)
attn_decoder1 = AttnDecoderRNN(embedding_size, hidden_size, pol_lang.n_words, dropout_p=0.1).to(device)
trainIters(encoder1, attn_decoder1, 10_000, print_every=50)
evaluateRandomly(encoder1, attn_decoder1)
## ZADANIE
Gonito "WMT2017 Czech-English machine translation challenge for news "
Proszę wytrenować najpierw model german -> english, a później dotrenować na czech-> english.
Można wziąć inicjalizować enkoder od nowa lub nie. Proszę w każdym razie użyć wytrenowanego dekodera.