diff --git a/wyk/03_Ngramy.ipynb b/wyk/03_Ngramy.ipynb
new file mode 100644
index 0000000..7c85460
--- /dev/null
+++ b/wyk/03_Ngramy.ipynb
@@ -0,0 +1,19 @@
+
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
+ "
\n",
+ "
Modelowanie języka
\n",
+ " 03. N-gramy [wykład]
\n",
+ " Filip Graliński (2022)
\n",
+ "\n",
+ "\n",
+ "![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)\n",
+ "\n"
+ ]
+ },
+{"cell_type":"markdown","metadata":{},"source":["## N-gramy\n\n"]},{"cell_type":"markdown","metadata":{},"source":["W modelowaniu języka często rozpatruje się n-gramy, czyli podciągi o\nrozmiarze $n$.\n\nNa przykład *digramy* (*bigramy*) to zbitki dwóch jednostek, np. liter albo wyrazów.\n\n| $n$|$n$-gram|nazwa|\n|---|---|---|\n| 1|1-gram|unigram|\n| 2|2-gram|digram/bigram|\n| 3|3-gram|trigram|\n| 4|4-gram|tetragram|\n| 5|5-gram|pentagram|\n\n**Pytanie:** Jak nazywa się 6-gram?\n\nJak widać, dla symetrii mówimy czasami o unigramach, jeśli operujemy\npo prostu na jednostkach, nie na ich podciągach.\n\n"]},{"cell_type":"markdown","metadata":{},"source":["#### N-gramy z Pana Tadeusza\n\n"]},{"cell_type":"markdown","metadata":{},"source":["Statystyki, które policzyliśmy dla pojedynczych liter czy wyrazów, możemy powtórzyć dla n-gramów.\n\n"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":"[('k', 'o', 't'), ('o', 't', 'e'), ('t', 'e', 'k')]"}],"source":["def ngrams(iter, size):\n ngram = []\n for item in iter:\n ngram.append(item)\n if len(ngram) == size:\n yield tuple(ngram)\n ngram = ngram[1:]\n\nlist(ngrams(\"kotek\", 3))"]},{"cell_type":"markdown","metadata":{},"source":["Zauważmy, że policzyliśmy wszystkie n-gramy, również częściowo się pokrywające.\n\nZawsze powinniśmy się upewnić, czy jest jasne, czy chodzi o n-gramy znakowe czy wyrazowe\n\n"]},{"cell_type":"markdown","metadata":{},"source":["#### 3-gramy znakowe\n\n"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7x0lEQVR4nO3deXhU5eH28XsySSb7kBUICSFsssmOyCoIoqhULdVqEXFtrbjQtFZwK6gYtWrtqwVFrba40VbFpehPXNj3VWTfE9YQlkxIyCSZmfePwCAFZMnyzMz5fq5rLjgnM/Q212meO895zjk2n8/nEwAAACwjzHQAAAAA1C0KIAAAgMVQAAEAACyGAggAAGAxFEAAAACLoQACAABYDAUQAADAYiiAAAAAFkMBBAAAsBgKIAAAgMVQAAEAACyGAggAAGAxFEAAAACLoQACAABYDAUQAADAYiiAAAAAFkMBBAAAsBgKIAAAgMVQAAEAACyGAggAAGAxFEAAAACLoQACAABYDAUQAADAYiiAAAAAFkMBBAAAsBgKIAAAgMVQAAEAACyGAggAAGAxFEAAAACLoQACAABYDAUQAADAYiiAAAAAFkMBBAAAsBgKIAAAgMVQAAEAACyGAggAAGAxFEAAAACLoQACAABYDAUQAADAYiiAAAAAFkMBBAAAsBgKIAAAgMVQAAEAACyGAggAAGAxFEAAAACLoQACAABYDAUQAADAYiiAAAAAFkMBBAAAsBgKIAAAgMVQAAEAACyGAggAAGAxFEAAAACLoQACAABYDAUQAADAYiiAAAAAFhNuOkAw83q92rVrl+Lj42Wz2UzHAQAAZ8Hn86m4uFjp6ekKC7PmXBgFsBp27dqlzMxM0zEAAMB5yM/PV0ZGhukYRlAAqyE+Pl5S1QGUkJBgOA0AADgbLpdLmZmZ/nHciiiA1XDstG9CQgIFEACAIGPl5VvWPPENAABgYRRAAAAAi6EAAgAAWAwFEAAAwGIogAAAABZDAQQAALAYCiAAAIDFUAABAAAshgIIAABgMRRAAAAAi6EAAgAAWAwFEAAAwGLCTQfAyb5es1cfr9ip7ORYNUmJVfbRV2JMhKUfXA0AAGoGBTAALc07qP9+v/uk/c7oiKpCmByj7JQ4NUmJUdOjf8ZHRRhICgAAghEFMAANbtdAybGR2lJYom2FJdpaWKLdRWUqOlKhlfmHtDL/0EmfSYlzKDslRk2SY5WdGqvso382SY5VVIS97v8jAABAwLL5fD6f6RDByuVyyel0qqioSAkJCbX6v3Wk3KPtB0q0dV+Jtu6v+nPb/hJtLSxV4WH3T3423RmlJilVp5ObpsT6S2JmYowiw1kGCgCwlrocvwOVZQtgZWWlxo4dq3fffVd79uxRw4YNdeutt+rRRx9VWNjZlaJAOYCKyyq0rbBUWwoPa1thqbbtL9GWwhJt3XdYrrLK034uzCZlJMb41xhm/6gkpteLlj2M9YYAgNATKOO3SZY9Bfzss8/q1Vdf1T/+8Q+1bdtWS5Ys0W233San06kHHnjAdLxzEh8VoQsznLoww3nCfp/Pp4OlFdr6o1PJP549LC33KO9AqfIOlGrmhn0nfDbSHqbGyTHq3Lie+rRIVa/mKUqKjazL/ywAAFBLLDsDePXVV6t+/fp68803/fuGDh2qmJgYTZ48+az+jWD+DcLn82lfsfuEdYZbC6uK4bb9pSqv9J7wfptNapfuVJ8WKerdIkVdshLlCGdtIQAg+ATz+F1TLDsD2Lt3b7366qvasGGDWrZsqZUrV2rOnDl66aWXTEerEzabTWkJUUpLiNLFTZNP+JrH69PuoiPauPew5m0u1OyNhVq3p1irdhZp1c4iTZixWdERdnVvmqQ+LVLVt0WKmqfFcYsaAACChGUL4EMPPaSioiK1atVKdrtdHo9H48eP10033XTaz7jdbrndxy+4cLlcdRG1ztnDbMpIjFFGYoz6t0qTJBW4yjRnU1UZnL2xUIWH3Zqxfp9mrK86dVw/waE+LVLVp0WKejVPUUqcw+R/AgAA+AmWPQX8wQcf6MEHH9Sf//xntW3bVitWrNCoUaP04osvasSIEaf8zNixYzVu3LiT9lttCtnn82ndnmLN3rhPszcWatHWA3L/zynjtukJ6t0iRX1bpKpLViK3ogEABAxOAVu4AGZmZmr06NEaOXKkf99TTz2ld955R+vWrTvlZ041A5iZmWnpA0iSyio8WrLtoGZv3KdZGwu1dveJM6NREWG6KDtZrRvGyxFulyM8TJH2MEWGh1X9/djLv8/u/1pUhF1NU2IVxhXJAIAaQgG08Cng0tLSk273Yrfb5fV6T/MJyeFwyOHg1Ob/ioqwq/fRi0PGSNpX7NZc/+nifSoodmvWhn2a9T9XGp+trlmJevPWbnJG87QTAABqgmUL4JAhQzR+/Hg1btxYbdu21fLly/Xiiy/q9ttvNx0t6KXGO3Rtp0a6tlMj+Xw+bSw4rNkbC7Xr0BGVV3qrXh6v3JUelVd65f7xvoqqP4+970BpuZZsP6hfvb5Ak+/ozq1oAACoAZY9BVxcXKzHHntMH3/8sQoKCpSenq6bbrpJjz/+uCIjz65kMIVc+9budmn4mwtVeLhcLevH6Z07uistIcp0LABAEGP8tnABrAkcQHVjU8FhDXtjgfa63MpOidW7d3ZXer1o07EAAEGK8VviQbAIeM3T4vTv3/RURmK0thaW6PpX5ytvf6npWAAABC0KIIJC4+QY/es3PZSdEqudh47o+tfmaVPBYdOxAAAIShRABI30etGa8puL1bJ+nPa63Lpx0vyTbjkDAADOjAKIoJIWH6UPft1DbdMTVHi4XDdOWqDvdxwyHQsAgKBCAUTQSYqN1Ht3XaxOjeup6EiFhr2+UEu2HTAdCwCAoEEBRFByRkdo8h3d1T07ScXuSg1/c5HmbSo0HQsAgKDAbWCqgcvIzTtS7tGvJy/R7I2FirSHqXeLFHXJSlTXrER1yKzHM4gBACdh/KYAVgsHUGBwV3p033vL9dWavSfsj7Db1Dbdqa5ZieraJFFdspKUGs+j/ADA6hi/KYDVwgEUOHw+n77fUaTF2w5o6faDWrL9oPYVu096X/0Eh9Lio5Qa71BqnKPqz6OvpNhIRdhtkmwKs0lhNptsR/9snhbHbCIAhAjGbwpgtXAABS6fz6cdB49oyfYDWrLtoJZuP6j1e4t1vkd7ujNK/++mTuraJKlmgwIA6hzjNwWwWjiAgkvRkQpt31+ifcXu46/Dx/9+oLRcXq9PXp/k9fnk81UVyeKyShW7K2UPs+l3A1vot/2ayx5mM/2fAwA4T4zfUrjpAEBdcUZHqH1GvXP+3GF3pR79eJWmrtil57/aoPlb9usvN3RUWkJUzYcEAKAOcBsY4AziHOH6yy876vnrOyg6wq65m/Zr8F9n67t1BSotr1R5pVdMpAMAggmngKuBKWTr2VRwWPe+t0zr9hSf9LUwmxQdYVfnrERd0jJVfVumqkVanGw2ThcDQCBh/KYAVgsHkDWVVXiUO22t3l2Yp0rvT//fp6EzSle0a6D7Lm2hpNjIOkoIAPgpjN8UwGrhALK2Co9X5ZVeVXp8qvR6Ven16UBJueZuKtSsjYVauGW/3JVeSVXrD38/qKV+dVFjhdtZeQEAJjF+UwCrhQMIP6WswqM5Gwv1/Ffr/aeMWzWI19iftdXFTZMNpwMA62L8pgBWCwcQzkalx6v3F+Xp+a82qOhIhSRpSId0jRncSun1og2nAwDrYfymAFYLBxDOxcGScj3/1Xq9tyhPPl/VBSMj+zfTnX2a8pQRAKhDjN8UwGrhAML5+GFnkcZ9tlqLtx2UJGUkRuuBAS10XadGrA8EgDrA+E0BrBYOIJwvn8+nT1fuUu60ddrjKpMkNU2J1f0DWqhl/XiFhUl2m02ZSTHMDgJADWP8pgBWCwcQqutIuUeTF2zTxBmbdbC04qSvJ8ZE6Nae2RrRM0v1YriNDADUBMZvCmC1cAChphx2V+qtOVv1n2U7VFrukc/nU1mFV4fdlZKk2Ei7rm6fru5Nk9StSZIa1YtWGM8jBoDzwvhNAawWDiDUpkqPV9N+2KOJMzZr7W7XSV8Ps0mOcLsaOqPUODlGLdLi1CUrSd2aJCo5zmEgMQAEB8ZvCmC1cAChLvh8Ps3dtF+zNu7T4m0HtGpH0U8+gSTMJj3z8/a6oVtmHaYEgODB+C2Fmw4A4KfZbDb1bpGi3i1SJEnuSo9K3B5VerwqLfdo16Ej2n6gVKt3FWn+5v3avK9E46et1eALGyg+KsJwegBAIKIAAkHGEW6XI/z4lcFNUmLV8+jfPV6fLvvLTG3ZV6J/zt+ukf2bmwkJAAho3HQMCCH2MJvuu7Sq9L0+e4v/IhIAAH6MAgiEmCHt05WdEqtDpRWaPH+76TgAgABEAQRCTLg9zH/q95VvN2rxtgOGEwEAAo2lC2CTJk1ks9lOeo0cOdJ0NKBaru2Yrp7NklVS7tEtby7S7I37xAX/AIBjLH0bmH379snj8fi3f/jhB1122WX67rvv1K9fvzN+nsvIEciOlHv068lLNHtjoSQpNd6hi7KT9Os+TdUhs57ZcABgEOO3xQvg/xo1apQ+//xzbdy4UTbbmZ+ywAGEQFdW4dGYj1bps5W7Trh3YN+WqeqalaiLspN0cdNkgwkBoO4xflMA/crLy5Wenq6cnBw9/PDDZ/UZDiAEiyPlHv2wq0gfLMrXx8t36Mf3kR73s7Ya0bOJsWwAUNcYv7kPoN/UqVN16NAh3Xrrrad9j9vtltvt9m+7XCc/ngsIRNGRdnVrUvUc4Xv6N9P0NXu1bPtBfbVmr574fI2apsaqT4tU0zEBAHWEGcCjLr/8ckVGRuqzzz477XvGjh2rcePGnbTfyr9BIHj5fD79/t8r9dGynYqKCNMNXTM1tHOG2qQnKMJu6evDAIQ4ZgApgJKk7du3q2nTpvroo490zTXXnPZ9p5oBzMzMtPQBhODmrvTojreXaM6mQv++6Ai7ejVP1lXtG+qaDo0UFnbm9bAAEEwogJwCliS99dZbSktL01VXXfWT73M4HHI4HHWUCqh9jnC7Jt9xkeZt3q/J87dr3uZCucoq9fXaAn29tkCbC0r0h8svMB0TAFDDLF8AvV6v3nrrLY0YMULh4Zb/dsCCbDabejVPUa/mKfJ6fVq3p1ifrNyp12Zu0SvfbVKnxvU0oHV90zEBADXI8o3n66+/Vl5enm6//XbTUQDjwsJsapOeoDbpCTpS7tE/52/XXf9cosva1Fd2SpwaOqPUo1myWqTFndWtkgAAgYk1gNXAGgKEMnelRzlTVuq/q3af9LWUuEj1bJaiAa3TdHnbBoqKsBtICADnh/GbAlgtHECwgnV7XJq2ao8Ol1VqY0GxFm87oLIKr//rSbGRuqdfM93as4nCuXoYQBBg/KYAVgsHEKzIXenRirxDmrFhnz5ZvlO7isokVT1qrnlqnGIddsVEhmt4jyx1a5JkOC0AnIzxmwJYLRxAsLpKj1f/XrpDz3yxTkVHKk74Wmq8Q1/nXCJndIShdABwaozfFMBq4QACqhwp92jN7iLlHziisgqPJs3aoi2FJRrUpr7uH9BCzVLjFB3JOkEAgYHxmwJYLRxAwKnN37xfv3pjgY79dEmLd2jKb3ooOyXWbDAAEOO3JLFiG0CN69EsWe/e2V19WqRIkgqK3frdlBWq9HjP8EkAQF2gAAKoFT2bpWjyHd01d/Slio8K14r8Q5owY7PpWAAAcQq4WphCBs7O1OU7NWrKCklS16xExUeFq1XDBN3dt5mcMVwkAqBuMX7zJBAAdeCajumat7lQ/1qyQ0u2H5Qkfbd+n75avUd39Wmqns1SVN/pkCOcC0UAoC4wA1gN/AYBnD2fz6f1e4u1fk+x9h8u11+/2XjCrWNS4iL191u7qX1GPXMhAVgC4zcFsFo4gIDzt6ngsN5duF3L8g5pZf4hSVVPFbmzT7Z+1iFdGYkxZgMCCFmM3xTAauEAAmpGcVmFfjFxvtbvLZYkJUSF6+ORvdQsNc5wMgChiPGbq4ABBID4qAhNHdlLj1/dRokxEXKVVWrACzM1/M2FmrOx0HQ8AAg5FEAAASE60q7be2frw9/2VIu0qpm/2RsLdfObC/Xn/1snTlYAQM3hFHA1MIUM1J68/aWaNHuz3lmQJ0n6WYf0o4+Vi5XNZjOcDkAwY/ymAFYLBxBQ+z5YlKdHpv4gj7fqR1X9BIe6ZCWqbbpTFzZyKjMpRhmJ0Yqwc0IDwNlh/KYAVgsHEFA3Fm7Zrz//33p9v6NI5ad4nFy8I1ytGsYrMSZSl1yQqr4tUpWZxFXEAE6N8ZsCWC0cQEDdKi6r0OpdLs3csE95B0q1YU+x8g+Wqqzi5FLYqXE9/bxzhi5vU18pcQ6FhXHaGEAVxm8KYLVwAAHmeb0+Lc8/qL0utzbsLdZ36wq0ameRvD/6ydYiLU5vjuimxsnMCgJg/JYogNXCAQQEpi37Duutudv0xQ+7VXi43L+/c+N6uqJdA7VNd6pFWpzSEqIMpgRgCuM3BbBaOICAwLduj0t3T16qbftLT9hvs0kjejTRgNZpauiMVgNnlOIcPB4dsALGbwpgtXAAAcHB5/Mp70Cppq3ao+V5B7V2j0v5B46c8B57mE3XdEzX0M4Z6tU8xVBSAHWB8ZsCWC0cQEDw+u/3u/WfpfnacfCIdheV6bC70v+1Y0Wwe9MkOcLtBlMCqA2M3xTAauEAAkLHkm0H9OGyHfpgcb6O/VRsmhKrt27rpqzkWLPhANQoxm8KYLVwAAGhZ/G2A/r3knx9sWqPit2VSogK1609m2holwyKIBAiGL8pgNXCAQSErgJXme765xKt3FEkSYq0h+nByy/QXX2bGk4GoLoYvymA1cIBBIQ2j9enj5fv1OQF27Uy/5CkqhtM39gtU7/s1thsOADnjfFb4uGZAHAa9jCbftElQ1Pv6anfX9ZS9jCblucd0kMfrtI3a/eajgcA540CCABnYLPZdN+AFpr1x/4a2DpNknT/+8v19LS1WrBlvziRAiDYcAq4GphCBqznQEm5Bv1llgoPu/37WqTFaeLNndU8Ld5gMgBni/Hb4jOAO3fu1M0336zk5GTFxMSoY8eOWrp0qelYAAJYUmykvnigj54b2l59W6ZKkjYWHNbAF2fpha/Wy+Pld2oAgc+yM4AHDx5Up06d1L9/f/32t79VWlqaNm/erCZNmqhZs2Zn9W/wGwSAvP2lyvnXCi3ZflCS1Cw1Vj/vnKG7+jRVZLilf8cGAhbjt4UL4OjRozV37lzNnj37vP8NDiAAUtWj5v6zdIce/2S1jlR4JEmO8DC1z3Dqhq6Zur5rpuGEAH6M8dvCBbBNmza6/PLLtWPHDs2cOVONGjXSPffco7vuuuus/w0OIAA/dqi0XFMW5+u1WVt0oKTcv79NwwSNHtzKf8oYgFmM3xYugFFRUZKknJwcXX/99Vq0aJFGjRql1157TbfccsspP+N2u+V2H1/47XK5lJmZaekDCMDJvF6f1ux26ZGpP/jvHyhJl7Wpr7/e2FExkeHmwgGgAMrCBTAyMlJdu3bVvHnz/Pvuv/9+LV68WPPnzz/lZ8aOHatx48adtN/KBxCAn7anqExPfr5G/121W5KUHBup6zo1UpesRA1sU18RdtYJAnWNAmjhq4AbNmyoNm3anLCvdevWysvLO+1nxowZo6KiIv8rPz+/tmMCCHINnFH627DOevKatrKH2bS/pFxvzNmq3767TANemKmV+Ye4jyCAOmfZ8xC9evXS+vXrT9i3YcMGZWVlnfYzDodDDoejtqMBCEHDezTRtZ0a6dt1BVq87YD+s3SH8g6U6pq/zVW6M0pXtGuonEEtFeew7I9lAHXIsqeAFy9erJ49e2rcuHG64YYbtGjRIt11112aNGmShg0bdlb/BlPIAM7X6l1FeujD77Vml0vHbh3ojI5QVnKMHrmytbo3TTYbEAhhjN8WLoCS9Pnnn2vMmDHauHGjsrOzlZOTw1XAAOpUWYVH360r0Phpa7Xj4BH//u7ZSXpmaHtlp8QaTAeEJsZvixfA6uIAAlBTKjxe/WPeNn20bKfW7HZJkmw2qWezZD12dRu1asDPGKCmMH5TAKuFAwhAbdhUUKzx/12r79bv8+975MrWurNPtmw2m8FkQGhg/LbwVcAAEKiap8Xrrdsu0pej+ijdWXXP0vHT1ur3/1qp/YfdZ/g0AJwZM4DVwG8QAGqbu9KjZ75Yp7fmbvPvu6hJkm7ukaWfdUg3FwwIYozfzAACQEBzhNv1pyFt9c/bL1KjetGSpEXbDuj+95drzS6X4XQAghUFEACCQN+WqZrzUH99dE9PJURV3SvwxknztXT7AcPJAAQjCiAABAmbzabOjRP12X29le6MkqusUr98bYFyp61VUWmF6XgAgghrAKuBNQQATCkqrdBDH36vL1fvkSSF2aR+F6TpD4MuUJt0fh4BP4XxmxlAAAhKzpgITRjWWb/q3lgpcQ55fdK36wp05f+brbmbCk3HAxDgmAGsBn6DABAolucd1I2TFshd6ZUkjeiRpTv7NFVmUozhZEDgYfxmBhAAQkKnxon6clRfNUutenTcP+ZvV5/nvtMdby/W9v0lhtMBCDQUQAAIEdkpsfrm9/00cVhntWtUNavxzboCDZ04T9+tLxAnfAAcwyngamAKGUAgW5F/SL+bskJbC6tmAC9qkqQXf9lBGYmcFoa1MX4zAwgAIatjZj1NHdlL9RMckqpuIN3nue/0zoLthpMBMI0CCAAhzBkdoTkPXarx17VTYkyEfD7p0ak/6JevzefegYCFUQABIMRF2MM0rHuWFj0yUMO6N5YkLdx6QMPeXKCDJeWG0wEwgQIIABYRYQ/T+Osu1Ae/vlhxjnD9sNOlTk9O13frCkxHA1DHKIAAYDEXN03Wu3d292/f9vZiPfn5GoOJANQ1CiAAWFCHzHr66nfH7xv45pyt+uVr87Uy/5DZYADqBAUQACyqZf14fXJvb13aKk1S1brAa/42Vze8Nl9frd7DfQOBEMZ9AKuB+wgBCBXf7zikp/67Vou2HvDvy06J1as3d9EFDeINJgNqHuM3BbBaOIAAhJqV+Yf02qzNmrZqj3/fh7/toS5ZSQZTATWL8ZtTwACAH+mQWU8ThnXR7D/2V7ozSpI0dOJ8fbtur+FkAGoSBRAAcJLMpBh9fn8fRUfYJUm3v71E1/xtrrYdfawcgOBGAQQAnFJSbKRmP9RfkfaqoWJl/iH1e36GpizO4wIRIMixBrAaWEMAwAq8Xp++XL1H97y7zL/PER6mZ4e217WdGhlMBpwfxm9mAAEAZxAWZtOVFzbUgjEDNKRDuiTJXenVqCkrdOVfZ2vnoSOGEwI4VxRAAMBZaeCM0ss3ddLyxy5ThwynJGnNbpd6PfOtpq/hIhEgmFAAAQDnJDE2Up/c21tPXtvOv++ufy7RBY9+oR92FhlMBuBsUQABAOdl+MVZmjv6Ul3ctOoege5Kr65+eY7+OX+b2WAAzoiLQKqBRaQAUGXepkL96o2F/u2oiDB9+/t+Sq8XbTAVcGqM3xaeARw7dqxsNtsJrwYNGpiOBQBBqWfzFM3+Y3+lxDkkSWUVXvV85ltdN2Gu9hSVGU4H4H9ZtgBKUtu2bbV7927/a9WqVaYjAUDQykyK0ZJHB2r8dcfXBi7PO6SLc7/RE5+t4d6BQACxdAEMDw9XgwYN/K/U1FTTkQAg6A3rnqUfxl2uW3pk+ff9fe5WXfO3uQZTAfgxSxfAjRs3Kj09XdnZ2brxxhu1ZcsW05EAICTEOcL1xDXttPDhAYqKqBpqvt9RpCaj/6u/fbdJZRUewwkBa7PsRSBffPGFSktL1bJlS+3du1dPPfWU1q1bp9WrVys5OfmUn3G73XK73f5tl8ulzMxMSy8iBYCz8bNX5uj7HSfeIub56zvoF10yDCWClXERiIUL4P8qKSlRs2bN9Mc//lE5OTmnfM/YsWM1bty4k/Zb+QACgLPh8/n06cpdeuGrDco7UOrff0nLVP3j9osMJoMVUQApgCe47LLL1Lx5c02cOPGUX2cGEACqb80ul678f7NP2Pf5fb3VrpHTUCJYDQXQ4msAf8ztdmvt2rVq2LDhad/jcDiUkJBwwgsAcG7apCdo3ZNXKDzM5t939ctz9OnKXQZTAdZi2QL4hz/8QTNnztTWrVu1cOFC/eIXv5DL5dKIESNMRwOAkBcVYdemp6/Ug5df4N93//vL9cmKnQZTAdZh2QK4Y8cO3XTTTbrgggv085//XJGRkVqwYIGysrLO/GEAQI0Y2b+5Pr23l3/7gQ9WqNVjX6joSIXBVEDoYw1gNbCGAABqxvK8g7puwrwT9v3mkqYafUUr2Wy203wKOD+M3xaeAQQABI5OjRO1NfdKDWpT37/vtZlb1G38N/J4macAahoFEAAQEGw2mybd0lWf3dvbv6/wsFvNHp6mlfmHzAUDQhAFEAAQUC7McGpr7pW6qEmSf981f5urD5fuMJgKCC0UQABAwLHZbPrX3T307NAL/ft+/++VevjjVar0eA0mA0IDBRAAELB+2a2xZj7Yz7/93sI8XfrCTHOBgBBBAQQABLSs5FgteniA4h3hkqS8A6Vq/vA05f/okXIAzg0FEAAQ8NISorRq3OWqn+CQJFV6ferz3Hf61+J8w8mA4EQBBAAEjVl/7K87emf7t//44fe6e/JSg4mA4EQBBAAEDUe4XY9d3Uaf33f8VjFfrt6jJqP/q52HjhhMBgQXCiAAIOi0a+TUuievOGFfr2e+1Q87iwwlAoILBRAAEJSiIuzamnulhnVv7N939ctzNGvDPoOpgOBAAQQABC2bzabx112oF67v4N93y98X6bkv1xlMBQQ+CiAAIOgN7ZKhN27p6t+eMGOzOj85nZtGA6dBAQQAhISBbepr2WOX+bcPlJSr+SNfyOv1GUwFBCYKIAAgZCTFRmrT+MHKSIz272v68DRKIPA/KIAAgJASbg/TzAf7q6Ezyr+v2/ivDSYCAg8FEAAQcuxhNs0fM0D1YiIkSftLynXpCzNUwZpAQBIFEAAQwpb/aE3gln0laven/+PCEEAUQABACLPZbFr35BVKiat6hrC70qvmj3whV1mF4WSAWRRAAEBIi4qwa8mjA9U0Jda/r/3Yr7R532GDqQCzKIAAAEv45veXaHC7Bv7tAS/M1I6DpQYTAeZQAAEAlmCz2TTx5i56+roL/ft6P/udFmzZbzAVYAYFEABgKb/q3liPXtXav33jpAXaeeiIwURA3aMAAgAs584+TfXend39272e+VYFxWUGEwF1iwIIALCkns1TNGpgC//2ReO/kc/HE0NgDRRAAIBljRrYUtd3yfBvZ4+ZprIKj8FEQN2gAAIALO3P13dQk+QY/3arx77k2cEIeRRAAIDlzXiwvzo1ruffHvjiTHNhgDpAAQQAQNJHv+2p+KhwSdKWwhI1Gf1fnhiCkEUBBABAVfcJXPzIQEWGHx8a24/9SlsLSwymAmoHBfCo3Nxc2Ww2jRo1ynQUAIAhURF2rXviCvW7INW/r//zM7SFx8YhxFAAJS1evFiTJk1S+/btTUcBABgWFmbT27ddpN9c0tS/79IXZqrwsNtgKqBmWb4AHj58WMOGDdPrr7+uxMRE03EAAAFizODWeuzqNv7trk99rQIXN4tGaLB8ARw5cqSuuuoqDRw40HQUAECAuaN3tn7euZF/+6Knv1F5pddgIqBmhJsOYNIHH3ygZcuWafHixWf1frfbLbf7+CkAl8tVW9EAAAHihes7KDXOoddmbZEk9X72Wy0YM0BhYTbDyYDzZ9kZwPz8fD3wwAN65513FBUVdVafyc3NldPp9L8yMzNrOSUAwDSbzaYxV7ZWh8x6kqSCYrce//QHs6GAarL5LPrgw6lTp+q6666T3W737/N4PLLZbAoLC5Pb7T7ha9KpZwAzMzNVVFSkhISEOssOAKh7ZRUetXrsS//2+3ddrB7Nkg0mwvlyuVxyOp2WHr8tWwCLi4u1ffv2E/bddtttatWqlR566CG1a9fujP8GBxAAWMu+Yre6jf/av/2fu3uoa5Mkg4lwPhi/LXwKOD4+Xu3atTvhFRsbq+Tk5LMqfwAA60mNd+ift1/k3/7Fq/O1qaDYYCLg/Fi2AAIAcD76tkzVxGGd/dsDX5yl+Zv3G0wEnDvLngKuCUwhA4B1TZixSc99ud6//e6d3dWreYrBRDhbjN/MAAIAcF7u6ddcz/3i+BOkhr2xUFOX7zSYCDh7FEAAAM7TDV0z9cYtXf3bo6as0Lfr9hpMBJwdCiAAANUwsE19fXRPT//27W8v0dLtBw0mAs6MAggAQDV1bpyoyXccvzp46MR5Ki2vNJgI+GkUQAAAakCfFqn6640d/dtDXp5jLgxwBhRAAABqyDUdG6l7dtWNoTfvK2E9IAIWBRAAgBr07p3d/X+//e0lKqvwGEwDnBoFEACAGhRuD9Nbt3bzb/d+9lsdKacEIrBQAAEAqGH9W6VpQKs0SVLh4XL1eOYblVd6DacCjqMAAgBQC14b3kV9WlQ9GeRQaYV++85Sw4mA4yiAAADUgnB7mCbf0V2dG9eTJH2zrkBvztlqNhRwFAUQAIBa9M6PLgp58vM1WrztgME0QBUKIAAAtSgmMlxf51zi377+1fkqLqswmAigAAIAUOuap8Xp4Stb+bcf/2S1wTQABRAAgDpxR++mSogKlyR9vHyn1u1xGU4EK6MAAgBQB+xhNk0d2cu/fcVLs7W76IjBRLAyCiAAAHWkaWqcHrmytX+7R+632nGw1GAiWBUFEACAOnRX36a66aLG/u073l6iCg83iUbdogACAFDH/jSkjTpkOCVJ6/cWa9qq3YYTwWoogAAA1LGoCLteHd7Fv/3AByu0dPtBg4lgNRRAAAAMaOiM1iu/6uTfHjpxnjbuLTaYCFZCAQQAwJCr26fr/kub+7cf+vB7eb0+g4lgFRRAAAAMurNvU3VrkihJWpZ3SMP/vtBwIlgBBRAAAIMSoiL0t2GdFRNplyTN3bRfn67cZTgVQh0FEAAAw9Lio7Ti8UGKiqgalu9/f7mKSnleMGoPBRAAgAAQGR6m14Z39W8P/usseVgPiFpCAQQAIEBc0jJVA1qlSZJ2FZXpm7V7DSdCqKIAAgAQQF6/5fgs4K8nL9W6PS6DaRCqKIAAAASQsDCbnr7uQv/2A++v0L5it8FECEUUQAAAAsyvujfWkA7pkqoeFTdp1mbDiRBqKIAAAASgnMtaKtJeNUy/Pnur1u7mVDBqjmUL4MSJE9W+fXslJCQoISFBPXr00BdffGE6FgAAkqTslFj9bVhn//abc7YaTINQY9kCmJGRoWeeeUZLlizRkiVLdOmll+qaa67R6tWrTUcDAECSdGmrNA1sXV+S9J+lO/TtOq4KRs2wbAEcMmSIrrzySrVs2VItW7bU+PHjFRcXpwULFpiOBgCAJMkeZtNvLmnq335jNrOAqBmWLYA/5vF49MEHH6ikpEQ9evQ47fvcbrdcLtcJLwAAalPXrETlXNZSkrQi/5DueXepSssrDadCsLN0AVy1apXi4uLkcDh099136+OPP1abNm1O+/7c3Fw5nU7/KzMzsw7TAgCsyGaz6ZqOVVcEl5Z7NG3VHs3btN9wKgQ7m8/ns+xzZsrLy5WXl6dDhw7pww8/1BtvvKGZM2eetgS63W653cfvxeRyuZSZmamioiIlJCTUVWwAgAWt2+PSH/69Uj/sdMlmk6b/rq+ap8WbjhWUXC6XnE6npcdvS88ARkZGqnnz5uratatyc3PVoUMH/fWvfz3t+x0Oh/+q4WMvAADqQqsGCbqwkVOS5PNJf5+7zWwgBDVLF8D/5fP5TpjhAwAgkPzx8lZq07Bq8uG9hXmav5lTwTg/li2ADz/8sGbPnq1t27Zp1apVeuSRRzRjxgwNGzbMdDQAAE4pMTZSd/dr5t++5e8LVXSkwmAiBCvLFsC9e/dq+PDhuuCCCzRgwAAtXLhQX375pS677DLT0QAAOK2BrdN0V59sSVKFx6ethSWGEyEYWfoikOpiESkAwJSLn/5Ge1xlkqRXftVJV7dPN5woeDB+W3gGEACAYHZ1+4b+vy/ZdtBgEgQjCiAAAEHo0avb6MHLL5Akzdq4T5PnbzMbCEGFAggAQJCqnxAlSdqyr0SPfbJauw4dMZwIwYICCABAkLq6fUONv66d4hzhkqRDpVwRjLNDAQQAIEhFRdg1rHuWkuMiJUnXvzpPf5+z1XAqBAMKIAAAQa5L40RJUkm5R5+u3GU4DYIBBRAAgCD3wg0d9NcbO0qSissqVFBcZjYQAh4FEACAIGez2ZSRGC1J2ryvRBeN/0Yvf7PRcCoEMgogAAAhoHXDBLVqEK/wMJskaWke9wbE6VEAAQAIATGR4fpyVF+9dPRU8OGySh12V5oNhYBFAQQAIIREhdslSUu2H9SFY/9P7y7cbjgRAhEFEACAENIhs54aHL1BtM8nLdhywHAiBCIKIAAAISQ13qH5Yy7VU9e2kySVVXgMJ0IgogACABBibDaboiOqTgUv2LJfv3p9gX7YWWQ4FQIJBRAAgBCUlRwjSSouq9S8zfv1n6U7DCdCIKEAAgAQgrpkJerTe3vp550bSZJKy7kiGMdRAAEACEE2m03tM+qpTcMESdIel1ubCg7L5/MZToZAQAEEACCERR1dCzhrwz4NfHGm3l2YZzgRAgEFEACAEHZJy1Rd2MipeEe4JGnj3mLDiRAIKIAAAISwzKQYfXZfb/3mkqaSJHel13AiBAIKIAAAFhAZXjXk5x0o1dxNhXJXcn9AK6MAAgBgAcfuCzhv834Ne2OhcqetM5wIJlEAAQCwgIFt6qtvy1Q1qhctSco/UGo4EUyiAAIAYAENndH65+0X6Q+Xt5QklXtYC2hlFEAAACwk0l51KpiLQayNAggAgIUcuxhk8bYDav3Yl3ps6g+GE8EECiAAABbSqkG8oiLC5PNJRyo8mrp8p+lIMIACCACAhWQmxWjxIwP177t7SJIqvJwKtiIKIAAAFhMfFaGspBhJUoWHZwNbEQUQAAALirBXVQCP16cdB0vlKqswnAh1ybIFMDc3V926dVN8fLzS0tJ07bXXav369aZjAQBQJyLCj1eA3s9+py5PTteyvIMGE6EuWbYAzpw5UyNHjtSCBQs0ffp0VVZWatCgQSopKTEdDQCAWhcbadfA1mmKDA+TzVZ1Knj1ziLTsVBHwk0HMOXLL788Yfutt95SWlqali5dqr59+xpKBQBA3bDZbHpjRDdJ0n3vL9dnK3exHtBCLFsA/1dRUdVvPUlJSad9j9vtltvt9m+7XK5azwUAQG2LCLNJkip4OohlWPYU8I/5fD7l5OSod+/eateu3Wnfl5ubK6fT6X9lZmbWYUoAAGrHsQtCKr3MAFoFBVDSvffeq++//17vv//+T75vzJgxKioq8r/y8/PrKCEAALUn3F41A/j597v1+3+t1MfLdxhOhNpm+VPA9913nz799FPNmjVLGRkZP/leh8Mhh8NRR8kAAKgbyXFVY9va3S6t3e3SZyt3aUj7dIXbmScKVZYtgD6fT/fdd58+/vhjzZgxQ9nZ2aYjAQBgxB29s5UaF6miIxV6/qsNKvd4Ven1KdxuOhlqi2UL4MiRI/Xee+/pk08+UXx8vPbs2SNJcjqdio6ONpwOAIC644yO0PAeTVRW4dHzX22QVHVBSFQEDTBUWXZud+LEiSoqKlK/fv3UsGFD/2vKlCmmowEAYETEj075erggJKRZdgbQ5+PABgDgx47eDUYSzwgOdZYtgAAA4EQ2m00RdpsqPD7N2rBPSbGRapwco2apcaajoYZRAAEAgJ8j3K4KT6V+/++VkqpmBeeOvlQNnayPDyWWXQMIAABOdv+A5mqf4VT7DKci7WHy+qTdRWWmY6GGMQMIAAD8ft23mX7dt5kkqf/zM7S1sIQLQkIQM4AAAOCU7EevCqnkgpCQQwEEAACnFH60ADIDGHoogAAA4JT8M4Ber+EkqGkUQAAAcErMAIYuCiAAADilYzOAT3y+RkNenqMRf1+kvS6uCA4FFEAAAHBKmUkxkqTt+0u1ameRZm7Yp2/XFRhOhZrAbWAAAMApPfPz9hraOUMer08TZmzS4m0HVeFhPWAooAACAIBTio60q2/LVEnSh8t2SGI9YKjgFDAAADgjOxeEhBQKIAAAOCO7jQIYSiiAAADgjPwzgD4KYCigAAIAgDM6VgC9zACGBAogAAA4ozD/GkDDQVAjuAoYAACc0bE1gF+u3qO8A6WSpDiHXb/t11wNnFEmo+E8UAABAMAZJcVGSpLW7nZp7W6Xf78zJlI5l7U0FQvniQIIAADO6Pbe2UqJi1RJuUeS9O26Ai3aekBlFR7DyXA+KIAAAOCMnNERGt6jiX/7UGmFFm09wG1hghQXgQAAgHN29JoQebktTFCiAAIAgHPGbWGCGwUQAACcM9vRq4Lpf8GJAggAAM4Zp4CDGwUQAACcM7t/BpACGIwogAAA4JyF+dcAGg6C80IBBAAA5yzs6AyghxnAoEQBBAAA54w1gMGNG0EDAIBzdmwG8Ju1Bbr65dn+/c7oCD193YXKSo41FQ1nwdIzgLNmzdKQIUOUnp4um82mqVOnmo4EAEBQyEyKliQVHanQDztd/tfcTfv15Q97DKfDmVh6BrCkpEQdOnTQbbfdpqFDh5qOAwBA0Li8bQNNHdlLB0vL/fv+PmerZm8sVCU3Bwx4li6AgwcP1uDBg03HAAAg6NhsNnXMrHfCvi9XVc38+VgXGPAsXQDPldvtltvt9m+7XC6DaQAACCxhRxeW0f8Cn6XXAJ6r3NxcOZ1O/yszM9N0JAAAAgaPhwseFMBzMGbMGBUVFflf+fn5piMBABAwuDVM8OAU8DlwOBxyOBymYwAAEJBsqmqA1L/AxwwgAACoEcdmALkIJPBZegbw8OHD2rRpk39769atWrFihZKSktS4cWODyQAACD7H1wBSAAOdpQvgkiVL1L9/f/92Tk6OJGnEiBF6++23DaUCACA4hXERSNCwdAHs168f09QAANQQm/8UsNkcODPWAAIAgBrBGsDgQQEEAAA1Iow1gEGDAggAAGqG/z6AZmPgzCiAAACgRhybAWQCMPBZ+iIQAABQc46tASw6UqG8/aUnfT3cblN6veg6ToVToQACAIAacWwG8MNlO/Thsh2nfM/I/s304OWt6jIWToFTwAAAoEZc0jJVDRKiFBtpP+kVGV5VOb7fUWQ4JSRmAAEAQA3p2iRJCx4ecMqvfbRsh3L+tbKOE+F0mAEEAAC1jptEBxYKIAAAqHW2o/eI8YkGGAgogAAAoNYxAxhYKIAAAKDOUAADAwUQAADUOpuNU8CBhAIIAABq3dEzwMwABggKIAAAqHX+NYBmY+AoCiAAAKh1x64CpgEGBgogAACodcdnAGmAgYACCAAAah1rAAMLBRAAANQ61gAGFgogAACoA0dvA8MUYECgAAIAgFrHDGBgoQACAIBaxxrAwEIBBAAAte74k0AQCCiAAACg1oUxBRhQKIAAAKDWsQYwsFAAAQBArbP5rwI2HASSKIAAAKAu8CSQgEIBBAAAtY4lgIGFAggAAGqd/ypgCmBAoAACAIBa558BNJoCx1i+AE6YMEHZ2dmKiopSly5dNHv2bNORAAAIOf6rgJkCDAiWLoBTpkzRqFGj9Mgjj2j58uXq06ePBg8erLy8PNPRAAAIKTb/HCACgaUL4Isvvqg77rhDd955p1q3bq2XXnpJmZmZmjhxouloAACElOMzgGZzoEq46QCmlJeXa+nSpRo9evQJ+wcNGqR58+ad8jNut1tut9u/7XK5ajUjAACh4tj8365DRzTqg+Vn/bkr2jXQFe0a1k4oC7NsASwsLJTH41H9+vVP2F+/fn3t2bPnlJ/Jzc3VuHHj6iIeAAAhJTE2UpJU7K7U1BW7zvpzTVJiKYC1wLIF8Jhjl6Uf4/P5Ttp3zJgxY5STk+PfdrlcyszMrNV8AACEglYN4vXa8C7KP1B6Tp/r1DixlhJZm2ULYEpKiux2+0mzfQUFBSfNCh7jcDjkcDjqIh4AACHFZrPp8rYNTMfAUZa9CCQyMlJdunTR9OnTT9g/ffp09ezZ01AqAACA2mfZGUBJysnJ0fDhw9W1a1f16NFDkyZNUl5enu6++27T0QAAAGqNpQvgL3/5S+3fv19PPPGEdu/erXbt2mnatGnKysoyHQ0AAKDW2Hzckvu8uVwuOZ1OFRUVKSEhwXQcAABwFhi/LbwGEAAAwKoogAAAABZDAQQAALAYCiAAAIDFUAABAAAshgIIAABgMRRAAAAAi6EAAgAAWAwFEAAAwGIs/Si46jr2EBWXy2U4CQAAOFvHxm0rPwyNAlgNxcXFkqTMzEzDSQAAwLkqLi6W0+k0HcMIngVcDV6vV7t27VJ8fLxsNluN/tsul0uZmZnKz8+37HMKTeF7bxbff3P43pvF97/u+Hw+FRcXKz09XWFh1lwNxwxgNYSFhSkjI6NW/zcSEhL4QWAI33uz+P6bw/feLL7/dcOqM3/HWLP2AgAAWBgFEAAAwGIogAHK4XDoT3/6kxwOh+kolsP33iy+/+bwvTeL7z/qEheBAAAAWAwzgAAAABZDAQQAALAYCiAAAIDFUAABAAAshgIYgCZMmKDs7GxFRUWpS5cumj17tulIlpCbm6tu3bopPj5eaWlpuvbaa7V+/XrTsSwpNzdXNptNo0aNMh3FMnbu3Kmbb75ZycnJiomJUceOHbV06VLTsUJeZWWlHn30UWVnZys6OlpNmzbVE088Ia/XazoaQhwFMMBMmTJFo0aN0iOPPKLly5erT58+Gjx4sPLy8kxHC3kzZ87UyJEjtWDBAk2fPl2VlZUaNGiQSkpKTEezlMWLF2vSpElq37696SiWcfDgQfXq1UsRERH64osvtGbNGr3wwguqV6+e6Wgh79lnn9Wrr76qV155RWvXrtVzzz2nP//5z3r55ZdNR0OI4zYwAaZ79+7q3LmzJk6c6N/XunVrXXvttcrNzTWYzHr27duntLQ0zZw5U3379jUdxxIOHz6szp07a8KECXrqqafUsWNHvfTSS6ZjhbzRo0dr7ty5nG0w4Oqrr1b9+vX15ptv+vcNHTpUMTExmjx5ssFkCHXMAAaQ8vJyLV26VIMGDTph/6BBgzRv3jxDqayrqKhIkpSUlGQ4iXWMHDlSV111lQYOHGg6iqV8+umn6tq1q66//nqlpaWpU6dOev31103HsoTevXvrm2++0YYNGyRJK1eu1Jw5c3TllVcaToZQF246AI4rLCyUx+NR/fr1T9hfv3597dmzx1Aqa/L5fMrJyVHv3r3Vrl0703Es4YMPPtCyZcu0ePFi01EsZ8uWLZo4caJycnL08MMPa9GiRbr//vvlcDh0yy23mI4X0h566CEVFRWpVatWstvt8ng8Gj9+vG666SbT0RDiKIAByGaznbDt8/lO2ofade+99+r777/XnDlzTEexhPz8fD3wwAP66quvFBUVZTqO5Xi9XnXt2lVPP/20JKlTp05avXq1Jk6cSAGsZVOmTNE777yj9957T23bttWKFSs0atQopaena8SIEabjIYRRAANISkqK7Hb7SbN9BQUFJ80Kovbcd999+vTTTzVr1ixlZGSYjmMJS5cuVUFBgbp06eLf5/F4NGvWLL3yyityu92y2+0GE4a2hg0bqk2bNifsa926tT788ENDiazjwQcf1OjRo3XjjTdKki688EJt375dubm5FEDUKtYABpDIyEh16dJF06dPP2H/9OnT1bNnT0OprMPn8+nee+/VRx99pG+//VbZ2dmmI1nGgAEDtGrVKq1YscL/6tq1q4YNG6YVK1ZQ/mpZr169Trrl0YYNG5SVlWUokXWUlpYqLOzEodhut3MbGNQ6ZgADTE5OjoYPH66uXbuqR48emjRpkvLy8nT33XebjhbyRo4cqffee0+ffPKJ4uPj/TOxTqdT0dHRhtOFtvj4+JPWWsbGxio5OZk1mHXgd7/7nXr27Kmnn35aN9xwgxYtWqRJkyZp0qRJpqOFvCFDhmj8+PFq3Lix2rZtq+XLl+vFF1/U7bffbjoaQhy3gQlAEyZM0HPPPafdu3erXbt2+stf/sJtSOrA6dZZvvXWW7r11lvrNgzUr18/bgNThz7//HONGTNGGzduVHZ2tnJycnTXXXeZjhXyiouL9dhjj+njjz9WQUGB0tPTddNNN+nxxx9XZGSk6XgIYRRAAAAAi2ENIAAAgMVQAAEAACyGAggAAGAxFEAAAACLoQACAABYDAUQAADAYiiAAAAAFkMBBAAAsBgKIAAAgMVQAAEAACyGAggAAGAxFEAAAACLoQACAABYDAUQAADAYiiAAAAAFkMBBAAAsBgKIAAAgMVQAAEAACyGAggAAGAxFEAAAACLoQACAABYDAUQAADAYiiAAAAAFkMBBAAAsBgKIAAAgMVQAAEAACyGAggAAGAxFEAAAACLoQACAABYDAUQAADAYiiAAAAAFvP/AU6rJ+cTWKTaAAAAAElFTkSuQmCC","text/plain":""},"metadata":{},"output_type":"display_data"}],"source":["log_rang_log_freq('pt-3-char-ngrams-log-log', ngrams(get_characters(pan_tadeusz), 3))"]},{"cell_type":"markdown","metadata":{},"source":["#### 2-gramy wyrazowe\n\n"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtkElEQVR4nO3de3yU1YHG8eedSTK5BwIkEAg35R65ewERsAIVrRXX1taqxbW2tUUL0nZF6a5Vq6naum6l0uK62moRum1R260XvHBTQW4BylUKQkoIIUgySSCTy8z+ERKgBBhIMmfeOb/v5zN/ZOZNeD7jmPfJOe85rxMKhUICAACANTymAwAAACCyKIAAAACWoQACAABYhgIIAABgGQogAACAZSiAAAAAlqEAAgAAWIYCCAAAYBkKIAAAgGUogAAAAJahAAIAAFiGAggAAGAZCiAAAIBlKIAAAACWoQACAABYhgIIAABgGQogAACAZSiAAAAAlqEAAgAAWIYCCAAAYBkKIAAAgGUogAAAAJahAAIAAFiGAggAAGAZCiAAAIBlKIAAAACWoQACAABYhgIIAABgGQogAACAZSiAAAAAlqEAAgAAWIYCCAAAYBkKIAAAgGUogAAAAJahAAIAAFiGAggAAGAZCiAAAIBlKIAAAACWoQACAABYhgIIAABgGQogAACAZSiAAAAAlqEAAgAAWIYCCAAAYBkKIAAAgGUogAAAAJahAAIAAFiGAggAAGAZCiAAAIBlKIAAAACWoQACAABYhgIIAABgGQogAACAZSiAAAAAlqEAAgAAWIYCCAAAYJk40wHcLBgMqqioSGlpaXIcx3QcAAAQhlAopIqKCuXk5MjjsXMsjALYAkVFRcrNzTUdAwAAnIfCwkJ169bNdAwjKIAtkJaWJqnhA5Senm44DQAACIff71dubm7TedxGFMAWaJz2TU9PpwACAOAyNl++ZefENwAAgMUogAAAAJahAAIAAFiGAggAAGAZCiAAAIBlKIAAAACWoQACAABYhgIIAABgGQogAACAZSiAAAAAlqEAAgAAWIYCCAAAYBkKYBT68O+luuPF1Zq/aq8O+KtNxwEAADEmznQAnOqtvxXrvW0lem9bibRIGtItQ1cNyNaEAdka0CVNjuOYjggAAFzMCYVCIdMh3Mrv9ysjI0Pl5eVKT09vtZ+7s6RSb20u1jtbD6igsEwn/hfq2i5JEwZk6aoB2bqsdwclxDGICwDAuWir87ebUABbIBIfoJKKar2/rUSLt5Roxc6Dqq4NNr2W6ovTuL6dNGFglq7sl6V2yQltkgEAgFhCAaQAtkikP0DVtfX6YGep3tl6QO9sLdHBikDTa16Po5E92mvCgGxNGJitXh1T2jwPAABuRAGkALaIyQ9QMBjSxn3lemfLAb2z9YC2FVec9PoFnVI0YWC2Jg7I1rDu7eX1cN0gAAASBVCiALZINH2ACj87onePjQyu3HVIdcHj/1kzUxJ0Zb8sTRyYpSv6dFKKj7U/AAB7RdP52xQKYAtE6wfIX12rpdsP6t2tB/TethL5q+uaXkvwejT6wg7HVhVnqUtGksGkAABEXrSevyOJAtgCbvgA1dYHtebTw8euGzygPYeOnPR6Xtf0husGB2RrUE46W8wAAGKeG87fbY0C2AJu+wCFQiHtLKnUO1tL9M7WA1q39/BJW8zkdU3Xf311mC7olGouJAAAbcxt5++2QAFsAbd/gEorA3pvW4ne2XJAyz8p1dHaeiUnePXoDXm6YVg30/EAAGgTbj9/twYKYAvE0geoxF+t6QsK9NGuQ5Kkm0Z200NfzFNSgtdwMgAAWlcsnb/PF7eRgCQpKz1RL995qe6d0FceR/r9mn/oi3NWaMeBirN/MwAAcBUKIJp4PY6mT+ij3915mbLSfPqkpFJfnLNCv19dKAaKAQCIHRRAnGLUBR301+lXaGzfTqquDerf/rhR9y4sUGWg7uzfDAAAoh4FEM3qmOrTi7dfrH+7up+8HkevFhTpi8+s0OaictPRAABAC1EAcVoej6Pvjr9QC791mXIyErWrtEo3PPuhXlq5hylhAABcjAKIsxrZM1P/970rNGFAlmrqgvr3V/+mafPXyV9dazoaAAA4DxRAhKV9SoKe+/pI/ejaAYr3OvrrpmJd+4vl2lBYZjoaAAA4RxRAhM1xHN15RW/9712jlZuZpMLPjupLv/pQz6/YzZQwAAAuQgHEORua205/uecKTc7rrNr6kB75yxZ987drVXakxnQ0AAAQBgogzktGUryevWW4Hrl+kBK8Hr2z9YCu+a/l2lbsNx0NAACcBQUQ581xHN02qqcWTRutXh1TVFRerXsXblBdfdB0NAAAcAYUwGPy8/PlOI5mzJhhOorrDMrJ0B/uGqWMpHht3e/X71btNR0JAACcAQVQ0urVqzVv3jwNHjzYdBTX6pDq0w8+30+S9LO3t6u0MmA4EQAAOB3rC2BlZaVuueUWPffcc2rfvr3pOK72tUu6K69ruiqq6/T4G9tMxwEAAKdhfQGcNm2arr32Wk2YMOGsxwYCAfn9/pMeOM7rcfTQF/MkSf+79h9au+ew4UQAAKA5VhfABQsWaN26dcrPzw/r+Pz8fGVkZDQ9cnNz2zih+4zo0V43jewmSfqP1/6m+iD7AwIAEG2sLYCFhYWaPn26Xn75ZSUmJob1Pffff7/Ky8ubHoWFhW2c0p3uu7q/0hPjtLnIr/mr9piOAwAA/okTsvQWDq+++qpuuOEGeb3epufq6+vlOI48Ho8CgcBJrzXH7/crIyND5eXlSk9Pb+vIrvLbjz7Vf7y2WemJcXr/B+PVIdVnOhIAAJI4f0sWjwBeddVV2rRpkwoKCpoeI0eO1C233KKCgoKzlj+c2S2X9tDALunyV9fpiTe3m44DAABOYG0BTEtLU15e3kmPlJQUdejQQXl5eabjuZ7X4+iRKYMkSQvXFGr9XhaEAAAQLawtgGh7I3pk6sbhjQtCNrMgBACAKBFnOkA0WbJkiekIMWfW5P56e0uxNu0r1ysf79Wtl/UwHQkAAOsxAog21SnNp+9P7CtJevKt7fqsqsZwIgAAQAFEm7v1sh7q3zlN5Udr9eRb3CEEAADTKIBoc3Fejx6Z0rCwZsHqQm0oLDMbCAAAy1EAEREX98zUvwzrqlCo4Q4hQRaEAABgDAUQETPrmv5K88Vpwz/KtXANd1EBAMAUCiAiJistUTOOLQh5/M1tOsyCEAAAjKAAIqKmjuqhftlpKjtSqyff5g4hAACYQAFERMV5PXr4+oY7hLzy8V79eunfVVMXNJwKAAC7UAARcZf27qCvXpyrUEjKf2Obrn56mZZsLzEdCwAAa1AAYcRjN1ykJ780WB1TE7SrtEq3v7Bad/5mtT4trTIdDQCAmOeEQiH24zhPfr9fGRkZKi8vV3p6uuk4ruSvrtUz736iFz74VHXBkBK8Hn1zbC99d/yFSvFxp0IAQOvj/E0BbBE+QK1nZ0mlHvrzZi3/pFSSlJ3u0wPXDNAXh+TIcRzD6QAAsYTzNwWwRfgAta5QKKR3tpbokb9s0d7PjkiSLu7ZXj+9cbAu6JRqOB0AIFZw/uYaQEQRx3E0cWC23r53rH74+X5Kivdq9aeHdf2cD/TXTftNxwMAIGZQABF1EuO9mnblhXr3++N0Sa9MVQbq9N3frdMjf9mi2nq2jAEAoKUogIhaOe2SNP/OS/Xtcb0lSc+v2K2b561UcXm14WQAALgbBRBRLc7r0f2TB+jXt41QWmKc1uw5rC88s1wf7iw1HQ0AANeiAMIVPj+os/5yzxgN6JKu0soa3fr8Kv3y/Z0KBlnDBADAuaIAwjV6dEjRou+O1pdHdFMwJD351nb94A8bTMcCAMB1KIBwlcR4r5788hA9fuNFchzpT+v2qajsqOlYAAC4CgUQrvSVi7trZI/2kqR3th4wnAYAAHehAMK1Jg7MliS9vZkCCADAuaAAwrUmDuwsSVq565DKj9YaTgMAgHtQAOFavTqmqE9WquqCIS3ZXmI6DgAArkEBhKs1TQNvYRoYAIBwUQDhapMGNUwDL91+UIG6esNpAABwBwogXG1w1wxlpflUGajTR38/ZDoOAACuQAGEq3k8jiYcmwZezDQwAABhoQDC9SadUAC5NRwAAGdHAYTrjbqgg1J9cSqpCGjjvnLTcQAAiHoUQLieL86rcX07SZIWbyk2nAYAgOhHAURM4K4gAACEjwKImHBlvyzFeRx9UlKp3aVVpuMAABDVKICICRnJ8bq0d6YkpoEBADgbCiBixsQBbAcDAEA4KICIGROP3RVk7Z7DKq0MGE4DAED0ogAiZnRtl6RBOekKhqT3tpaYjgMAQNSiACKmNK0GZhoYAIDTogAipkwa2DANvPyTgzpSU2c4DQAA0YkCiJgyoEuacjOTFKgL6t6FBaqpC5qOBABA1KEAIqY4jqOfTLlICXEevbX5gL77u7UK1NWbjgUAQFShACLmjOvbSf/99ZHyxXn0ztYSffultaqupQQCANCIAoiYNLZvJ/3P7RcrMd6jJdsP6pu/XaOjNZRAAAAkCiBi2OUXdtSL/3qJkhO8Wv5Jqe54cTULQwAAEAUQMe6y3h302zsuUaovTh/tOqQv/GKFlmxnj0AAgN0ogIh5I3tm6qVvXKKOqT7tKq3S7S+s1p2/Wa1PS6tMRwMAwAgKIKwwrHt7vfeDcbpzTC/FeRy9s7VEk/5zmR5/cxsLRAAA1qEAwhrpifH60RcG6s0ZY3VFn46qqQ9q7pK/6/u/36BQKGQ6HgAAEUMBhHUuzErVb++4RL+6dbjiPI7+b9N+/X5NoelYAABEDAUQVnIcR1fnddH3J/WTJP349S3aWVJpOBUAAJFBAYTVvj22ty6/sIOO1tbre6+s564hAAArUABhNY/H0VM3DVX75Hht2e/XE29uNx0JAIA2F2c6AGBadnqinvzSEN352zV6fsVuZaYkqFOar9ljs9J8GtunkzweJ8IpAQBoPRRAQNKEgdmaOqqHfvPRHj351plHAb80opsev3GwvJRAAIBLUQCBY+6/ZoCCIekfh480+3owJK3YWao/rP2HauqC+vlNQxTv5SoKAID7UACBYxLjvXpkSt4Zj3lj037d88p6vb6hSIG6ej1z83AlxFECAQDuwpkLOAeTL+qiX906Qglej97afEDfe2W96oNsIg0AcBcKIHCOJgzM1nNTRyrB69Gbm4s1e9Em7iQCAHAVCiBwHsb17aRf3DxUHkdasLrwrAtHAACIJk6IoYvz5vf7lZGRofLycqWnp5uOAwMWfLxXs/60SZLUISVBjiO1T07QI1PydFnvDobTAQCaw/mbEUCgRb56SXfNmtxfjiMdqqpRaWWNPimp1HdeXquisqOm4wEA0CxGAFuAvyDQqLi8WmVHaxQMSj/8wwZtLvJrWPd2WvitUawSBoAow/mbAtgifIDQnL2HjujaZ5arorpOk/M6a0huu2aP65OVqqsGZEc2HACA87cogC3CBwins3jLAX3zt2vOfty9Y9UnOy0CiQAAjTh/sxE00CYmDszWr24drsVbSpp9fc2ez7Tn0BG9t62EAggAiDgKINBGrs7roqvzujT72osf7NaP/7xFS7Yf1LfHXRDhZAAA21l7dfrcuXM1ePBgpaenKz09XaNGjdIbb7xhOhYsMb5flqSGkcDKQJ3hNAAA21hbALt166af/vSnWrNmjdasWaPPfe5zuv7667V582bT0WCBnh1T1KNDsmrrQ/pgZ6npOAAAy1hbAK+77jpdc8016tu3r/r27atHH31UqampWrlypelosMT4vp0kSUu2HzScBABgG2sL4Inq6+u1YMECVVVVadSoUabjwBKN08BLt5eo7EiNauqChhMBAGxh9SKQTZs2adSoUaqurlZqaqoWLVqkgQMHnvb4QCCgQCDQ9LXf749ETMSoy3p3UEKcR0Xl1Rr68GKlJ8bp9bvHqGfHFNPRAAAxzuoRwH79+qmgoEArV67Ud77zHU2dOlVbtmw57fH5+fnKyMhoeuTm5kYwLWJNUoJXN198/DPkr67TL9/faTARAMAWbAR9ggkTJuiCCy7Qr3/962Zfb24EMDc31+qNJNFytfVBbfxHmW6c+5HiPI6W/HC8urVPNh0LAGIWG0FbPgL4z0Kh0EkF75/5fL6mbWMaH0BLxXs9GtEjU5df2EF1wZCeW7bLdCQAQIyztgA+8MADWr58uT799FNt2rRJs2fP1pIlS3TLLbeYjgZLTRt/oSRpwepClVae/g8RAABaytoCeODAAd12223q16+frrrqKq1atUpvvvmmJk6caDoaLDXqgg4akttOgbqg5q/aazoOACCGcQ1gC3ANAVrbawX7NH1BgTql+fTBfZ9TQpy1f6MBQJvh/G3xCCAQja65qIuy0306WBHQXzftNx0HABCjGAFsAf6CQFuY894n+tnbO5QU71VGUrwkKSMpXnNvHa7enVINpwMA9+P8zQggEHVuvqS7MpLidbS2XsX+ahX7q7X9QIX+54PdpqMBAGIEI4AtwF8QaCuHq2q0r+yoJGlLkV//9seNapccr48fmMB1gQDQQpy/GQEEolL7lATldc1QXtcM3Tiim7LSfCo7Uqv3t5eYjgYAiAFW3wsYcAOvx9H1Q3P03PLdmrvk7/q0tOqk1x1HGt8vS32z0wwlBAC4DQUQcIEbhnXTc8t3q6CwTAWFZae8/rtVe7XkB+PlOE7kwwEAXIcCCLjAwJx0PXz9IG0oLD/ltT9vLNKeQ0e0s6RSfRgFBACEgQIIuMTXR/WURp36fElFtZZ/Uqol2w9SAAEAYWERCOBy4/tlSZKW7GCBCAAgPBRAwOXG9+skSfpg5yHdPG+ldh2sNJwIABDtKICAy/XumKK+2Q13CPlo1yE9v4INowEAZ0YBBFzOcRy99I1LdcOwrpKklbsOGU4EAIh2FEAgBmSnJ+rB6wbKcaS/H6xSib/adCQAQBSjAAIxol1yggZ0bril0crdnxlOAwCIZmwDA8SQURd00Jb9fj3+xjbNX7XnrMcnxnv1/Yn9dFG3jAikAwBECwogEEOu7Jel51fs1r6yo9pXdjSs70lLjNczNw9r42QAgGhCAQRiyJg+HbXgW5eptDJw1mN3FFfoF+/t1PZifwSSAQCiCQUQiDGX9e4Q1nFF3Y/qF+/t1K6DVaqpCyohjkuCAcAW/MYHLNUlI1FpiXGqC4b0dzaPBgCrUAABSzmOo/6dG+4d/PLKPXp7c7GCwZDhVACASKAAAhYb0KVh25jfrdqrb720Vu9u437CAGADCiBgsTsu76Xrh+aoe2ayJGnTvnLDiQAAkUABBCzWs2OK/uurw3TrZd0liWsBAcASFEAA6t0xVZK062CV4SQAgEigAAJQ704pkqTdpZUsBAEAC7APIADlZiYr3uuoujaoafPXKSHOo8Q4r74z/gL17JhiOh4AoJVRAAEo3utRv85p+ts+v974W3HT8x6Po/x/uchgMgBAW6AAApAkPXPzcL2/rUTBUEhbivz60/p92nOIawIBIBZRAAFIknp1TFGvMb0kSR/v/kx/Wr9PhYePGE4FAGgLLAIBcIrczCRJ0v6yatXVBw2nAQC0NgoggFNkpSUq3uuoLhhSsb/adBwAQCtjChjAKbweR13bJenTQ0f0/Irdym2f3PRacoJXXxiSo1Qfvz4AwK34DQ6gWT07pujTQ0f0wgefnvLa/vJq3Tuxb+RDAQBaBQUQQLNmTuyrzJQE1dUf3xj600NV2viPcu0qZXUwALgZBRBAswZ3a6enbhp60nN/3lCke15ZrwNcFwgArsYiEABhy05PlCSVUAABwNUogADClp3ukyQd8AcUCnHPYABwKwoggLBlpTWMAB6trVdFoM5wGgDA+eIaQABhS0rwKi0xThXVdZr2u3VKivee9tgOqT7NmtxfGUnxEUwIAAgHBRDAObkwK1Xr95Zp+SelZz12WPd2umlkbgRSAQDOBQUQwDmZ87XhWrbjoIJnuAZw0bp9WrPnsEorAxFMBgAIFwUQwDnp2i5JN1/S/YzH7D5YpTV7DqvsSG2EUgEAzgWLQAC0uvYpCZKksiM1hpMAAJpDAQTQ6hoXfhxmBBAAohIFEECra5/MCCAARDOuAQTQ6tonN4wAFpVV6/1tJWc8tn+XNHXJSIpELADAMRRAAK0uM7VhBHBf2VH964urz3hsu+R4rXrgKvniTr+nIACgdVEAAbS6vllp+tKIbtpeXHHG4zbtK1fZkVqVHalVdjoFEAAihQIIoNV5PI5+9uUhZz1u8I/fkr+6TpWBOmVHIBcAoAGLQAAYk+pr+Bu0spr7CgNAJFEAARiTcqwAVgUogAAQSRRAAMakJjYUwAoKIABEFAUQgDGpjAACgBEsAgFgTEpCw6+gorKjKio7esZjM5Lim6aMAQAtw29TAMY0TgH/7O0d+tnbO854bFK8V29Mv0I9O6ZEIhoAxDSmgAEYM2lgtjKS4pUQ5znjw3Gko7X12rLfbzoyAMQERgABGDNpUGdNGtT5rMfd9vwqLf+kVNW19RFIBQCxjxFAAFGv8TZx1bVBw0kAIDZQAAFEvaSEhgJ4lBFAAGgVFEAAUS8xruFXFVPAANA6KIAAol5ifMMIYIACCACtggIIIOoxBQwArYsCCCDqHZ8CZhEIALQGtoEBEPUSj40Avrxqjxas3nva4zpnJOqPd41WVnpipKIBgCsxAggg6g3Nbac4j6NQSKqtD532UfjZUa3bW2Y6LgBEPUYAAUS90Rd01Np/n6gjNXWnPebu+eu1ds9h1dQzTQwAZ2PtCGB+fr4uvvhipaWlKSsrS1OmTNH27dtNxwJwGhlJ8eqSkXTaR4qv4e/Z2joKIACcjbUFcOnSpZo2bZpWrlypxYsXq66uTpMmTVJVVZXpaADOQ4K34dcZI4AAcHbWTgG/+eabJ339wgsvKCsrS2vXrtXYsWMNpQJwvnzHVgrXUgAB4KysLYD/rLy8XJKUmZl52mMCgYACgUDT136/v81zAQhPvNeRJNUwBQwAZ2XtFPCJQqGQZs6cqTFjxigvL++0x+Xn5ysjI6PpkZubG8GUAM4k4dgIYIACCABnRQGUdPfdd2vjxo165ZVXznjc/fffr/Ly8qZHYWFhhBICOJsEpoABIGzWTwHfc889ev3117Vs2TJ169btjMf6fD75fL4IJQNwLuIbF4EwAggAZ2VtAQyFQrrnnnu0aNEiLVmyRL169TIdCUALNI4Avru1RKWVgdMe1y45Qd8df4HaJSdEKhoARB1rC+C0adM0f/58vfbaa0pLS1NxcbEkKSMjQ0lJSYbTAThXHVMaRue3H6jQ9gMVZzw2t32SbhvVMwKpACA6WVsA586dK0kaP378Sc+/8MILuv322yMfCECL3HxpdyXGe1QROP3dQt7YVKxN+8pVGaiPYDIAiD7WFsBQKGQ6AoBWlOqLO+uo3t5DR7RpX7nqg1wnCMBurAIGYI24Y3sF1tbzByAAu1EAAVgjztPwK6+OEUAAlqMAArBGnKdhBLAuyAggALtRAAFYw3tsCriOKWAAlqMAArBG/LEp4HpGAAFYjgIIwBpeT+MiEK4BBGA3CiAAa8QfmwJmBBCA7SiAAKwRd+x+wWwDA8B21m4EDcA+jauAV+46pLvnrzvn7+/aLkk/+Hw/xXv52xmAu1EAAVijY2rD/YL3lR3VvrKj5/UzxvXtpNEXdmzNWAAQcRRAANa45qIuchzps6qac/7e/16+W/vKjupoLfcRBuB+FEAA1kiI8+j6oV3P63tf31CkfWVHWUACICZwIQsAhMHrNFw/SP8DEAsogAAQBk9TAaQBAnA/CiAAhOHYTUSYAgYQEyiAABCGxruIMAIIIBZQAAEgDEwBA4glFEAACENjAeQ2wgBiAQUQAMLQNAXMNYAAYgAFEADCcKz/qZ4pYAAxgAIIAGHgGkAAsYQCCABhYAoYQCzhVnAAEIbGEcDFW0tUUhFo0c+6sn+Whndv3xqxAOC8UAABIAypvoZfl8t2HNSyHQdb9LMWrd+nFfd9rjViAcB5oQACQBimXXmhMpLjFaitP++f4a+u06L1+1R+tLYVkwHAuaMAAkAYundI1gPXDGjRz9hzqEqL1u/jOkIAxrEIBAAipGkzaVYSAzCMAggAEeJpup+w4SAArEcBBIAI8TpsJQMgOlAAASBCPMd+4zIFDMA0CiAAREjjCGAoJIUogQAMogACQIQ03k1EkuqZBgZgEAUQACLEcU4ogIwAAjCIAggAEXLiCGAwaDAIAOtRAAEgQryMAAKIEhRAAIgQzwm/cbkGEIBJFEAAiJATRwBZBQzAJAogAEQIq4ABRAsKIABECKuAAUSLONMBAMAmXo+j+mBIm4v8OpASaLWf27V9kjJTElrt5wGIbRRAAIigxgL4ry+sbtWfmxjv0YezrqIEAggLBRAAImjqqB76y8b9rfozD/irVV0bVFHZUQoggLBQAAEggmZfO1Czrx3Yqj9zVP672l9eLS4rBBAuFoEAgMs1Li0JiQYIIDwUQABwucbVxewsAyBcFEAAcLnG3WXYXBpAuCiAAOByTQXQbAwALkIBBACX8xxrgIwAAggXBRAAXK5pEQj9D0CYKIAA4HJNI4CGcwBwDwogALjdsSHAIMuAAYSJAggALnd8H0AACA8FEABc7vgiEMNBALgGBRAAXO74NjA0QADhoQACgMs5YgQQwLmhAAKAyx2/E4jZHADcgwIIAC7nNG0DQwMEEB4KIAC4XOMqYHaBARAuCiAAuJzn2G9ybgUHIFwUQABwuaZFIIZzAHAPCiAAuJynaREIFRBAeCiAAOB2bAQN4BzFmQ4AAGiZxkUgP/zDRiXFe9v835swIEsPXZ/X5v8OgLZDAQQAl7swK1UFhWX6rKomIv/ebz7aowevGyRP49wzANehAAKAyz1+42DdPrqn6tt4H5iK6jrd+vwqSSw4AdyOAggALuf1OMrrmtHm/07ZkeMjjA0LThgBBNzK6kUgy5Yt03XXXaecnBw5jqNXX33VdCQAiFrOCYWPEUDA3awugFVVVRoyZIjmzJljOgoARL8TBvxYcQy4m9VTwJMnT9bkyZNNxwAAV3BOLICMAQKuZvUIIAAgfCde8ccIIOBuVo8AnqtAIKBAIND0td/vN5gGACLLcVj0AcQKRgDPQX5+vjIyMpoeubm5piMBQMQwAgjEDgrgObj//vtVXl7e9CgsLDQdCQAihmsAgdjBFPA58Pl88vl8pmMAgBEnbQND/wNczeoCWFlZqZ07dzZ9vXv3bhUUFCgzM1Pdu3c3mAwAos/JI4AA3MzqArhmzRpdeeWVTV/PnDlTkjR16lS9+OKLhlIBQPQLMQQIuJrVBXD8+PH8EgOAMDECCMQOFoEAAMLCNYBA7KAAAgDCctI2gBRAwNUogACAsJzc/2iAgJtRAAEAYTnxTiBMAQPuRgEEAISFGWAgdlAAAQBhOWkVMEOAgKtRAAEAYTlpCthgDgAtRwEEAJwzBgABd6MAAgDC1jgIyCpgwN0ogACAsDVNAtP/AFejAAIAwtZ4HSD9D3A3CiAAIGyNI4BcAwi4GwUQABA2rgEEYgMFEAAQNufYGCAjgIC7UQABAOFrGgEE4GYUQABA2I5fA0gFBNwsznQAAIB7NF4D+Me1+9Q+Jd5smDCMubCjendKNR0DiDoUQABA2BLjvaquDeo/39lhOkpY+mWn6a17x5qOAUQdCiAAIGwPfXGQ3t58wHSMs/JX12r5J6X67EiN6ShAVKIAAgDCdv3Qrrp+aFfTMc5qW7FfVz+9nNXKwGmwCAQAAMAyFEAAQMxxjq9XNpoDiFYUQAAAAMtQAAEAMafplnUMAALNogACAGIW/Q9oHgUQABBznLMfAliNAggAiDnHp4AZAwSaQwEEAACwDAUQABCDGoYAGf8DmkcBBAAAsAwFEAAQc9gGBjgzCiAAAIBlKIAAgJjTdCM4hgCBZlEAAQAxi/oHNI8CCACIOY7DVtDAmVAAAQCxiyFAoFkUQABAzGH8DzgzCiAAIOY0bQNjNgYQtSiAAAAAlqEAAgBijtN4Kzi2gQGaRQEEAACwDAUQABBzuAYQODMKIAAAgGUogACAmMUlgEDzKIAAgJgVYhIYaBYFEAAQc7gTHHBmFEAAQMxpvBcwU8BA8yiAAAAAlqEAAgBiTuMMMAOAQPMogAAAAJahAAIAYo7DECBwRhRAAAAAy1AAAQAxxzl2FSD7AALNowACAGIW28AAzaMAAgBiDhtBA2dGAQQAxCwGAIHmUQABADGHAUDgzCiAAIDYc6wBhrgIEGgWBRAAAMAyFEAAQMw5vg0MgOZQAAEAACxDAQQAxByn6RpAszmAaEUBBAAAsAwFEAAQc9gGBjgzCiAAIKaxFQxwKgogACDmONwLDjgjCiAAIOacWP8YAAROZX0BfPbZZ9WrVy8lJiZqxIgRWr58uelIAAAAbcrqArhw4ULNmDFDs2fP1vr163XFFVdo8uTJ2rt3r+loAIAWOHEGmAFA4FRWF8CnnnpK3/jGN3TnnXdqwIABevrpp5Wbm6u5c+eajgYAANBm4kwHMKWmpkZr167VrFmzTnp+0qRJ+vDDD5v9nkAgoEAg0PS13+9v04wAgPPjnHAV4L0LC+RhTYhrXZ3XWVfndTEdI+ZYWwBLS0tVX1+v7Ozsk57Pzs5WcXFxs9+Tn5+vhx56KBLxAAAt4Iv3KDHeo+raoF7fUGQ6DlqgZ8cUCmAbsLYANvrnrQJCodBptw+4//77NXPmzKav/X6/cnNz2zQfAODcJcZ79fI3LlVBYZnpKGihYd3bm44Qk6wtgB07dpTX6z1ltK+kpOSUUcFGPp9PPp8vEvEAAC00smemRvbMNB0DiErWLgJJSEjQiBEjtHjx4pOeX7x4sUaPHm0oFQAAQNuzdgRQkmbOnKnbbrtNI0eO1KhRozRv3jzt3btXd911l+loAAAAbcbqAviVr3xFhw4d0sMPP6z9+/crLy9Pf/3rX9WjRw/T0QAAANqME+Iu2efN7/crIyND5eXlSk9PNx0HAACEgfO3xdcAAgAA2IoCCAAAYBkKIAAAgGUogAAAAJahAAIAAFiGAggAAGAZCiAAAIBlKIAAAACWoQACAABYxupbwbVU401U/H6/4SQAACBcjedtm2+GRgFsgYqKCklSbm6u4SQAAOBcVVRUKCMjw3QMI7gXcAsEg0EVFRUpLS1NjuO06s/2+/3Kzc1VYWGhtfcpbCnew9bB+9g6eB9bB+9j67D9fQyFQqqoqFBOTo48HjuvhmMEsAU8Ho+6devWpv9Genq6lf9ztibew9bB+9g6eB9bB+9j67D5fbR15K+RnbUXAADAYhRAAAAAy1AAo5TP59ODDz4on89nOopr8R62Dt7H1sH72Dp4H1sH7yNYBAIAAGAZRgABAAAsQwEEAACwDAUQAADAMhRAAAAAy1AAo9Czzz6rXr16KTExUSNGjNDy5ctNR3KV/Px8XXzxxUpLS1NWVpamTJmi7du3m47levn5+XIcRzNmzDAdxXX27dunW2+9VR06dFBycrKGDh2qtWvXmo7lKnV1dfrRj36kXr16KSkpSb1799bDDz+sYDBoOlpUW7Zsma677jrl5OTIcRy9+uqrJ70eCoX04x//WDk5OUpKStL48eO1efNmM2ERURTAKLNw4ULNmDFDs2fP1vr163XFFVdo8uTJ2rt3r+lorrF06VJNmzZNK1eu1OLFi1VXV6dJkyapqqrKdDTXWr16tebNm6fBgwebjuI6hw8f1uWXX674+Hi98cYb2rJli37+85+rXbt2pqO5yuOPP65f/epXmjNnjrZu3aonnnhCTz75pJ555hnT0aJaVVWVhgwZojlz5jT7+hNPPKGnnnpKc+bM0erVq9W5c2dNnDix6V73iF1sAxNlLr30Ug0fPlxz585tem7AgAGaMmWK8vPzDSZzr4MHDyorK0tLly7V2LFjTcdxncrKSg0fPlzPPvusfvKTn2jo0KF6+umnTcdyjVmzZumDDz5gJL+FvvCFLyg7O1vPP/9803M33nijkpOT9dJLLxlM5h6O42jRokWaMmWKpIbRv5ycHM2YMUP33XefJCkQCCg7O1uPP/64vv3tbxtMi7bGCGAUqamp0dq1azVp0qSTnp80aZI+/PBDQ6ncr7y8XJKUmZlpOIk7TZs2Tddee60mTJhgOoorvf766xo5cqS+/OUvKysrS8OGDdNzzz1nOpbrjBkzRu+++6527NghSdqwYYNWrFiha665xnAy99q9e7eKi4tPOuf4fD6NGzeOc44F4kwHwHGlpaWqr69Xdnb2Sc9nZ2eruLjYUCp3C4VCmjlzpsaMGaO8vDzTcVxnwYIFWrdunVavXm06imvt2rVLc+fO1cyZM/XAAw/o448/1ve+9z35fD59/etfNx3PNe677z6Vl5erf//+8nq9qq+v16OPPqqbb77ZdDTXajyvNHfO2bNnj4lIiCAKYBRyHOekr0Oh0CnPITx33323Nm7cqBUrVpiO4jqFhYWaPn263n77bSUmJpqO41rBYFAjR47UY489JkkaNmyYNm/erLlz51IAz8HChQv18ssva/78+Ro0aJAKCgo0Y8YM5eTkaOrUqabjuRrnHDtRAKNIx44d5fV6TxntKykpOeUvNJzdPffco9dff13Lli1Tt27dTMdxnbVr16qkpEQjRoxoeq6+vl7Lli3TnDlzFAgE5PV6DSZ0hy5dumjgwIEnPTdgwAD98Y9/NJTInX74wx9q1qxZ+upXvypJuuiii7Rnzx7l5+dTAM9T586dJTWMBHbp0qXpec45duAawCiSkJCgESNGaPHixSc9v3jxYo0ePdpQKvcJhUK6++679ac//UnvvfeeevXqZTqSK1111VXatGmTCgoKmh4jR47ULbfcooKCAspfmC6//PJTtiHasWOHevToYSiROx05ckQez8mnLK/XyzYwLdCrVy917tz5pHNOTU2Nli5dyjnHAowARpmZM2fqtttu08iRIzVq1CjNmzdPe/fu1V133WU6mmtMmzZN8+fP12uvvaa0tLSmEdWMjAwlJSUZTuceaWlpp1w3mZKSog4dOnA95Tm49957NXr0aD322GO66aab9PHHH2vevHmaN2+e6Wiuct111+nRRx9V9+7dNWjQIK1fv15PPfWU7rjjDtPRolplZaV27tzZ9PXu3btVUFCgzMxMde/eXTNmzNBjjz2mPn36qE+fPnrssceUnJysr33tawZTIyJCiDq//OUvQz169AglJCSEhg8fHlq6dKnpSK4iqdnHCy+8YDqa640bNy40ffp00zFc589//nMoLy8v5PP5Qv379w/NmzfPdCTX8fv9oenTp4e6d+8eSkxMDPXu3Ts0e/bsUCAQMB0tqr3//vvN/j6cOnVqKBQKhYLBYOjBBx8Mde7cOeTz+UJjx44Nbdq0yWxoRAT7AAIAAFiGawABAAAsQwEEAACwDAUQAADAMhRAAAAAy1AAAQAALEMBBAAAsAwFEAAAwDIUQAAAAMtQAAEAACxDAQQAALAMBRAAAMAyFEAAAADLUAABAAAsQwEEAACwDAUQAADAMhRAAAAAy1AAAQAALEMBBAAAsAwFEAAAwDIUQAAAAMtQAAEAACxDAQQAALAMBRAAAMAyFEAAAADLUAABAAAsQwEEAACwDAUQAADAMhRAAAAAy1AAAQAALEMBBAAAsAwFEAAAwDL/D8vJV/y5wMT/AAAAAElFTkSuQmCC","text/plain":""},"metadata":{},"output_type":"display_data"}],"source":["log_rang_log_freq('pt-2-word-ngrams-log-log', ngrams(get_words(pan_tadeusz), 2))"]},{"cell_type":"markdown","metadata":{},"source":["### Tajemniczy język Manuskryptu Wojnicza\n\n"]},{"cell_type":"markdown","metadata":{},"source":["[Manuskrypt Wojnicza](https://pl.wikipedia.org/wiki/Manuskrypt_Wojnicza) to powstały w XV w. manuskrypt spisany w\ntajemniczym alfabecie, do dzisiaj nieodszyfrowanym. Rękopis stanowi\njedną z największych zagadek historii (i lingwistyki).\n\n[Źródło: https://commons.wikimedia.org/wiki/File:VoynichManuscript(135).jpg](./02_Jezyki/voynich135.jpg)\n\nSami zbadajmy statystyczne własności tekstu manuskryptu. Użyjmy\ntranskrypcji Vnow, gdzie poszczególne znaki tajemniczego alfabetu\nzamienione na litery alfabetu łacińskiego, cyfry i gwiazdkę. Jak\ntranskrybować manuskrypt, pozostaje sprawą dyskusyjną, natomiast wybór\ntakiego czy innego systemu transkrypcji nie powinien wpływać\ndramatycznie na analizę statystyczną.\n\n"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":"9 OR 9FAM ZO8 QOAR9 Q*R 8ARAM 29 [O82*]OM OPCC9 OP"}],"source":["import requests\n\nvoynich_url = 'http://www.voynich.net/reeds/gillogly/voynich.now'\nvoynich = requests.get(voynich_url).content.decode('utf-8')\n\nvoynich = re.sub(r'\\{[^\\}]+\\}|^<[^>]+>|[-# ]+', '', voynich, flags=re.MULTILINE)\n\nvoynich = voynich.replace('\\n\\n', '#')\nvoynich = voynich.replace('\\n', ' ')\nvoynich = voynich.replace('#', '\\n')\n\nvoynich = voynich.replace('.', ' ')\n\nvoynich[100:150]"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABLAAAAEsCAYAAADTvUpQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABLY0lEQVR4nO3deVjU1f///8fEJipMoAKiuJSGu6aWovVGU0Fzac/SSHPLXEnNLMuld7mnZaaVuZBL+jHflmUiZmqa4oJZmuSSkKYQlQhiBgqv3x/9nK8jCDMjOCPdb9c11+Wc13nOeb5wFubJOedlMgzDEAAAAAAAAOCibnF2AgAAAAAAAEBhKGABAAAAAADApVHAAgAAAAAAgEujgAUAAAAAAACXRgELAAAAAAAALo0CFgAAAAAAAFwaBSwAAAAAAAC4NApYAAAAAAAAcGkUsAAAAAAAAODSKGABAAAAAADApVHAAgAAAAAAgEujgAUAAAAAAACXRgELAAAAAAAALo0CFgAAAAAAAFwaBSwAAAAAAAC4NApYAAAAAAAAcGkUsAAAAAAAAODSKGABAAAAAADApVHAAgAAAAAAgEujgAUAAAAAAACXRgELAAAAAAAALo0CFgAAAAAAAFwaBSwAAAAAAAC4NApYAAAAAAAAcGkUsAAAAAAAAODSKGABAAAAAADApVHAAgAAAAAAgEujgAUAAAAAAACXRgELAAAAAAAALo0CFgAAAAAAAFwaBSwAAAAAAAC4NApYAAAAAAAAcGkUsAAAAAAAAODSKGABAAAAAADApbk7OwGUPnl5eTp9+rR8fHxkMpmcnQ4AAAAAoJQzDEPnzp1TcHCwbrmFuTqlEQUsFLvTp08rJCTE2WkAAAAAAP5lTp48qapVqzo7DZQAClgodj4+PpL+eePw9fV1cjYAAAAAgNIuMzNTISEhlu+jKH0oYKHYXV426OvrSwELAAAAAHDDsI1N6cXCUAAAAAAAALg0ClgAAAAAAABwaRSwAAAAAAAA4NIoYAEAAAAAAMClUcACAAAAAACAS6OABQAAAAAAAJdGAQsAAAAAAAAujQIWAAAAAAAAXJq7sxMAnKnGmHV29U+e0rmEMgEAAAAAANfCDCwAAAAAAAC4NApYAAAAAAAAcGkUsAAAAAAAAODSKGABAAAAAADApVHAcgGTJ0/WXXfdJR8fHwUEBOjBBx/U4cOHrfoYhqEJEyYoODhY3t7eatOmjX788UerPtnZ2Ro6dKgqVqyocuXKqVu3bvr111+t+qSnpysqKkpms1lms1lRUVE6e/asVZ8TJ06oa9euKleunCpWrKhhw4YpJyenRM4dAAAAAACgKBSwXMDWrVs1ePBgxcfHa+PGjbp06ZIiIiJ0/vx5S59p06Zp5syZmjNnjvbs2aOgoCB16NBB586ds/SJjo7WmjVrtGLFCm3fvl1ZWVnq0qWLcnNzLX169Oih/fv3KzY2VrGxsdq/f7+ioqIsx3Nzc9W5c2edP39e27dv14oVK7R69WqNHDnyxvwwAAAAAAAArmIyDMNwdhKw9vvvvysgIEBbt27Vf/7zHxmGoeDgYEVHR+vFF1+U9M9sq8DAQE2dOlXPPvusMjIyVKlSJS1ZskTdu3eXJJ0+fVohISH68ssvFRkZqcTERNWrV0/x8fFq0aKFJCk+Pl5hYWH66aefFBoaqvXr16tLly46efKkgoODJUkrVqxQ7969lZaWJl9f3yLzz8zMlNlsVkZGhk39nanGmHV29U+e0rmEMgEAAAAAOOpm+h4KxzADywVlZGRIkvz9/SVJSUlJSk1NVUREhKWPl5eXwsPDtWPHDklSQkKCLl68aNUnODhYDRo0sPTZuXOnzGazpXglSS1btpTZbLbq06BBA0vxSpIiIyOVnZ2thISEAvPNzs5WZmam1Q0AAAAAAKC4UMByMYZhaMSIEbrnnnvUoEEDSVJqaqokKTAw0KpvYGCg5Vhqaqo8PT3l5+dXaJ+AgIB8YwYEBFj1uXocPz8/eXp6WvpcbfLkyZY9tcxms0JCQuw9bQAAAAAAgGuigOVihgwZoh9++EEff/xxvmMmk8nqvmEY+dqudnWfgvo70udKL730kjIyMiy3kydPFpoTAAAAAACAPShguZChQ4dq7dq12rx5s6pWrWppDwoKkqR8M6DS0tIss6WCgoKUk5Oj9PT0Qvv89ttv+cb9/fffrfpcPU56erouXryYb2bWZV5eXvL19bW6AQAAAAAAFBcKWC7AMAwNGTJE//vf//T111+rZs2aVsdr1qypoKAgbdy40dKWk5OjrVu3qlWrVpKkZs2aycPDw6pPSkqKDh48aOkTFhamjIwM7d6929Jn165dysjIsOpz8OBBpaSkWPrExcXJy8tLzZo1K/6TBwAAAAAAKIK7sxOANHjwYC1fvlyfffaZfHx8LDOgzGazvL29ZTKZFB0drUmTJql27dqqXbu2Jk2apLJly6pHjx6Wvn379tXIkSNVoUIF+fv7a9SoUWrYsKHat28vSapbt646duyo/v376/3335ckDRgwQF26dFFoaKgkKSIiQvXq1VNUVJSmT5+uM2fOaNSoUerfvz8zqwAAAAAAgFNQwHIB8+bNkyS1adPGqn3RokXq3bu3JGn06NG6cOGCBg0apPT0dLVo0UJxcXHy8fGx9J81a5bc3d31+OOP68KFC2rXrp0WL14sNzc3S59ly5Zp2LBhlqsVduvWTXPmzLEcd3Nz07p16zRo0CC1bt1a3t7e6tGjh2bMmFFCZw8AAAAAAFA4k2EYhrOTQOmSmZkps9msjIwMl5+1VWPMOrv6J0/pXEKZAAAAAAAcdTN9D4Vj2AMLAAAAAAAALo0CFgAAAAAAAFwaBSwAAAAAAAC4NApYAAAAAAAAcGkUsAAAAAAAAODSKGABAAAAAADApVHAAgAAAAAAgEujgAUAAAAAAACXRgELAAAAAAAALo0CFgAAAAAAAFwaBSwAAAAAAAC4NApYAAAAAAAAcGkUsAAAAAAAAODSKGABAAAAAADApVHAAgAAAAAAgEujgAUAAAAAAACXRgELAAAAAAAALo0CFgAAAAAAAFwaBSwAAAAAAAC4NApYAAAAAAAAcGkUsAAAAAAAAODSKGABAAAAAADApVHAAgAAAAAAgEujgAUAAAAAAACXRgELAAAAAAAALo0CFgAAAAAAAFwaBSwAAAAAAAC4NApYAAAAAAAAcGkUsAAAAAAAAODSKGABAAAAAADApVHAAgAAAAAAgEujgAUAAAAAAACX5u7sBG5mZ8+e1e7du5WWlqa8vDyrY08//bSTsgIAAAAAAChdKGA56PPPP1fPnj11/vx5+fj4yGQyWY6ZTCYKWAAAAAAAAMWEJYQ2+r//+z/98ssvlvsjR45Unz59dO7cOZ09e1bp6emW25kzZ5yYKQAAAAAAQOlCActG5cuXV9u2bbV3715J0qlTpzRs2DCVLVvWyZkBAAAAAACUbhSwbHT//ffrs88+03PPPSdJioyMtBSzAAAAAAAAUHLYA8sODRs21DfffCNJ6ty5s1544QUdOnRIDRs2lIeHh1Xfbt26OSNFAAAAAACAUocClp28vb0lSf3795ckvfbaa/n6mEwm5ebm3tC8AAAAAAAASisKWA7Ky8tzdgoAAAAAAAD/CuyBVQz+/vtvZ6cAAAAAAABQalHAclBubq7++9//qkqVKipfvryOHz8uSXr11Ve1YMECJ2cHAAAAAABQelDActAbb7yhxYsXa9q0afL09LS0N2zYUB9++KFdj/XNN9+oa9euCg4Olslk0qeffmp1vHfv3jKZTFa3li1bWvXJzs7W0KFDVbFiRZUrV07dunXTr7/+atUnPT1dUVFRMpvNMpvNioqK0tmzZ636nDhxQl27dlW5cuVUsWJFDRs2TDk5OXadDwAAAAAAQHGigOWgjz76SB988IF69uwpNzc3S3ujRo30008/2fVY58+fV+PGjTVnzpxr9unYsaNSUlIsty+//NLqeHR0tNasWaMVK1Zo+/btysrKUpcuXaw2k+/Ro4f279+v2NhYxcbGav/+/YqKirIcz83NVefOnXX+/Hlt375dK1as0OrVqzVy5Ei7zgcAAAAAAKA4sYm7g06dOqVatWrla8/Ly9PFixfteqxOnTqpU6dOhfbx8vJSUFBQgccyMjK0YMECLVmyRO3bt5ckLV26VCEhIfrqq68UGRmpxMRExcbGKj4+Xi1atJAkzZ8/X2FhYTp8+LBCQ0MVFxenQ4cO6eTJkwoODpYkvfnmm+rdu7feeOMN+fr62nVeAAAAAAAAxYEZWA6qX7++tm3blq991apVuvPOO4t9vC1btiggIEB33HGH+vfvr7S0NMuxhIQEXbx4UREREZa24OBgNWjQQDt27JAk7dy5U2az2VK8kqSWLVvKbDZb9WnQoIGleCVJkZGRys7OVkJCwjVzy87OVmZmptUNAAAAAACguDADy0Hjx49XVFSUTp06pby8PP3vf//T4cOH9dFHH+mLL74o1rE6deqkxx57TNWrV1dSUpJeffVV3XfffUpISJCXl5dSU1Pl6ekpPz8/q7jAwEClpqZKklJTUxUQEJDvsQMCAqz6BAYGWh338/OTp6enpU9BJk+erIkTJ17vaQIAAAAAABSIGVgO6tq1q1auXKkvv/xSJpNJ48aNU2Jioj7//HN16NChWMfq3r27OnfurAYNGqhr165av369jhw5onXr1hUaZxiGTCaT5f6V/76ePld76aWXlJGRYbmdPHnSltMCAAAAAACwCTOwrkNkZKQiIyNv+LiVK1dW9erVdfToUUlSUFCQcnJylJ6ebjULKy0tTa1atbL0+e233/I91u+//26ZdRUUFKRdu3ZZHU9PT9fFixfzzcy6kpeXl7y8vK77vAAAAAAAAArCDKyb0J9//qmTJ0+qcuXKkqRmzZrJw8NDGzdutPRJSUnRwYMHLQWssLAwZWRkaPfu3ZY+u3btUkZGhlWfgwcPKiUlxdInLi5OXl5eatas2Y04NQAAAAAAgHyYgWUHf39/HTlyRBUrVpSfn1+hy+rOnDlj8+NmZWXp2LFjlvtJSUnav3+//P395e/vrwkTJuiRRx5R5cqVlZycrJdfflkVK1bUQw89JEkym83q27evRo4cqQoVKsjf31+jRo1Sw4YNLVclrFu3rjp27Kj+/fvr/ffflyQNGDBAXbp0UWhoqCQpIiJC9erVU1RUlKZPn64zZ85o1KhR6t+/P1cgBAAAAAAATkMByw6zZs2Sj4+PJOmtt94qtsfdu3ev2rZta7k/YsQISVKvXr00b948HThwQB999JHOnj2rypUrq23btlq5cqUll8u5ubu76/HHH9eFCxfUrl07LV68WG5ubpY+y5Yt07BhwyxXK+zWrZvmzJljOe7m5qZ169Zp0KBBat26tby9vdWjRw/NmDGj2M4VAAAAAADAXibDMAxnJ4HSJTMzU2azWRkZGS4/c6vGmMI3wr9a8pTOJZQJAAAAAMBRN9P3UDiGGVjXITc3V2vWrFFiYqJMJpPq1q2rBx54QO7u/FgBAAAAAACKC5UWBx08eFAPPPCAUlNTLXtIHTlyRJUqVdLatWvVsGFDJ2cIAAAAAABQOnAVQgf169dP9evX16+//qp9+/Zp3759OnnypBo1aqQBAwY4Oz0AAAAAAIBSgxlYDvr++++1d+9e+fn5Wdr8/Pz0xhtv6K677nJiZgAAAAAAAKULM7AcFBoaqt9++y1fe1pammrVquWEjAAAAAAAAEonClgOmjRpkoYNG6ZPPvlEv/76q3799Vd98sknio6O1tSpU5WZmWm5AQAAAAAAwHEsIXRQly5dJEmPP/64TCaTJMkwDElS165dLfdNJpNyc3OdkyRKVI0x6+zqnzylcwllAgAAAABA6UYBy0GbN292dgoAAAAAAAD/ChSwHBQeHu7sFAAAAAAAAP4VKGBdp7/++ksnTpxQTk6OVXujRo1kGIZ69uyp5cuXOyk7AAAAAACAmx8FLAf9/vvveuaZZ7R+/foCj0+ePFnt27fXpk2bbnBmAAAAAAAApQtXIXRQdHS00tPTFR8fL29vb8XGxiomJka1a9fW2rVr5e3trb59+2rgwIHOThUAAAAAAOCmxgwsB3399df67LPPdNddd+mWW25R9erV1aFDB/n6+mry5Mnavn27hg4d6uw0AQAAAAAAbnrMwHLQ+fPnFRAQIEny9/fX77//Lklq2LCh9u3b58zUAAAAAAAAShUKWA4KDQ3V4cOHJUlNmjTR+++/r1OnTum9995T5cqVnZwdAAAAAABA6cESQgdFR0crJSVFkjR+/HhFRkZq2bJl8vT01OLFi52bHAAAAAAAQClCActBPXv2tPz7zjvvVHJysn766SdVq1ZNFStWdGJmAAAAAAAApQtLCB302muv6a+//rLcL1u2rJo2bapy5crptddec2JmAAAAAAAApQsFLAdNnDhRWVlZ+dr/+usvTZw40QkZAQAAAAAAlE4UsBxkGIZMJlO+9u+//17+/v5OyAgAAAAAAKB0Yg8sO/n5+clkMslkMumOO+6wKmLl5uYqKytLAwcOdGKGAAAAAAAApQsFLDu99dZbMgxDffr00cSJE2U2my3HPD09VaNGDYWFhTkxQwAAAAAAgNKFApadevXqJUmqWbOmWrduLXd3foQAAAAAAAAliT2wHOTj46PExETL/c8++0wPPvigXn75ZeXk5DgxMwAAAAAAgNKFApaDnn32WR05ckSSdPz4cXXv3l1ly5bVqlWrNHr0aCdnBwAAAAAAUHpQwHLQkSNH1KRJE0nSqlWrFB4eruXLl2vx4sVavXq1c5MDAAAAAAAoRShgOcgwDOXl5UmSvvrqK91///2SpJCQEP3xxx/OTA0AAAAAAKBUoYDloObNm+v111/XkiVLtHXrVnXu3FmSlJSUpMDAQCdnBwAAAAAAUHpQwHLQrFmzlJCQoCFDhmjs2LGqVauWJOmTTz5Rq1atnJwdAAAAAABA6eHu7ARuVo0bN9bBgwfztU+fPl1ubm5OyAgAAAAAAKB0YgaWg3r37q1vvvkmX3uZMmXk4eHhhIwAAAAAAABKJwpYDjp37pwiIiJUu3ZtTZo0SadOnXJ2SgAAAAAAAKUSBSwHrV69WqdOndKQIUO0atUq1ahRQ506ddKqVat08eJFZ6cHAAAAAABQalDAug4VKlTQ8OHD9d1332n37t2qVauWnn76aQUHB+v555/X0aNHnZ0iAAAAAADATY8CVjFISUlRXFyc4uLi5Obmpvvvv18//vij6tWrp1mzZjk7PQAAAAAAgJsaBSwHXbx4UatXr1aXLl1UvXp1rVq1Ss8//7xSUlIUExOjuLg4LVmyRK+99pqzUwUAAAAAALipuTs7gZtV5cqVlZeXpyeffFK7d+9WkyZN8vWJjIzUrbfeesNzAwAAAAAAKE0oYDlo1qxZeuyxx1SmTJlr9vHz81NSUtINzAoAAAAAAKD0YQmhg4KCgmQYhrPTAAAAAAAAKPWYgeWgRx55RNnZ2WrWrJnCw8PVpk0btW7dWuXLl3d2agAAAAAAAKUKM7AclJ6eri1btqhbt2767rvv9Nhjj8nf318tW7bUmDFjnJ0eAAAAAABAqcEMLAe5ubkpLCxMYWFhGjNmjA4ePKgZM2Zo2bJl2rNnj6ZMmWLzY33zzTeaPn26EhISlJKSojVr1ujBBx+0HDcMQxMnTtQHH3yg9PR0tWjRQu+++67q169v6ZOdna1Ro0bp448/1oULF9SuXTvNnTtXVatWtfRJT0/XsGHDtHbtWklSt27d9M4771htNH/ixAkNHjxYX3/9tby9vdWjRw/NmDFDnp6ejv+wkE+NMets7ps8pbNDcVfHAgAAAABws2IGloMSExP13nvv6YknnlDlypV13333KTMzU2+++ab27dtn12OdP39ejRs31pw5cwo8Pm3aNM2cOVNz5szRnj17FBQUpA4dOujcuXOWPtHR0VqzZo1WrFih7du3KysrS126dFFubq6lT48ePbR//37FxsYqNjZW+/fvV1RUlOV4bm6uOnfurPPnz2v79u1asWKFVq9erZEjR9r50wEAAAAAACg+zMByUP369VWpUiVFR0fr1VdftZoNZa9OnTqpU6dOBR4zDENvvfWWxo4dq4cffliSFBMTo8DAQC1fvlzPPvusMjIytGDBAi1ZskTt27eXJC1dulQhISH66quvFBkZqcTERMXGxio+Pl4tWrSQJM2fP19hYWE6fPiwQkNDFRcXp0OHDunkyZMKDg6WJL355pvq3bu33njjDfn6+jp8jgAAAAAAAI5iBpaDhg0bpipVqmjChAnq06ePXnzxRa1fv15ZWVnFOk5SUpJSU1MVERFhafPy8lJ4eLh27NghSUpISNDFixet+gQHB6tBgwaWPjt37pTZbLYUrySpZcuWMpvNVn0aNGhgKV5JUmRkpLKzs5WQkFCs5wUAAAAAAGArZmA56K233pIknT17Vtu2bdPWrVs1btw4HThwQE2aNFF8fHyxjJOamipJCgwMtGoPDAzUL7/8Yunj6ekpPz+/fH0ux6empiogICDf4wcEBFj1uXocPz8/eXp6WvoUJDs7W9nZ2Zb7mZmZtp4eAAAAAABAkZiBdZ3y8vJ06dIl5eTkKDs7WxcvXlRycnKxj2MymazuG4aRr+1qV/cpqL8jfa42efJkmc1myy0kJKTQvAAAAAAAAOxBActBw4cPV+PGjRUQEKBnn31Wp0+f1oABA/T9998XOlvJXkFBQZKU7zHT0tIss6WCgoKUk5Oj9PT0Qvv89ttv+R7/999/t+pz9Tjp6em6ePFivplZV3rppZeUkZFhuZ08edLOswQAAAAAALg2ClgOOnXqlPr376/9+/crLS1Nn3zyiYYMGaIGDRoU6zg1a9ZUUFCQNm7caGnLycnR1q1b1apVK0lSs2bN5OHhYdUnJSVFBw8etPQJCwtTRkaGdu/ebemza9cuZWRkWPU5ePCgUlJSLH3i4uLk5eWlZs2aXTNHLy8v+fr6Wt0AAAAAAACKC3tgOeiTTz4ptsfKysrSsWPHLPeTkpK0f/9++fv7q1q1aoqOjtakSZNUu3Zt1a5dW5MmTVLZsmXVo0cPSZLZbFbfvn01cuRIVahQQf7+/ho1apQaNmxouSph3bp11bFjR/Xv31/vv/++JGnAgAHq0qWLQkNDJUkRERGqV6+eoqKiNH36dJ05c0ajRo1S//79KUoBAAAAAACnoYDlAvbu3au2bdta7o8YMUKS1KtXLy1evFijR4/WhQsXNGjQIKWnp6tFixaKi4uTj4+PJWbWrFlyd3fX448/rgsXLqhdu3ZavHix3NzcLH2WLVumYcOGWa5W2K1bN82ZM8dy3M3NTevWrdOgQYPUunVreXt7q0ePHpoxY0ZJ/wgAAAAAAACuyWQYhuHsJFC6ZGZmymw2KyMjw+VnbtUYs86u/slTOt/w2OIaEwAAAABKq5vpeygcwx5YAAAAAAAAcGkUsAAAAAAAAODSKGABAAAAAADApbGJu4Nyc3M1a9Ys/d///Z9OnDihnJwcq+NnzpxxUmYAAAAAAAClCzOwHDRx4kTNnDlTjz/+uDIyMjRixAg9/PDDuuWWWzRhwgRnpwcAAAAAAFBqUMBy0LJlyzR//nyNGjVK7u7uevLJJ/Xhhx9q3Lhxio+Pd3Z6AAAAAAAApQYFLAelpqaqYcOGkqTy5csrIyNDktSlSxetW7fOmakBAAAAAACUKhSwHFS1alWlpKRIkmrVqqW4uDhJ0p49e+Tl5eXM1AAAAAAAAEoVClgOeuihh7Rp0yZJ0vDhw/Xqq6+qdu3aevrpp9WnTx8nZwcAAAAAAFB6cBVCB02ZMsXy70cffVRVq1bVjh07VKtWLXXr1s2JmQEAAAAAAJQuFLCKScuWLdWyZUtnpwEAAAAAAFDqUMC6DocPH9Y777yjxMREmUwm1alTR0OHDlVoaKizUwMAAAAAACg12APLQZ988okaNGighIQENW7cWI0aNdK+ffvUoEEDrVq1ytnpAQAAAAAAlBrMwHLQ6NGj9dJLL+m1116zah8/frxefPFFPfbYY07KDAAAAAAAoHRhBpaDUlNT9fTTT+drf+qpp5SamuqEjAAAAAAAAEonClgOatOmjbZt25avffv27br33nudkBEAAAAAAEDpxBJCO6xdu9by727duunFF19UQkKC5eqD8fHxWrVqlSZOnOisFAEAAAAAAEodClh2ePDBB/O1zZ07V3PnzrVqGzx4sAYOHHiDsgIAAAAAACjdKGDZIS8vz9kpAA6rMWadzX2Tp3QuwUwAAAAAALAPBSwHnThxQoGBgfLy8rJqNwxDJ0+eVLVq1ZyUGVC87Cl8SRS/AAAAAADFj03cHVSjRg01bdpUP//8s1V7Wlqaatas6aSsAAAAAAAASh8KWNehbt26uvvuu7Vp0yardsMwnJQRAAAAAABA6UMBy0Emk0lz587VK6+8os6dO2v27NlWxwAAAAAAAFA82APLQZdnWT3//POqU6eOnnzySf3www8aN26ckzMDAAAAAAAoXShgFYNOnTppx44d6tatm3bv3u3sdAAAAAAAAEoVlhA6KDw8XJ6enpb79erV0+7du+Xn58ceWAAAAAAAAMWIGVgO2rx5c742f39/bd261QnZAAAAAAAAlF7MwHLQl19+qQ0bNuRrj4uL0/r1652QEQAAAAAAQOlEActBY8aMUW5ubr72vLw8jRkzxgkZAQAAAAAAlE4UsBx09OhR1atXL197nTp1dOzYMSdkBAAAAAAAUDqxB5aDzGazjh8/rho1ali1Hzt2TOXKlXNOUoCLqTFmnV39k6d0LqFMAAAAAAA3M2ZgOahbt26Kjo7Wzz//bGk7duyYRo4cqW7dujkxMwAAAAAAgNKFApaDpk+frnLlyqlOnTqqWbOmatasqbp166pChQqaMWOGs9MDAAAAAAAoNVhC6CCz2awdO3Zo48aN+v777+Xt7a1GjRrpP//5j7NTAwAAAAAAKFUoYF0Hk8mkiIgIRUREODsVAAAAAACAUosClh1mz56tAQMGqEyZMpo9e3ahfYcNG3aDsgIAAAAAACjdKGDZYdasWerZs6fKlCmjWbNmXbOfyWSigAUAAAAAAFBMKGDZISkpqcB/AwAAAAAAoORwFUIAAAAAAAC4NGZg2WHEiBE29505c2YJZgKUfjXGrLO5b/KUziWYCQAAAADA2Shg2eG7776zqZ/JZCrhTAAAAAAAAP49KGDZYfPmzc5OAUAR7Jm5JTF7CwAAAABuBuyBdZOYMGGCTCaT1S0oKMhy3DAMTZgwQcHBwfL29labNm30448/Wj1Gdna2hg4dqooVK6pcuXLq1q2bfv31V6s+6enpioqKktlsltlsVlRUlM6ePXsjThEAAAAAAKBAFLBuIvXr11dKSorlduDAAcuxadOmaebMmZozZ4727NmjoKAgdejQQefOnbP0iY6O1po1a7RixQpt375dWVlZ6tKli3Jzcy19evToof379ys2NlaxsbHav3+/oqKibuh5AgAAAAAAXIklhDcRd3d3q1lXlxmGobfeektjx47Vww8/LEmKiYlRYGCgli9frmeffVYZGRlasGCBlixZovbt20uSli5dqpCQEH311VeKjIxUYmKiYmNjFR8frxYtWkiS5s+fr7CwMB0+fFihoaE37mQBAAAAAAD+f8zAuokcPXpUwcHBqlmzpp544gkdP35ckpSUlKTU1FRFRERY+np5eSk8PFw7duyQJCUkJOjixYtWfYKDg9WgQQNLn507d8psNluKV5LUsmVLmc1mS5+CZGdnKzMz0+oGAAAAAABQXChg3SRatGihjz76SBs2bND8+fOVmpqqVq1a6c8//1RqaqokKTAw0ComMDDQciw1NVWenp7y8/MrtE9AQEC+sQMCAix9CjJ58mTLnllms1khISHXda4AAAAAAABXooB1k+jUqZMeeeQRNWzYUO3bt9e6df9caS0mJsbSx2QyWcUYhpGv7WpX9ymof1GP89JLLykjI8NyO3nypE3nBAAAAAAAYAsKWDepcuXKqWHDhjp69KhlX6yrZ0mlpaVZZmUFBQUpJydH6enphfb57bff8o31+++/55vddSUvLy/5+vpa3QAAAAAAAIoLBaybVHZ2thITE1W5cmXVrFlTQUFB2rhxo+V4Tk6Otm7dqlatWkmSmjVrJg8PD6s+KSkpOnjwoKVPWFiYMjIytHv3bkufXbt2KSMjw9IHAAAAAADgRuMqhDeJUaNGqWvXrqpWrZrS0tL0+uuvKzMzU7169ZLJZFJ0dLQmTZqk2rVrq3bt2po0aZLKli2rHj16SJLMZrP69u2rkSNHqkKFCvL399eoUaMsSxIlqW7duurYsaP69++v999/X5I0YMAAdenShSsQAgAAAAAAp6GAdZP49ddf9eSTT+qPP/5QpUqV1LJlS8XHx6t69eqSpNGjR+vChQsaNGiQ0tPT1aJFC8XFxcnHx8fyGLNmzZK7u7sef/xxXbhwQe3atdPixYvl5uZm6bNs2TINGzbMcrXCbt26ac6cOTf2ZAEAAAAAAK5AAesmsWLFikKPm0wmTZgwQRMmTLhmnzJlyuidd97RO++8c80+/v7+Wrp0qaNpAgAAAAAAFDv2wAIAAAAAAIBLo4AFAAAAAAAAl0YBCwAAAAAAAC6NAhYAAAAAAABcGgUsAAAAAAAAuDQKWAAAAAAAAHBp7s5OAABcRY0x6+zqnzylcwllAgAAAAC4EjOwAAAAAAAA4NIoYAEAAAAAAMClUcACAAAAAACAS6OABQAAAAAAAJfGJu4AUAzs2QCezd8BAAAAwD4UsADAibjyIQAAAAAUjSWEAAAAAAAAcGkUsAAAAAAAAODSKGABAAAAAADApbEHFgDcpNg/CwAAAMC/BTOwAAAAAAAA4NIoYAEAAAAAAMClUcACAAAAAACAS6OABQAAAAAAAJfGJu4A8C/D5u8AAAAAbjbMwAIAAAAAAIBLo4AFAAAAAAAAl0YBCwAAAAAAAC6NAhYAAAAAAABcGgUsAAAAAAAAuDQKWAAAAAAAAHBpFLAAAAAAAADg0ihgAQAAAAAAwKVRwAIAAAAAAIBLo4AFAAAAAAAAl+bu7AQAADePGmPW2dU/eUrnEsoEAAAAwL8JM7AAAAAAAADg0ihgAQAAAAAAwKWxhBAAcEPYs/yQpYcAAAAArsQMLAAAAAAAALg0ClgAAAAAAABwaSwhBAC4NK58CAAAAIACFgCg1KL4BQAAAJQOFLAAACiAo5vOUzQDAAAAih8FLBRo7ty5mj59ulJSUlS/fn299dZbuvfee52dFgCUahS/AAAAgIKxiTvyWblypaKjozV27Fh99913uvfee9WpUyedOHHC2akBAAAAAIB/IWZgIZ+ZM2eqb9++6tevnyTprbfe0oYNGzRv3jxNnjzZydkBAK7GzC0AAACUdhSwYCUnJ0cJCQkaM2aMVXtERIR27NjhpKwAACXleopfztgnjGIdAADAvxMFLFj5448/lJubq8DAQKv2wMBApaamFhiTnZ2t7Oxsy/2MjAxJUmZmZsklWkzysv+yq/+V53SjYv8tY15PLPnaF8vPqPhjnZ0vPyPbYhuM32Bz3MGJkQ7FFVesM8a0N9bZPyN7Y6+MAwCUPpc/8w3DcHImKCkmg/9dXOH06dOqUqWKduzYobCwMEv7G2+8oSVLluinn37KFzNhwgRNnDjxRqYJAAAAAEA+J0+eVNWqVZ2dBkoAM7BgpWLFinJzc8s32yotLS3frKzLXnrpJY0YMcJyPy8vT2fOnFGFChVkMplKNN+SkJmZqZCQEJ08eVK+vr43JNYZY5Jv6RuTfEvfmORb+sYk39I3JvmWvjHJt/SNSb4lH+sKDMPQuXPnFBwc7OxUUEIoYMGKp6enmjVrpo0bN+qhhx6ytG/cuFEPPPBAgTFeXl7y8vKyarv11ltLMs0bwtfX1+E3bkdjnTHm9cSSr2uOeT2x5OuaY15PLPm65pjXE0u+rjnm9cSSr2uOeT2x5OuaY15PLPneHMxms7NTQAmigIV8RowYoaioKDVv3lxhYWH64IMPdOLECQ0cONDZqQEAAAAAgH8hCljIp3v37vrzzz/12muvKSUlRQ0aNNCXX36p6tWrOzs1AAAAAADwL0QBCwUaNGiQBg0a5Ow0nMLLy0vjx4/PtyyyJGOdMeb1xJKva455PbHk65pjXk8s+brmmNcTS76uOeb1xJKva455PbHk65pjXk8s+QKug6sQAgAAAAAAwKXd4uwEAAAAAAAAgMJQwAIAAAAAAIBLo4AFAAAAAAAAl0YBCwAAAAVq06aNTCaTTCaT9u/fb1ds7969LbGffvppieSHm8eWLVtUo0YNZ6dxQ/z5558KCAhQcnKyzTGPPvqoZs6cWXJJwWFr1qyRu7u77rjjDqWlpTk7HeBfjQIWUAxOnjypvn37Kjg4WJ6enqpevbqGDx+uP//8s8jY1NRUDR06VLfddpu8vLwUEhKirl27atOmTYXGnTt3TtHR0apevbq8vb3VqlUr7dmzp8jxLl26pFdeeUU1a9aUt7e3brvtNr322mvKy8uz+Xx37NghNzc3dezY0eaYtLQ0Pfvss6pWrZq8vLwUFBSkyMhI7dy5s8jYK78EXXmzZfxrxR47dsymGHd3d1WrVk3PPfec0tPTbTrXK+M9PDx02223adSoUTp//rxN8ZI0efJkmUwmRUdHF9l3y5YtBZ7j5Vvbtm0LzXPgwIH5jg0aNEgmk0m9e/e+Zn533XWXfHx8FBAQoAcffFCHDx+26dwujztlyhSr9k8//VQmk8mm2Mu3ChUqqGPHjvrhhx+KHPd6XqeOyM3NVatWrfTII49YtWdkZCgkJESvvPKKTY/Tu3dvPfjggw7l0KZNG4fi7Bmza9euat++fYHHdu7cKZPJpH379hV4vLDnbUHPv/fee08+Pj66dOmSpS0rK0seHh669957rfpu27ZNJpNJR44csek8bHH1azswMFAdOnTQwoULi3wPnTdvnho1aiRfX1/5+voqLCxM69evL3LMNm3aFPg+YMvr5bJTp07pqaeeUoUKFVS2bFk1adJECQkJNsVKUv/+/ZWSkqIGDRrYHCNJb7/9tlJSUmzuv2PHDjVp0qTA25gxY64ZZxiG2rdvr8jIyHzH5s6dK7PZrBMnTlwzvkaNGgU+/wYPHlxkzlOmTFH9+vVVtmxZ3XHHHVq+fLltJ6t/Pv+HDx+uWrVqqUyZMgoMDNQ999yj9957T3/99VehsXPnzlXNmjVVpkwZNWvWTNu2bbN5XEcU9J7wySefqEyZMpo2bdoNG1P6f595Z8+edSj+Rpg8ebK6du1qV8Fu3LhxeuONN5SZmVlyid3EJkyYkO81GhQUVOLjbt68WT169ND48eMVEBCgjh07uvz/0bU+N4DSgAIWcJ2OHz+u5s2b68iRI/r444917Ngxvffee9q0aZPCwsJ05syZa8YmJyerWbNm+vrrrzVt2jQdOHBAsbGxatu2bZG/OPfr108bN27UkiVLdODAAUVERKh9+/Y6depUoXFTp07Ve++9pzlz5igxMVHTpk3T9OnT9c4779h8zgsXLtTQoUO1ffv2Qr8UXOmRRx7R999/r5iYGB05ckRr165VmzZtCv35XKljx45KSUmxun388ccOx9asWdOmmOTkZH344Yf6/PPPNWjQIJvGuzL++PHjev311zV37lyNGjXKptg9e/bogw8+UKNGjWzq36pVq3znl5KSovfff18mk6nQvENCQrRixQpduHDB0vb333/r448/VrVq1a4Zt3XrVg0ePFjx8fHauHGjLl26pIiICJuLdGXKlNHUqVNtLgpe6cr/z02bNsnd3V1dunQpNOZ6XqeOcnNzU0xMjGJjY7Vs2TJL+9ChQ+Xv769x48YV+5iS9O233+qrr76yavvqq6/07bfflsh4ffv21ddff61ffvkl37GFCxeqSZMmatq0aYGxVz5f33rrLfn6+lq1vf3221b927Ztq6ysLO3du9fStm3bNgUFBWnPnj1WX/q3bNmi4OBg3XHHHcV0pv+48r1h/fr1atu2rYYPH64uXbpYFdauVrVqVU2ZMkV79+7V3r17dd999+mBBx7Qjz/+WKz5XS09PV2tW7eWh4eH1q9fr0OHDunNN9/UrbfeavNjlC1bVkFBQXJ3d7drbLPZbNcXzMzMTD344IPav3+/1e3TTz8tdCaLyWTSokWLtGvXLr3//vuW9qSkJL344ot6++23C30/27Nnj9XzbuPGjZKkxx57rMict23bplmzZungwYN66qmn9PTTT+v48eNFxh0/flx33nmn4uLiNGnSJH333Xf66quv9Pzzz+vzzz/P9xq+0sqVKxUdHa2xY8fqu+++07333qtOnTrZ/Hks/fMFd/HixTb3v9qHH36onj17as6cORo9erTDj1MaXbhwQQsWLFC/fv3simvUqJFq1Khh9XkBa/Xr17d6rR44cKBEx0tISNBDDz2kmTNn6tVXX9WGDRvk7++vbt266e+//y7RsQFcgwHgunTs2NGoWrWq8ddff1m1p6SkGGXLljUGDhx4zdhOnToZVapUMbKysvIdS09Pv2bcX3/9Zbi5uRlffPGFVXvjxo2NsWPHFppv586djT59+li1Pfzww8ZTTz1VaNxlWVlZho+Pj/HTTz8Z3bt3NyZOnFhkTHp6uiHJ2LJli01jXK1Xr17GAw88cMNiC4oZMWKE4e/v73B8v379jKCgoCJjz507Z9SuXdvYuHGjER4ebgwfPtzGrK0dOnTI8PX1LfT5cDnPhg0bGkuXLrW0L1u2zGjYsKHxwAMPGL169bJpvLS0NEOSsXXr1iL79urVy+jSpYtRp04d44UXXrC0r1mzxijqY6mgn+0333xjSDLS0tKuGXc9r9Pr9fbbbxt+fn7GqVOnjE8//dTw8PAwvvvuO5vj7X0Onzhxwnj00UeN5557zmjatKnx3HPPGd27dzd+/fXXEhnz4sWLRmBgoDFhwgSr9vPnzxs+Pj7GO++8Y9PjLFq0yDCbzUX2Cw4ONiZPnmy5P3r0aGPw4MFGvXr1jI0bN1ra77vvPqNnz542jW2ra/1cNm3aZEgy5s+fb9fj+fn5GR9++GGhfa71PmDL68UwDOPFF1807rnnHrvysmV8e0gy1qxZU2S/9evXG+PHj8/XnpSUZHTv3r3I+MWLFxvly5c3jh8/buTl5Rlt27Z16LNj+PDhxu23327k5eXZFffnn38akoxt27YV2TcyMtKoWrVqgZ//hmEUOvbdd9+d7z2rTp06xpgxY2zONTw83Fi0aJHN/a987k+dOtXw8vIyPvnkE5vjDcMwNm/ebFSvXt2hMa9+HEmF/p5UWHxRwsPDjaFDhxovvPCC4efnZwQGBhb4vLyW1atXGxUrVrR7XMMwjAkTJhj33nuvXTF///23MXToUKNSpUqGl5eX0bp1a2P37t1FxlWvXt2YNWuWVVvjxo1tOtesrCwjKirKKFeunBEUFGTMmDHDpveK8PBwY/DgwcbgwYMNs9ls+Pv7G2PHjrXptTZ+/HijcePGRfa7ltzcXGPKlCnG7bffbnh6ehohISHG66+/fs3+P/30kxEUFGTExMRYtf/9999G165djW7duhkXL14sMDYtLc0IDAw03njjDUtbfHy84eHhYWzYsKHQPGNiYgx/f3/j77//tmp/+OGHjaioqKJO0+jVq5chyeqWlJRUZNz69euN1q1bW/5fOnfubBw7dqzIOOBGYwYWcB3OnDmjDRs2aNCgQfL29rY6FhQUpJ49e2rlypUyDKPA2NjYWA0ePFjlypXLd7ywv45funRJubm5KlOmjFW7t7e3tm/fXmjO99xzjzZt2mRZVvP9999r+/btuv/++wuNu2zlypUKDQ1VaGionnrqKS1atKjA87tS+fLlVb58eX366afKzs62aRxXcvz4ccXGxsrDw8Phx/D29tbFixeL7Dd48GB17tz5mkuybHH27Fk9+OCDCg8P13//+98i+z/zzDNatGiR5f7ChQvVp08fu8bMyMiQJPn7+9vU383NTZMmTdI777yjX3/91a6xrpSVlaVly5apVq1aqlChQoF9rud1WhyGDh2qxo0b6+mnn9aAAQM0btw4NWnSpETGkv6ZVbdq1SqZzWbt27dPt956q1asWKEqVaqUyHju7u56+umntXjxYquf4apVq5STk6OePXsW63ht2rTR5s2bLfc3b96sNm3aKDw83NKek5OjnTt3XnP5bHG777771LhxY/3vf/+zqX9ubq5WrFih8+fPKywsrERzW7t2rZo3b67HHntMAQEBuvPOOzV//vwSHdNZevXqpXbt2umZZ57RnDlzdPDgQX3wwQd2PUZOTo6WLl2qPn362LxEU/pnGePIkSPVoEED3X333YX2/fPPPxUXF3fNz39J1xw7JydHCQkJioiIsGqPiIjQjh07bM7XUWPGjNF///tfffHFF/mWR5cmMTExKleunHbt2qVp06bptddes8zMK8o333yj5s2bOzTu3Xffrd27d9v1u9Lo0aO1evVqxcTEaN++fapVq5YiIyNLZGbxZS+88II2b96sNWvWKC4uTlu2bLF5WXJMTIzc3d21a9cuzZ49W7NmzdKHH35oU+zRo0cVHBysmjVr6oknnrBptuNlL730kqZOnapXX31Vhw4d0vLlyxUYGHjN/qGhoUpJSdHTTz9t1e7l5aW1a9fqs88+u+as1EqVKmnhwoWaMGGC9u7dq6ysLD311FMaNGhQvtfu1R577DHl5uZq7dq1lrY//vhDX3zxhZ555pkiz/Ptt99WWFiYZel3SkqKQkJCiow7f/68RowYoT179mjTpk265ZZb9NBDD9m1xQhwI1DAAq7D0aNHZRiG6tatW+DxunXrKj09Xb///nu+Y8eOHZNhGKpTp47d4/r4+CgsLEz//e9/dfr0aeXm5mrp0qXatWtXkfuNvPjii3ryySdVp04deXh46M4771R0dLSefPJJm8ZesGCBnnrqKUn/LKXJysoqcr8ud3d3LV68WDExMbr11lvVunVrvfzyyzbtW3TZF198YSmEXb7ZUpwpKNaWZSGXY7y9vXX77bfr0KFDevHFF23O90q7d+/W8uXL1a5du0L7rVixQvv27dPkyZMdGkeS8vLy1KNHD7m5uWnp0qU2fQGLiorS9u3blZycrF9++UXffvut5f/YFoZhaMSIEbrnnnvs2iPnoYceUpMmTTR+/HibYyTr/08fHx+tXbtWK1eu1C23FPyRdj2v0+JgMpk0b948bdq0SYGBgYXu5VMcTp06pSeeeEJnz55V06ZNlZ6erieeeKLI5cXXo0+fPkpOTtaWLVssbQsXLtTDDz8sPz+/Yh2rTZs2+vbbb3Xp0iWdO3dO3333nf7zn/8oPDzcMn58fLwuXLhwwwpYklSnTp0iN2w+cOCAypcvLy8vLw0cOFBr1qxRvXr1SjSv48ePa968eapdu7Y2bNiggQMHatiwYfroo49KdFxn+eCDD3To0CFFR0fr/fffV0BAgF3xn376qc6ePXvN/f+upV+/ftqxY4diY2Pl6elZaN/Ln/+hoaFW7RUrVrS8t13r8+aPP/5Qbm5uvi/egYGBSk1NtStne61fv15Tp07VZ599dl1/ZLFHQZ/9nTp1KvFxGzVqpPHjx6t27dp6+umn1bx58yJ/17ksOTlZwcHBDo1bpUoVZWdn2/x/ef78ec2bN0/Tp09Xp06dVK9ePc2fP1/e3t5asGCBQzkUJSsrSwsWLNCMGTPUoUMHNWzYUDExMcrNzbUpPiQkRLNmzVJoaKh69uypoUOHatasWUXGtWjRQh999JE2bNig+fPnKzU1Va1atbJpH8tz587p7bff1rRp09SrVy/dfvvtuueee+xe5mmP+++/X/3791fPnj01cOBAlSlTJt/enwXx9vZWjx49rP6wuGzZMlWtWtWmfS3NZrM8PT0tS7+DgoLk5uZWZNwjjzyihx9+WLVr11aTJk20YMECHThwQIcOHSoyFriRKGABJejybISCigiFHbPFkiVLZBiGqlSpIi8vL82ePdtSuCjMypUrtXTpUi1fvlz79u1TTEyMZsyYoZiYmCLHPHz4sHbv3q0nnnhC0j+Fqe7du2vhwoVFxj7yyCM6ffq01q5dq8jISG3ZskVNmza1eQ+Otm3b5tsXxZYNdguKnT17ts0xu3bt0tChQxUZGamhQ4faNJ70/37pLlOmjMLCwvSf//yn0H3GTp48qeHDh2vp0qX5ZtbZ4+WXX9bOnTv12WefydfX16aYihUrqnPnzoqJidGiRYvUuXNnVaxY0eYxhwwZoh9++MHmPcmuNHXqVMXExNj1C9KV/5+7du1SRESEOnXqVOAeTLa4/Fos6kvn9Vi4cKHKli2rpKSk65pxZovk5GT169dP8+bNk4+Pj+bNm6d+/frZdTUse9WpU0etWrWyvBf8/PPP2rZtm90z+WzRtm1bnT9/Xnv27NG2bdt0xx13KCAgQOHh4dqzZ4/Onz+vLVu2qFq1arrtttuKffxrMQyjyPfz0NBQ7d+/X/Hx8XruuefUq1evEv9ykJeXp6ZNm2rSpEm688479eyzz6p///6aN29eiY7rLAEBARowYIDq1q2rhx56yO74BQsWqFOnTnYVIH744QctXLhQa9eutWum49XPl927d2v//v2qX79+kTNwro4t6vk3adIkqyLQtm3bNHDgwHxthbm8R9O4ceN07ty5Is6ueBT02W/rbJ3rcfUelJUrV7b56nMXLlxw+HP88izhojbxv+znn3/WxYsX1bp1a0ubh4eH7r77biUmJjqUgy1j5uTkWM0e9ff3z1eQvZaWLVtaPVfDwsJ09OjRIgtgnTp10iOPPKKGDRuqffv2WrdunSTZ9PtrYmKisrOzi/xDYnGbMWOGLl26pP/7v//TsmXLbH5e9O/fX3FxcZY/PC1atMhyEZGS8vPPP6tHjx667bbb5Ovra9kr1p699YAbwb7dOAFYqVWrlkwmkw4dOlTglW5++ukn+fn5FVgMqF27tkwmkxITEx26Ss7tt9+urVu36vz588rMzFTlypXVvXv3Ijcnf+GFFzRmzBhLEaphw4b65ZdfNHnyZPXq1avQ2AULFujSpUtWv6AbhiEPDw+lp6cXOdOiTJky6tChgzp06KBx48apX79+Gj9+vE1/6S5Xrpxq1apVZL/iir0yZvbs2Wrbtq0mTpxo86yvtm3bat68efLw8FBwcHCRyw8TEhKUlpamZs2aWdpyc3P1zTffaM6cOcrOzrapODljxgytW7dOtWvXtinPy/r06aMhQ4ZIkt59912b44YOHaq1a9fqm2++UdWqVe0aU5L+85//KDIyUi+//LLNMx6u/v9s1qyZzGaz5s+fr9dffz1ff1tep5UqVbJrU2t77Ny5U7NmzdL69es1bdo09e3bV1999VWJ/SJ65ReZy27EbIm+fftqyJAhevfdd7Vo0SJVr169RL4s1KpVS1WrVtXmzZuVnp6u8PBwSf8sB61Zs6a+/fZbbd68Wffdd1+xj12YxMTEIt9/PT09Lc/d5s2ba8+ePXr77betNh6/mq+vr2WJ7pXOnj1rU5G6cuXK+WZ51a1bV6tXry4y9mbl7u5u94bzkvTLL7/oq6++snkp6GVJSUmSZPMX+MvvST/99JNV++WC69VLna9UsWJFubm55Zuhk5aWVuhyqIEDB+rxxx+33O/Zs6dlxsVlRRXfqlSpotWrV6tt27bq2LGjYmNj5ePjU2jM9Sro87uk/wggKd9ntslksnkpVcWKFR26QIkky7K/SpUq2dT/Wn8MtaWgfsstt+RbOm/LVgcltdzeXuXKlVPDhg119OjRIvsW9poqScePH9fp06eVl5enX375xeaL89x5551q3LixPvroI0VGRurAgQP6/PPPSzTXrl27KiQkRPPnz1dwcLDy8vLUoEED5eTklOi4gL2YgQVchwoVKqhDhw6aO3eu1VXcpH8uj71s2TJ17969wF8i/P39FRkZqXfffbfAK7cVdXnoy8qVK6fKlSsrPT1dGzZs0AMPPFBo/7/++ivfUis3N7cifzG7dOmSPvroI7355ptWfwn9/vvvVb16dYeumlOvXj2br1rnbOPHj9eMGTN0+vRpm/pf/qW7evXqNu2d1a5dOx04cMDqZ9u8eXP17NlT+/fvL7J4tX//fvXp00dTpkwp8FLyRenYsaNycnKUk5NjU7xhGBoyZIj+97//6euvvy7yi3thpkyZos8//9zh/VtMJpNuueWWfK/By2x5ndq7XMhWFy5cUK9evfTss8+qffv2+vDDD7Vnz55CCxbF6colfSXt8ccfl5ubm5YvX66YmBg988wzJVaka9u2rbZs2aItW7ZYLakIDw/Xhg0bFB8ff0OXD3799dc6cOCA3XsCGYZR5EybOnXqWF118bI9e/bYVDBp3bq1Dh8+bNV25MgRVa9e3a5c/w0WLVqkgIAAde7c2a64y7P/bHX5PWnOnDl2fwZ6enqqWbNm+fZj2rhxo1q1anXNOH9/f9WqVcty8/b2VkBAQL62olSrVk1bt25VWlqaIiIilJmZaVf+/wZ33nmnwzMrDx48qKpVq9o8C7pWrVry9PS02v/04sWL2rt37zWXzV9WqVIlq20nMjMzLcXYosb08PBQfHy8pS09Pd2yt2pRroy7fL927do2LXO7UnZ2thITE1W5cuUi+9auXVve3t42LwMtDpf3gOzevbtef/119e3bV7/99pvN8f369dOiRYu0cOFCtW/f3qZ9rC7z9PS0eUmn9M++fImJiXrllVfUrl07y9YKgCuigAVcp8uzYyIjI/XNN9/o5MmTio2NVYcOHVSlShW98cYb14ydO3eucnNzdffdd2v16tU6evSoEhMTNXv27CI39t2wYYNiY2OVlJSkjRs3qm3btgoNDS1yg8euXbvqjTfe0Lp165ScnKw1a9Zo5syZRS61+OKLL5Senq6+ffuqQYMGVrdHH3200L0W/vzzT913331aunSpfvjhByUlJWnVqlWaNm1akQW3yy7vCXHl7Y8//rAptji0adNG9evX16RJk0rk8X18fPL9XMuVK6cKFSoUua/UH3/8oQcffFBt2rTRU089le/nZMveTm5ubkpMTFRiYqJNv0QOHjzYshTVx8fHMta1ikiFadiwoXr27FnoEssrXflcSExM1NChQ5WVlaWuXbteM6aw1+kdd9yhcePG2Z23LcaMGaO8vDxNnTpV0j9f/t5880298MILJbqkzxnKly+v7t276+WXX9bp06dLrCgo/VPA2r59u/bv32+ZgSX9U0iYP3++/v777xIrYF1+/p06dUr79u3TpEmT9MADD6hLly75Nvu90ssvv6xt27YpOTlZBw4c0NixY7Vly5YiN7kfNGiQfv75Zw0ePFjff/+9jhw5onfffVcLFizQCy+8UGS+zz//vOLj4zVp0iQdO3ZMy5cv1wcffGDzEux/i7y8PC1atEi9evWye/bW5s2b7do3UPrn8//SpUtq3ry5Vq5cqcTERB0+fFhLly7VTz/9VOj78IgRI/Thhx9q4cKFSkxM1PPPP68TJ05o4MCBduXgqKpVq2rLli36888/FRERUeAMQVeRkZGRbwliSS+JioyM1I8//uhQAWDbtm1FbvJ9pXLlyum5557TCy+8oNjYWB06dEj9+/fXX3/9pb59+xYae99992nJkiXatm2bDh48qF69etn0+V++fHn17dtXL7zwgjZt2qSDBw+qd+/e19yH8monT57UiBEjdPjwYX388cd65513NHz48CLjRo0apa1btyopKUm7du3So48+qszMzCJXD0j/rAB48cUXNXr0aH300Uf6+eefFR8fX2L7hEnS2LFjlZGRodmzZ2v06NGqW7dukf8nV+rZs6dOnTql+fPn270cv0aNGtq1a5eSk5P1xx9/FPlHaj8/P1WoUEEffPCBjh07pq+//lojRoywa0zghrmBVzwESq3k5GSjd+/eRlBQkOHh4WGEhIQYQ4cONf74448iY0+fPm0MHjzYqF69uuHp6WlUqVLF6Natm7F58+ZC41auXGncdttthqenpxEUFGQMHjzYOHv2bJHjZWZmGsOHDzeqVatmlClTxrjtttuMsWPHGtnZ2YXGdenSxbj//vsLPJaQkGBIMhISEgo8/vfffxtjxowxmjZtapjNZqNs2bJGaGio8corrxh//fVXkTkXdElgSUZoaKhNsfZeRvtaMcuWLTM8PT2NEydOFPuYBbH18vWLFy8u8Odz+Xaty5YXlecDDzxg9OrVq8Bj1xrLlsuyFzRucnKy4eXlZRT1sXT1c8HHx8e46667bLqce1JSktGrVy8jMDDQMJlMhiTj4YcfNs6fP19krCO2bNliuLm5Gdu2bct3LCIiwrjvvvtsunR4VFSU8cgjj5REitfk6HN4x44dhiQjIiLC7thFixYZZrPZpr5JSUmGJKNOnTpW7SdPnjQkGbfffrvNY9rzq9CVzz93d3ejUqVKRvv27Y2FCxcaubm5hcb26dPH8j5fqVIlo127dkZcXJxN4+7du9eIjIw0AgICDF9fX6N58+bGxx9/bHPen3/+udGgQQPDy8vLqFOnjvHBBx/YHGvr+1BhJBlr1qwpst/69euN8ePH52tPSkoyunfvbvN448ePNxo3bmx7goZhbNiwwZBkHD582K44w7D/eXTZ6dOnjSFDhhg1a9Y0PDw8jPLlyxt33323MX369CLfl959913L86lp06bG1q1b7Ro7PDzcpvfrywp6Tzh9+rQRGhpq3HXXXUZ6enqRj7F58+Zrfh7ZOublx5FU5JjX+t3hWp9rlxX0nC/s87AgLVu2NN577z2b+xuGYVy4cMHw9fU1du7caXfc0KFDjYoVKxpeXl5G69atjd27dxcZl5GRYTz++OOGr6+vERISYixevNho3Lhxga/Bq507d8546qmnjLJlyxqBgYHGtGnTbHqvCA8PNwYNGmQMHDjQ8PX1Nfz8/IwxY8bY9FnYvXt3o3LlyoaHh4cRHBxsPPzww8aPP/5YZNxlubm5xuuvv25Ur17d8PDwMKpVq2ZMmjTJ5nh7bN682XB3d7f6/P/ll18Ms9lszJ071+bHiYqKMvz9/Y2///7brvEPHz5stGzZ0vD29jYkGUlJSUXGbNy40ahbt67h5eVlNGrUyNiyZYvN793AjWQyDBdZyAwAwA00fvx4zZw5U3FxcUXOeHSmjh07qlatWpozZ46zUyl1JkyYYFmKiIK1adNGTZo00VtvveXwY5hMJq1Zs6bI/R5jY2MVHx+vCRMmWLUnJydrzJgxWrFihcM5wPm2bNmi3r17l7rZpwX58ssvNWrUKB08eNDmmUnvvvuuPvvsM8XFxZVwdiXDlveK4ng/+Tfp0KGD6tata9PFh4B/C5YQAgD+lSZOnKjZs2dr165dNm/OeyOlp6dr3bp12rJlyw27ZP2/zYYNGzRt2jRnp+Hy5s6dq/Lly+vAgQN2xV2+yh3wb3P//ffr2WeftVxFzhYeHh42L6VH6XbmzBmtWLFCX3/9Ncu9gatwFUIAwL9WUXvGOVOfPn20Z88ejRw50ua94mCfnTt3OjsFl7ds2TLL3nbVqlWzK/a1117TqFGjJMmmjZbNZrO++OILffHFF/mOOXJxCsCZbNnX6UoDBgwooUxws2natKnS09M1depUm69uCvxbsIQQAAAAQIlKTk7Wp59+qujoaGenAgC4SVHAAgAAAAAAgEtjDywAAAAAAAC4NApYAAAAAAAAcGkUsAAAAAAAAODSKGABAAAAAADApVHAAgAAAAAAgEujgAUAAAAAAACXRgELAAAAAAAALu3/A59jPaRVZ1iIAAAAAElFTkSuQmCC","text/plain":""},"metadata":{},"output_type":"display_data"}],"source":["rang_freq_with_labels('voy-chars', get_characters(voynich))"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2SElEQVR4nO3deXhU5cH+8fvMJJksJJOEkISYCQZlCSBbUGTRYkEqbqVardSt1PpKiwvmrVa0qz81rdalr1YUXutaKnVBqa9LcWMR2cKq7GsCBEJYMlnIJJnM74+ESMpiQpZnJuf7ua65JCcz6e2VY8/Nc57nOVYgEAgIAAAAtuEwHQAAAADtiwIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNhJkOEMpqa2u1Z88excbGyrIs03EAAEATBAIBlZaWKi0tTQ6HPcfCKIAtsGfPHnk8HtMxAADAaSgoKFB6errpGEZQAFsgNjZWUt0JFBcXZzgNAABoCq/XK4/H03AdtyMKYAscve0bFxdHAQQAIMTYefqWPW98AwAA2BgFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQxStbUB0xEAAEAHRQEMQjuKy3Xp/yzQ6oLDpqMAAIAOiAIYhP74wQZt2Fuqa57/Um/m7TIdBwAAdDAUwCD06DX9NSYrWVU1tfrlG6v1+zlfq9pfazoWAADoICiAQSguMlzTbxyiu0b3kCS9tGiHbnxhiQ6U+QwnAwAAHQEFMEg5HJbuvrinnr8xWzERTi3edlBXPvOFvtpdYjoaAAAIcRTAIPe9vql6Z/IIZSbFaPfhI7p62iK9s3K36VgAACCEUQBDQI+UWL0zeYRG9eoiX02tpsxapYf/b51qmBcIAABOAwUwRLijwvXCzedq8kVnSZJmLNiun7y4TIfKqwwnAwAAoYYCGEKcDkv3fK+3nr1+sKIjnFq4pVhX/nWh1u3xmo4GAABCCAUwBF16Tle9/YvhykiMVsHBunmB763ZYzoWAAAIERTAENU7NU5zbh+hC3ok6Ui1X7fPXKk/frBBfh4hBwAAvgUFMITFR0fopYnn6bbvdJckPTdvqya+tEwlFdWGkwEAgGBGAQxxToelqeOy9D8TBiky3KH5m/bryr8u1KZ9paajAQCAIEUB7CCuHJCmt34+XOkJUdp5oELj//qFPvyq0HQsAAAQhGxdAHfv3q0bbrhBnTt3VnR0tAYOHKi8vDzTsU5b3zS35tw+UsPP6qyKKr8mvbZCf/5oo2qZFwgAAI5h2wJ46NAhjRgxQuHh4frggw+0bt06Pf7444qPjzcdrUUSYyL0yk/P0y0jMyVJz3y2RT97Zbm8lcwLBAAAdaxAIGDL4aH77rtPX3zxhRYsWHDaP8Pr9crtdqukpERxcXGtmK51zF65S/e9tVa+mlp1T4rR9JuydXZyrOlYAAAYFezX7/Zg2xHAOXPmaMiQIbrmmmuUnJysQYMGacaMGaf8jM/nk9frbfQKZj8YlK43Jw1XmjtS24rLNf6vizR33T7TsQAAgGG2LYDbtm3TtGnT1KNHD3300UeaNGmS7rzzTr3yyisn/Uxubq7cbnfDy+PxtGPi03NOultz7hipoZmJKvPV6NZXluupjzcxLxAAABuz7S3giIgIDRkyRIsWLWo4duedd2rZsmX68ssvT/gZn88nn8/X8LXX65XH4wmJIeRqf60e/r/1emnRDknSxX1S9MS1AxQbGW42GAAA7YxbwDYeAezatav69OnT6FhWVpby8/NP+hmXy6W4uLhGr1AR7nTo91f21WM/7K+IMIfmrtunHzy7SNv2l5mOBgAA2pltC+CIESO0cePGRsc2bdqkbt26GUrUPq4Z4tE/bxum1LhIbSkq0/f/+oU+3cC8QAAA7MS2BfDuu+/W4sWL9cgjj2jLli2aOXOmpk+frsmTJ5uO1uYGeuI1544ROvfMBJVW1uiWl5frr59tkU1nAwAAYDu2nQMoSe+9956mTp2qzZs3KzMzUzk5Obr11lub/PlQn0NQVVOrB9/7Wq8trrvtPa5fqv58zQDFuMIMJwMAoO2E+vW7Ndi6ALZURzmB/rE0X7999ytV+wPqlRKr6Tdlq1vnGNOxAABoEx3l+t0Str0FjG9MOC9Dr//XMCXHurRxX6mueHqh5m3abzoWAABoIxRASJKyuyXoX3eM1KCMeHkrazTxxaV6bt5W5gUCANABUQDRICUuUq//1/m67lyPagPSHz/YoDv+sVIVVTWmowEAgFZEAUQjrjCncq86Rw+N76cwh6X31hTq6mlfquBgheloAACglVAAcRzLsnTD+d0089bzldQpQusLvbrimYX657ICHSyvMh0PAAC0EKuAW8AOq4gKS45o0qt5Wr2rRJLksKTBGQn6blayxmSlqEdyJ1mWZTglAABNZ4fr97ehALaAXU6gymq/Zszfpve/2qv1hd5G3/MkRml07xSNzkrW0MzOighjUBkAENzscv0+FQpgC9jxBNp9+Ig+3VCkT9bv06KtB1RVU9vwvU6uMF3QI0mjs1J0Ua8u6tzJZTApAAAnZsfr93+iALaA3U+giqoaLdxcrE/WF+mTDUUqLvM1fM+ypEGeeI3OStGYrBT1TOFWMQAgONj9+i1RAFuEE+gbtbUBrd1dok/W79PH64u07j9uFacnRGl072SNzkrR0O6JcoU5DSUFANgd128KYItwAp1cYcmRupHB9fv0xX/cKo6JcOqCHl00OitZ556ZqK7xkRRCAEC74fpNAWwRTqCmqaiq0RdbDuiT9fv0yYYi7S/1HfeepE4R6uqOUld3pNLio5QWH6mu7m/+mRzrUpiTBSYAgJbj+k0BbBFOoOarrQ3oqz0l+nh9kT7bUKRN+0rlO2Z08GScDkspsS51jf+mJHZPitGgjAT1SO4kh4P5hQCApuH6TQFsEU6glgsEAjpUUa09h49oz+EjKiyp1J6SIyo8XKnCkiPac7hSe72V8tee/DSNdYVpgCdegzPiNSgjQYMy4hUfHdGO/xYAgFDC9ZsC2CKcQO3DXxvQ/lJfo2K4+/ARrS/0anVBiY5U+4/7zNHRwUEZ8RqckaCeKZ24hQwAkMT1W6IAtggnkHk1/lpt3FeqlfmHtSL/kFbmH9b24vLj3hcT4dQDl/XRj4dmGEgJAAgmXL8pgC3CCRScDpVXaWXBoYZSuLqgRGW+GoU5LL318+Ea4Ik3HREAYBDXbwpgi3AChQZ/bUB3vr5S/7emUN2TYvTenSMVHRFmOhYAwBCu3xKTotDhOR2WHh7fT6lxkdpWXK5H3l9vOhIAAEZRAGEL8dERevzaAZKk1xbn69MN+wwnAgDAHAogbGPE2Um6ZWSmJOneN9c0enYxAAB2QgGErdzzvV7qlRKr4rIq3ffWGjEFFgBgRxRA2EpkuFNPXTdQEU6HPl5fpNeXFZiOBABAu6MAwnayusbpnu/1kiQ9+K91J9w3EACAjowCCFu6ZWSmhnXvrCPVfk2ZtUrV/m9/HjEAAB0FBRC25HBYevzaAYqLDNPqgsN65tMtpiMBANBuKICwrbT4KD30g3MkSc98tkV5Ow8ZTgQAQPugAMLWrhyQpvED0+SvDSjnn6tU5qsxHQkAgDZHAYTt/eH7/XRGfJR2HqjQH+Z8rdpatoYBAHRsFEDYnjsqXI9fO0CWJb2Rt0tjnpynVxfvVEUVo4EAgI7JCrAT7mnjYdIdy6tf7tCjH25Uaf1t4LjIME0YmqGbhp2pM+KjDKcDALQWrt8UwBbhBOp4ynw1enN5gV5ctEM7D1RIkpwOS5f0S9VPR2RqcEa8LMsynBIA0BJcvymALcIJ1HH5awP6bEOR/vbFdi3aeqDheGZSjGJczhN+xmlZio4IU4zLWf/PMMVEOBXtClOnhmNOxdR/r0dyJyXHRbbXvxIAoB7XbynMdAAgGDkdlsb0SdGYPilaX+jVi19s1zur9rTqU0MsSxqamagrB5yhcf1SlRAT0Wo/GwCAU2EEsAX4G4S9HCjz6as9Xp3sPxl/bUDlVX5V+GpUXuVXua9G5VU1KvfVqMLnr/9z3T9LjlRr2/5vymSYw9IFPZI04uwkpSdEy5MYJU9itOIiw9vrXw8AbIPrNwWwRTiB0BIFByv03ppC/Wv1Hq0r9J7wPXGRYUqMiVB8dITio8OV1MmliSPOVN80dzunBYCOg+s3BbBFOIHQWrYUler9tXu1cV+pdh2sUMGhIzpYXnXC98a6wjTz1vN1TjolEABOB9dvCmCLcAKhLZX5alR4+IgOH6nW4YpqHa6o0qxlBVq+85Dio8P1j1vPV1ZXzjsAaC6u3xTAFuEEQnsrrazWjS8s1aqCw+ocE6FZtw3T2cmdTMcCgJDC9ZsngQAhJTYyXC9PPE990+J0oLxKP56xWDsPtN7KZACAPVAAgRDjjg7Xq7cMVa+UWBWV+nTT35Zqf6nPdCwAQAihAAIhKDEmQq/+7Dx5EqO080CFJr60VGU+nl0MAGga2xbA3//+97Isq9ErNTXVdCygyZJjI/XKT4eqc0yEvtrt1aRX81RVU2s6FgAgBNi2AEpS3759VVhY2PBau3at6UhAs2QmxejFiecqOsKphVuK9cs3Vp90o2oAAI6ydQEMCwtTampqw6tLly6mIwHN1j89Xs/dkK0wh6U5q/do2rytpiMBAIKcrQvg5s2blZaWpszMTF133XXatm3bKd/v8/nk9XobvYBgcGHPLnrw+/0kSX/+aKMWbi42nAgAEMxsWwCHDh2qV155RR999JFmzJihvXv3avjw4Tpw4MBJP5Obmyu3293w8ng87ZgYOLUJ53l0TXa6agPSna+v1O7DR0xHAgAEKTaCrldeXq6zzjpL9957r3Jyck74Hp/PJ5/vm+02vF6vPB6PrTeSRHCprPbr6mmL9PUerwaku/X3W89XJ1eY6VgAEFTYCFriylAvJiZG55xzjjZv3nzS97hcLrlcrnZMBTRPZLhTz92QrcufXqjVu0p07kMf63t9U/T9gWcoLT5KkhQR5tCZnaNlWZbhtAAAUyiA9Xw+n9avX68LLrjAdBSgRTyJ0Zp+Y7bue3uttheX651Ve/TOqj2N3nNxnxQ9PWGQIsOdhlICAEyy7S3gX/7yl7riiiuUkZGhoqIiPfTQQ5o3b57Wrl2rbt26NelnMISMYBYIBLR6V4neWblbH6/fp8pqvyTpcEW1amoDuqBHkmbcNIQSCMB2uH7beARw165dmjBhgoqLi9WlSxedf/75Wrx4cZPLHxDsLMvSQE+8Bnri9fsr+zYcX7SlWLe8vFwLNhdr4ovLNGnUWeqeFKOUuEhZlmRJCnPadn0YANiCbUcAWwN/g0CoWrr9oCa+uFTlVf4Tfr9/ultXDkjTZf27qqs7qp3TAUDb4vpNAWwRTiCEsrW7SjRt3hZt3lemnQcqVOU//jFyliWde2aivj8wTVcPTud2MYAOges3BbBFOIHQUfhrAyrz1UiSKqpq9PG6fZqzeo+W7TjU8J4z4qN037jeurx/V1YQAwhpXL8pgC3CCYSObvfhI3pv9R69vGiH9pRUSpKmjOmhKWN6Gk4GAKeP67eNnwQC4NudER+l275zlj7571G67cLukqRZywrE3xsBILRRAAF8q6gIp+6+uKciwx0qLKnUhr2lpiMBAFqAAgigSSLDnRpxVpIk6bONRYbTAABaggIIoMlG9U6WJH22gQIIAKGMAgigyS7q1UWSlLfzkEoqqg2nAQCcLgoggCZLT4hWz5ROqg1I8zfvNx0HAHCaKIAAmuWiXnW3gWcs2Ka3V+xiJBAAQhAFEECzjO2bKklas6tEOf9crR//72K2hQGAEEMBBNAs2d0SNPPWobrtwu5yhTn09R6v1uwqMR0LANAMFEAAzTb8rCRNvTRLl/SrGw18I6/AcCIAQHNQAAGctmuyPZKkOav2qLLabzgNAKCpKIAATtvwszorzR0pb2WN/r1un+k4AIAmogACOG0Oh6Wrs9MlSdPnb1XJEVYEA0AooAACaJHrzstQJ1eYvtrt1TXPLdL6Qi+rggEgyFEAAbTIGfFRmnXb+UqOdWnTvjKN+8sCjX58nvJ2HjIdDQBwEhRAAC3WN82t2ZNHaExWiiKcDm0rLteUWStZGAIAQYoCCKBVnBEfpf+9eYiWPTBGXd2RKjh4RM9+vtV0LADACVAAAbQqd3S4fnN5H0nSc/O26ulPNmvXoQrDqQAAx7ICzNY+bV6vV263WyUlJYqLizMdBwgagUBAP3t5uT7ZUNRwbFj3zro6O13j+qUqxhVmMB0Au+P6TQFsEU4g4OR8NX7NWbVHb63YpcXbDjYcj45w6soBaRqckaDkOJe+07OLLMsymBSA3XD9pgC2CCcQ0DQFByv0zsrdemvFLu040Ph28H9d2F33X5plKBkAO+L6TQFsEU4goHkCgYCWbD+ot/J2aa+3Ugs2F0uSnr8xW9/rm2o4HQC74PpNAWwRTiCgZR56b53+d+F2ucIcmnbDYH23d4rpSABsgOs3q4ABGPSrcb01JitZvppa3fpKnu55Y7XyD7BiGADaGgUQgDHhToem3ZCta4eky18b0Bt5u/Tdxz/XfW+tUcFBiiAAtBVuAbcAQ8hA61mRf0hPfbxZ8zftlySFOy1dP7SbBmXES5K6dY7RQE+8uYAAOgyu3xTAFuEEAlpf3s6DenLuZi3cUtzouGVJs38xghIIoMW4flMAW4QTCGg7CzcX65Uvd6i8qkaFhyu1rbhc552ZqFm3nc++gQBahOs3BbBFOIGA9lFYckSjHvtcvppa/TA7Xb+5rI/c0eGmYwEIUVy/WQQCIAR0dUfpV5f0lmVJb+bt0ugn5unnr+Vp7rp9pqMBQEiiAAIICT8dmak3bhums7rEqLjMpw++2qv//ucqlVZWm44GACGHAgggZAw5M1Hv33WB/nLdQEmSt7JGf1+SbzYUAISgMNMBAKA5XGFOfX/gGaqqqdU9b67Rk3M3aWtRmUb2SNKVA9JYIAIATcAIIICQNH7QGRrdu+4pIm/k7dJdr6/SlFmrdKTKbzoaAAQ9CiCAkBTudGjGTUP0+DUDdNWgM+R0WHp31R79aPqXqqymBALAqVAAAYQsh8PS1dnpeuJHA/X3nw1VfHS41uwq0Ytf7DAdDQCCGgUQQIdwfvfO+s1lfSRJz3y6WUWllYYTAUDwogAC6DB+MOgMDfDEq7zKrz9/tNF0HAAIWhRAAB2Gw2Hpt5fXjQK+kbdL6wu9hhMBQHCiANbLzc2VZVmaMmWK6SgAWiC7W4Iu699VgYA07i8LNHNJvnjiJQA0RgGUtGzZMk2fPl39+/c3HQVAK/jvi3sqzFG3H+D9s9fqqY83G04EAMHF9gWwrKxM119/vWbMmKGEhATTcQC0gu5dOmnWbcP0w+x0SdJfPtmsZz/fYjgVAAQP2xfAyZMn67LLLtOYMWNMRwHQirK7JejP1wzQry7pLUl69MONuujPn+uzDUWGkwGAebZ+FNzrr7+uFStWaNmyZU16v8/nk8/na/ja62WCORDsfj7qLPlq/Hrq483aXlyuiS8t00BPvP735iFK6uQyHQ8AjLDtCGBBQYHuuusuvfbaa4qMjGzSZ3Jzc+V2uxteHo+njVMCaA1TxvTU3Lsv1PndEyVJqwoO6+VFO8yGAgCDrIBNl8e98847+sEPfiCn09lwzO/3y7IsORwO+Xy+Rt+TTjwC6PF4VFJSori4uHbLDuD0BAIBPTl3k/7n07r5gLdekKmp47LkqF8wAsAevF6v3G63ra/ftr0FPHr0aK1du7bRsYkTJ6p379761a9+dVz5kySXyyWXi1tGQKiyLEt3jO6hd1fv0c4DFZqxYLsSYiL0i1Fnm44GAO3KtgUwNjZW/fr1a3QsJiZGnTt3Pu44gI4j3OnQnNtH6q+fbdH0+dv054826t9f71OvlFg99IN+CnfadmYMABvh/+kA2I47KlxTx/XWNdnpqg3UzQmctbxAT3/CfoEA7MG2cwBbA3MIgNAWCAS0ZPtBrcg/pEc/rHt28A+z0/Xg9/sqOsK2N0iADo/rNyOAAGzMsiyd372zfjHqbI0fmCZJejNvl2YuyTecDADaFgUQACQ9ctU56p0aK0n64Ku9htMAQNuiAAKApOiIML008TxJUt7OQ/rwq71ihgyAjooCCAD1Ut2RuvScVEnSpNfy9Pz8bYYTAUDbYBFICzCJFOh49pZU6spnFqqotG7T9winQ11iXfrHrecro3O04XQAWgPXb0YAAaCRVHekltw/Whf0SJIkVflrtfvwEV3/wmLdPWuVKqv9hhMCQMuxzwEA/AfLsvTyxPNUVOpT/sEK/XjGYhUcPKKCg7t1Ue9kXTkgzXREAGgRRgAB4AQcDkup7kidl5mod28fofSEKEnSy4t2qLaWmTMAQhsFEAC+Rd80t35/RV9JdSuEWRwCINRRAAGgCUb2SFL3pBhJ0p8+3KDn5201nAgATh8FEACaIDLcqbk531FmfQl8Yu4mHSjzGU4FAKeHAggATeR0WHr/zguUHOuSr6ZW768tNB0JAE4LBRAAmiEqwqkJ52VIklbmHzYbBgBOEwUQAJppYEa8JOntlbu1dleJ2TAAcBoogADQTIM9CQ1/fn4+i0EAhB4KIAA0kzs6XL+7oo8k6avdjAACCD0UQAA4DeMHniFJ2nGgQq8u3mk4DQA0D4+CA4DTkBAToW6do7XzQIWemrtJ3ZNiZEnyJEbLkxhtOh4AnJIVCAR4ptFp8nq9crvdKikpUVxcnOk4ANrZ/lKfzn3440bHIsMdmnfPRUqJizSUCsC34frNCCAAnLYusS499aOBem7eVtUGAiosqVRpZY0mvZanru5Idenk0tRLsxQZ7jQdFQAaoQACQAuMH3SGxg+qmw/42uKd+vU7X2ll/mGtrP9+9y6ddPPwM43lA4AToQACQCuZcF6GYiPD5D1SrSXbD+q9NYX63ZyvtaWoTP9vfD/T8QCgAQUQAFqJ02Hp+/Wrgy/qnaz31xaqNiC9uninvpuVrIt6JRtOCAB12AYGANpAekK0Nj40TkmdXJKkiS8u0+JtBwynAoA6FEAAaCPhTodyrzqn4evc99dr+vytYvMFAKZRAAGgDV3cJ0XP3ZAtSVq9q0SPvL9By3YcMpwKgN1RAAGgjY3tk6I/XnWO+qe7JUlfbuVWMACzKIAA0MYcDkvXnZehH53rkSR9ua3YcCIAdkcBBIB2cn73zpKkJdsPauSfPtXKfG4FAzCDAggA7aR7Uox6p8YqEJB2HTqiN/J2mY4EwKYogADQTizL0ru3j9BD9ZtCz1ySry1FZYZTAbAjCiAAtCNXmFNXDEhr+PqDtYUG0wCwKwogALQzd1S47r+0tyTp8bmbdKi8ynAiAHZDAQQAA77XN7Xhz/M37zeYBIAdWQG2pD9tXq9XbrdbJSUliouLMx0HQIi5983V+ufyXerkClN0hFOSlBAdoRk3DVFG52jD6YCOi+s3I4AAYMy4c7pKksp8NSoq9amo1KeN+0r13to9hpMB6OgYAWwB/gYBoKV2HapQyZFqSdLbK3brhYXb1dUdqbOTO6mTK0z3X5olTyKjgUBr4vothZkOAAB2lp4QrfSEuj9XVPn1wsLtKiypVGFJpSQpMylG917S22BCAB0RBRAAgsS5ZyZq5s+Gal9ppRZvPahZywv06YYixUWFKz4qXFcNTldEGDN3ALQcBRAAgsjws5MkSWnuKM1aXqANe0v1xw82SJKcDkvXDPGYjAegg+CvkgAQhM49M1E5F/fUD7PTldW1bo7SyoLDKvJWqshbKV+N33BCAKGMRSAtwCRSAO3h70t26oHZXzU6ltQpQp/kjJI7OtxQKiB0cf228QjgtGnT1L9/f8XFxSkuLk7Dhg3TBx98YDoWABznOz27KDUuUg5Lclh1x4rLqvTVnhKzwQCELNuOAP7rX/+S0+nU2WefLUl6+eWX9dhjj2nlypXq27dvk34Gf4MAYMLEF5fqs437dd6ZicpMitF153k0KCPBdCwgZHD9tvEI4BVXXKFLL71UPXv2VM+ePfXwww+rU6dOWrx4seloAHBKPVNiJUlLd9StFH7k/fWGEwEINawCluT3+/XGG2+ovLxcw4YNMx0HAE7pF6POVlp8lPIPVuiFhdu1uahM/tqAnEfvDwPAt7DtCKAkrV27Vp06dZLL5dKkSZM0e/Zs9enT56Tv9/l88nq9jV4A0N7c0eG6efiZ+sWosyRJhyuqNejBf6vgYIXhZABCha0LYK9evbRq1SotXrxYP//5z3XzzTdr3bp1J31/bm6u3G53w8vjYT8uAOYkxkRoSLe6uX/eyhot2X7QcCIAocK2i0BOZMyYMTrrrLP0/PPPn/D7Pp9PPp+v4Wuv1yuPx2PrSaQAzAoEAvr5ayv04dd7ddXgM3T90G4anBEvy+J2MHAyLAKx+QjgfwoEAo0K3n9yuVwN28YcfQGASZZlqVdq3aKQt1fs1tXTFmnuun2GUwEIdrZdBHL//fdr3Lhx8ng8Ki0t1euvv67PP/9cH374oeloANAsVw0+QyvyD2l9oVfFZVXasLdUY/ummo4FIIjZdgRw3759uvHGG9WrVy+NHj1aS5Ys0YcffqiLL77YdDQAaJZunWP06i1D9eOh3SRJf/1si8p8NYZTAQhmth0BfOGFF0xHAIBWdUZ8pCTJV1Or5+dt1X+P7WU4EYBgZdsRQADoaMad07Xhz9uLyw0mARDsKIAA0EHERYbrfyYMkiRt2Fuqfy4v0Kcb9qm2ls0eADRGAQSADiQ1ru428JaiMt375hr99KXl+nxTkeFUAIINBRAAOpDsbgn6yfAz9d3eyQ1lcNt+bgcDaIwCCAAdiNNh6fdX9tXffnKuLulXtxXMtuJybd1fpr0llYbTAQgWtl0FDAAdXeeYCEnSzCX5mrkkX5L0xLUDdNXgdJOxAAQBRgABoIManZWijMRouaPC5Qqr+7/7lfmHzYYCEBQYAQSADqpPWpzm33uRJOlvC7frwffW6VBFleFUAIIBBRAAbCAhJlyStGjrAd30t6WSpHCHpVsv7K7zu3c2GQ2AARRAALCBzKROkqSD5VWav2l/w/Hq2gAFELAhCiAA2MCAdLdm3jq0YSXwhr2lmj5/mw6Vc0sYsCMKIADYgGVZGn5WUsPXy3cc1PT523T4SJXKfDUNx52WpagIp4mIANoRBRAAbCguqm5OYMHBI+r3u48ajluW9NvL+2jiiExT0QC0A7aBAQAb6tY5Wj2SOx13PBCQFmwuNpAIQHtiBBAAbMgV5tRHUy5Ulb+24dhHX+/VXa+vUlllzSk+CaAjoAACgE05HJYiHd/M90uIrntyyKGKKu0tqVSMy6nYyHBT8QC0IW4BAwAkSZ0i68YENheV6fzcT5T9/z7WivxDhlMBaAsUQACAJCkrNU69U2MV7rRkWVKVv1arCw6bjgWgDVAAAQCSpKgIpz6ccqE2P3yprs32SJIqqvyGUwFoCxRAAMBxol11cwOP3SMQQMfBIhAAwHFiIuouD39fvFMffbVXknT5gDTlXNzTZCwArYQRQADAcXqk1O0R6K2s0bbicm0rLtfz87YaTgWgtTACCAA4zpUD0tQ7NU7eymqVVlbrpy8tl6+mVv7agJwOy3Q8AC1EAQQAHMeyLPVKjZUkHTlmIUhltV8xLi4dQKjjv2IAwCm5wr6ZLbR0x0G5o8LljgrXWV2Of5QcgNBAAQQAnJLDYSk6wqmKKr8mvris4fhzN2Trkn6pBpMBOF0sAgEAfKufjcxURmK0MhKj1an+FvCWolLDqQCcLgogAOBb5Yztpfn3XqT5916kH2anS5Iqq2sNpwJwuiiAAIBmcYXXXToqq3lKCBCqmAMIAGgWV1jdU0L2l/m0bX+ZJCkp1qW4yHCTsQA0AwUQANAsUeF1BfDdVXv07qo9Dcc+v2eUUuIiTUYD0ETcAgYANMuoXl3kSYxSbGSYYiPD5LCkI9V+bSkqMx0NQBMxAggAaJasrnFacO93G76+4umFWru7RFU1LAoBQgUjgACAFomo3yjaRwEEQgYFEADQIq6GAsiqYCBUcAsYANAiR0cAZ6/cra/3eBuOW5LG9k1RdrdEQ8kAnAwFEADQIonREZKkzzfu1+cb9zf63r/X7dNnvxxlIBWAU6EAAgBa5O6LeyotPkpV/m/mAB4qr9Ibebt0uKLKYDIAJ0MBBAC0iCcxWr/8Xq9Gx3YUl+uNvF2q9gcMpQJwKiwCAQC0uvD6eYHVflYGA8GIAggAaHXhTksSBRAIVtwCBgC0ughn3fhCbUD6bGORHFZdIQx3WMo+M6HhecIAzLBtAczNzdXbb7+tDRs2KCoqSsOHD9ef/vQn9erV69s/DAA4paNbw0jSxBeXNfretUPS9egPB7R3JADHsO0t4Hnz5mny5MlavHix5s6dq5qaGo0dO1bl5eWmowFAyIuOCNNt3+muPl3jGl5nxEdJkgoOHjGcDoAVCARYoiVp//79Sk5O1rx583ThhRc26TNer1dut1slJSWKi4tr44QAENreX1uoX/x9hc49M0FvTBpuOg5sjOu3jUcA/1NJSYkkKTGRHesBoC2EOY4uDGHcATDNtnMAjxUIBJSTk6ORI0eqX79+J32fz+eTz+dr+Nrr9Z70vQCAxsLrF4bU1LIyGDCNEUBJt99+u9asWaN//OMfp3xfbm6u3G53w8vj8bRTQgAIfWH1W8PUMAIIGGf7EcA77rhDc+bM0fz585Wenn7K906dOlU5OTkNX3u9XkogADRRmKNuzKG8qkYb95Ye9/3YyDCl1S8UAdC2bFsAA4GA7rjjDs2ePVuff/65MjMzv/UzLpdLLperHdIBQMcTEVY3Alhw8Ii+99T8E75nxk1DdHGflPaMBdiSbQvg5MmTNXPmTL377ruKjY3V3r17JUlut1tRUfwNFABaW980t7K7JWhH8fHbbZX6alRVU6tN+0opgEA7sG0BnDZtmiRp1KhRjY6/+OKL+slPftL+gQCgg4sMd+qtn594+5cHZq/V35fkMz8QaCe2LYBsfwgAwcNZv0WMnxXCQLtgFTAAwLiGAshfzoF2QQEEABh3dJPomloKINAeKIAAAOOc9VvE+JkDCLQLCiAAwLj6h4QwAgi0E9suAgEABI+jI4CvfLlDM5fmn/A9rjCH/nhVf13Wv2t7RgM6JEYAAQDGDUh3y2FJtQGpqqb2hK/SyhrNXbfXdFSgQ2AEEABg3OisFK34zcWqqPKf8PtvLN+lJz/epGpuEQOtggIIAAgK8dERio8+8fc6d4qQJNX42ScQaA3cAgYABL1wZ/02MawSBloFBRAAEPTC65cJVzECCLQKCiAAIOiF1RdARgCB1kEBBAAEvfD6J4VUMwIItAoKIAAg6B29BcwqYKB1sAoYABD0wuoXgRyuqNKCzftP+d7eqXHqEutqj1hAyKIAAgCCnivMKUnaeaBCN76w9JTvTerk0pL7R8tZf9sYwPEogACAoDcoI15j+6So4NCRk74nEAhow95SFZf5VFntV4yLSxxwMvzXAQAIepHhTk2/acgp31NVU6uev/5AklTDXEHglFgEAgDoEMKOueXrpwACp0QBBAB0CA4KINBkFEAAQIdxdBSQAgicGgUQANBhHF35W1PLhtHAqVAAAQAdhpMRQKBJKIAAgA6DAgg0DQUQANBhMAcQaBoKIACgw/hmDiAFEDgVNoIGAHQYRwvg/60p1Mr8w9/6/shwhy7uk6LYyPA2TgYEFwogAKDDiAqve2bwM59tafJnbvtOd00dl9VWkYCgRAEEAHQY943L0tsrdqkpN4B3FJdrc1GZikur2jwXEGwogACADuOSfqm6pF9qk947ff5WPfL+BgUCzBeE/bAIBABgSw6rbr5gLQUQNkQBBADY0jcF0HAQwAAKIADAluoXDMvPCCBsiAIIALAlR30DZA4g7IgCCACwJevoLeBaw0EAAyiAAABbcrIIBDZGAQQA2NLROYAsAoEdUQABALbENjCwMwogAMCWrIYRQAog7IcCCACwJaeDfQBhXxRAAIAtHb0FzDYwsCOeBQwAsKWjt4Arq/0qKq08rZ/RpZOrYTsZIJRQAAEAtnR0BHDZjkM67+FPTutnXNI3Vc/dmN2asYB2wS1gAIAtDcqIV2pcpCxLzX4dtXznQXP/AkAL2HoEcP78+XrssceUl5enwsJCzZ49W+PHjzcdCwDQDtITorX4/tGn9dlN+0o19sn5YvogQpWtRwDLy8s1YMAAPfPMM6ajAABCiIMtZBDibD0COG7cOI0bN850DABAiGl4jjD9DyHK1gWwuXw+n3w+X8PXXq/XYBoAgCk8RQShzta3gJsrNzdXbre74eXxeExHAgAYcPQWMP0PoYoC2AxTp05VSUlJw6ugoMB0JACAAZbYRBqhjVvAzeByueRyuUzHAAAY9s1zhM3mAE4XI4AAADSTw8EcQIQ2W48AlpWVacuWLQ1fb9++XatWrVJiYqIyMjIMJgMABDPmACLU2boALl++XBdddFHD1zk5OZKkm2++WS+99JKhVACAYMcqYIQ6WxfAUaNGMYEXANBsR58GxxUEoYo5gAAANJPFCCBCHAUQAIBmOnYOIHeSEIoogAAANNPROYASC0EQmiiAAAA007EFkNvACEUUQAAAmuub/sdCEIQkCiAAAM3kOKYAMgKIUEQBBACgmZgDiFBHAQQAoJmYA4hQZ+uNoAEAOB3H9D89OXeTIsJafzwlxhWmCedmKCEmotV/NkABBACgmcIcllxhDvlqajVjwfY2+9/x+wO6Y3SPNvv5sC8KIAAAzRTmdOjpCYP05bYDbfLzl+04qK92e1Xqq2mTnw9QAAEAOA1j+6ZqbN/UNvnZj7y/Xl/t9vKUEbQZFoEAABBkjk4xpP+hrVAAAQAINkefNWw2BTowCiAAAEHGOvZRI0AboAACABBkjm4zwy1gtBUKIAAAQaZhDiA3gdFGKIAAAAQpRgDRViiAAAAEGYspgGhjFEAAAILM0UUg7AOItkIBBAAgyFhsA4M2RgEEACDIsBE02hoFEACAYFM/BMgqYLQVCiAAAEGGNSBoaxRAAACCDBtBo61RAAEACDINq4AN50DHRQEEACDIMAKItkYBBAAgyHwzB5AGiLZBAQQAIMgwAoi2RgEEACBIUQDRViiAAAAEGYt9ANHGKIAAAAQpRgDRViiAAAAEGYudoNHGKIAAAAQZ9gFEW6MAAgAQZFgFjLZGAQQAIMgcvQPMIhC0FQogAABBxvqmAQJtggIIAECQYQ4g2hoFEACAIPPNHEAqINoGBRAAgCBF/UNboQACABBkGp4EQgNEG6EAAgAQZFgDgrZm+wL47LPPKjMzU5GRkcrOztaCBQtMRwIAAGhTti6As2bN0pQpU/TAAw9o5cqVuuCCCzRu3Djl5+ebjgYAsDEWgaCt2boAPvHEE7rlllv0s5/9TFlZWXrqqafk8Xg0bdo009EAADbGLWC0tTDTAUypqqpSXl6e7rvvvkbHx44dq0WLFp3wMz6fTz6fr+Frr9fbphkBAPZ0dBHIqvzDmvL6SsNpzLqkX6ou6dfVdIwOx7YFsLi4WH6/XykpKY2Op6SkaO/evSf8TG5urv7whz+0RzwAgI0lxERIknYfPqLdq44YTmPWmUkxFMA2YNsCeJTV8LydOoFA4LhjR02dOlU5OTkNX3u9Xnk8njbNBwCwn0v6puqJawfoYHmV6SjGDcpIMB2hQ7JtAUxKSpLT6TxutK+oqOi4UcGjXC6XXC5Xe8QDANhYRJhDVw1ONx0DHZhtF4FEREQoOztbc+fObXR87ty5Gj58uKFUAAAAbc+2I4CSlJOToxtvvFFDhgzRsGHDNH36dOXn52vSpEmmowEAALQZWxfAH/3oRzpw4IAefPBBFRYWql+/fnr//ffVrVs309EAAADajBVgl8nT5vV65Xa7VVJSori4ONNxAABAE3D9tvEcQAAAALuiAAIAANgMBRAAAMBmKIAAAAA2QwEEAACwGQogAACAzVAAAQAAbIYCCAAAYDMUQAAAAJux9aPgWuroQ1S8Xq/hJAAAoKmOXrft/DA0CmALlJaWSpI8Ho/hJAAAoLlKS0vldrtNxzCCZwG3QG1trfbs2aPY2FhZltWqP9vr9crj8aigoMC2zykMZvx+gh+/o+DG7yf4deTfUSAQUGlpqdLS0uRw2HM2HCOALeBwOJSent6m/xtxcXEd7j+8joTfT/DjdxTc+P0Ev476O7LryN9R9qy9AAAANkYBBAAAsBkKYJByuVz63e9+J5fLZToKToDfT/DjdxTc+P0EP35HHRuLQAAAAGyGEUAAAACboQACAADYDAUQAADAZiiAAAAANkMBDELPPvusMjMzFRkZqezsbC1YsMB0JNTLzc3Vueeeq9jYWCUnJ2v8+PHauHGj6Vg4idzcXFmWpSlTppiOgmPs3r1bN9xwgzp37qzo6GgNHDhQeXl5pmNBUk1NjX79618rMzNTUVFR6t69ux588EHV1taajoZWRgEMMrNmzdKUKVP0wAMPaOXKlbrgggs0btw45efnm44GSfPmzdPkyZO1ePFizZ07VzU1NRo7dqzKy8tNR8N/WLZsmaZPn67+/fubjoJjHDp0SCNGjFB4eLg++OADrVu3To8//rji4+NNR4OkP/3pT3ruuef0zDPPaP369Xr00Uf12GOP6emnnzYdDa2MbWCCzNChQzV48GBNmzat4VhWVpbGjx+v3Nxcg8lwIvv371dycrLmzZunCy+80HQc1CsrK9PgwYP17LPP6qGHHtLAgQP11FNPmY4FSffdd5+++OIL7mwEqcsvv1wpKSl64YUXGo5dffXVio6O1quvvmowGVobI4BBpKqqSnl5eRo7dmyj42PHjtWiRYsMpcKplJSUSJISExMNJ8GxJk+erMsuu0xjxowxHQX/Yc6cORoyZIiuueYaJScna9CgQZoxY4bpWKg3cuRIffLJJ9q0aZMkafXq1Vq4cKEuvfRSw8nQ2sJMB8A3iouL5ff7lZKS0uh4SkqK9u7daygVTiYQCCgnJ0cjR45Uv379TMdBvddff10rVqzQsmXLTEfBCWzbtk3Tpk1TTk6O7r//fi1dulR33nmnXC6XbrrpJtPxbO9Xv/qVSkpK1Lt3bzmdTvn9fj388MOaMGGC6WhoZRTAIGRZVqOvA4HAccdg3u233641a9Zo4cKFpqOgXkFBge666y79+9//VmRkpOk4OIHa2loNGTJEjzzyiCRp0KBB+vrrrzVt2jQKYBCYNWuWXnvtNc2cOVN9+/bVqlWrNGXKFKWlpenmm282HQ+tiAIYRJKSkuR0Oo8b7SsqKjpuVBBm3XHHHZozZ47mz5+v9PR003FQLy8vT0VFRcrOzm445vf7NX/+fD3zzDPy+XxyOp0GE6Jr167q06dPo2NZWVl66623DCXCse655x7dd999uu666yRJ55xzjnbu3Knc3FwKYAfDHMAgEhERoezsbM2dO7fR8blz52r48OGGUuFYgUBAt99+u95++219+umnyszMNB0Jxxg9erTWrl2rVatWNbyGDBmi66+/XqtWraL8BYERI0Yct3XSpk2b1K1bN0OJcKyKigo5HI2rgdPpZBuYDogRwCCTk5OjG2+8UUOGDNGwYcM0ffp05efna9KkSaajQXWLC2bOnKl3331XsbGxDaO1brdbUVFRhtMhNjb2uPmYMTEx6ty5M/M0g8Tdd9+t4cOH65FHHtG1116rpUuXavr06Zo+fbrpaJB0xRVX6OGHH1ZGRob69u2rlStX6oknntBPf/pT09HQytgGJgg9++yzevTRR1VYWKh+/frpySefZIuRIHGyuZgvvviifvKTn7RvGDTJqFGj2AYmyLz33nuaOnWqNm/erMzMTOXk5OjWW281HQuSSktL9Zvf/EazZ89WUVGR0tLSNGHCBP32t79VRESE6XhoRRRAAAAAm2EOIAAAgM1QAAEAAGyGAggAAGAzFEAAAACboQACAADYDAUQAADAZiiAAAAANkMBBAAAsBkKIAAAgM1QAAEAAGyGAggAAGAzFEAAAACboQACAADYDAUQAADAZiiAAAAANkMBBAAAsBkKIAAAgM1QAAEAAGyGAggAAGAzFEAAAACboQACAADYDAUQAADAZiiAAAAANkMBBAAAsBkKIAAAgM1QAAEAAGyGAggAAGAzFEAAAACboQACAADYDAUQAADAZiiAAAAANvP/AaFiaqrJfHMyAAAAAElFTkSuQmCC","text/plain":""},"metadata":{},"output_type":"display_data"}],"source":["log_rang_log_freq('voy-log-log', get_words(voynich))"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABLAAAAEsCAYAAADTvUpQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCNklEQVR4nO3de5xO9d7/8fdlzjPG1RyYMRmHMhGGdrRJdrQxklNpxy4d2aXkMCGRasve0e5gdLj1a5fbSCGUUqnQjkgip3JIYuTQTBTNODXDzOf3R3uu22UGY8zMWng9H4/14Frre631Weu6rrWueV/ftZbHzEwAAAAAAACAS1VyugAAAAAAAADgZAiwAAAAAAAA4GoEWAAAAAAAAHA1AiwAAAAAAAC4GgEWAAAAAAAAXI0ACwAAAAAAAK5GgAUAAAAAAABXI8ACAAAAAACAqxFgAQAAAAAAwNUIsAAAAAAAAOBqBFgAAAAAAABwNQIsAAAAAAAAuBoBFgAAAAAAAFyNAAsAAAAAAACuRoAFAAAAAAAAVyPAAgAAAAAAgKsRYAEAAAAAAMDVCLAAAAAAAADgagRYAAAAAAAAcDUCLAAAAAAAALgaARYAAAAAAABcjQALAAAAAAAArkaABQAAAAAAAFcjwAIAAAAAAICrEWABAAAAAADA1QiwAAAAAAAA4GoEWAAAAAAAAHA1AiwAAAAAAAC4GgEWAAAAAAAAXI0ACwAAAAAAAK5GgAUAAAAAAABXI8ACAAAAAACAqxFgAQAAAAAAwNUIsAAAAAAAAOBqgU4XgHNPQUGBfvzxR0VGRsrj8ThdDgAAAADgHGdm2r9/vxISElSpEn11zkUEWChzP/74oxITE50uAwAAAABwntmxY4dq1KjhdBkoBwRYKHORkZGSft9xVKlSxeFqAAAAAADnupycHCUmJvr+HsW5hwALZa7wtMEqVaoQYAEAAAAAKgyXsTl3cWIoAAAAAAAAXI0ACwAAAAAAAK5GgAUAAAAAAABXI8ACAAAAAACAqxFgAQAAAAAAwNUIsAAAAAAAAOBqBFgAAAAAAABwNQIsAAAAAAAAuFqg0wUATqo9/AOnS5AkbXuyk9MlAAAAAADgWvTAAgAAAAAAgKsRYAEAAAAAAMDVCLAAAAAAAADgagRYAAAAAAAAcDUCLAAAAAAAALgaARYAAAAAAABcjQALAAAAAAAArkaABQAAAAAAAFcjwAIAAAAAAICrEWABAAAAAADA1QiwAAAAAAAA4GoEWAAAAAAAAHA1AiwAAAAAAAC4GgEWAAAAAAAAXI0ACwAAAAAAAK5GgAUAAAAAAABXI8A6h4waNUoej8dviI+P9003M40aNUoJCQkKCwtTmzZttH79er955ObmasCAAYqNjVVERIS6du2qnTt3VvSqAAAAAAAA+BBgnWMaNmyozMxM3/DNN9/4pj311FMaN26cXnzxRa1YsULx8fFq37699u/f72uTmpqq2bNna/r06VqyZIkOHDigzp07Kz8/34nVAQAAAAAAUKDTBaBsBQYG+vW6KmRmGj9+vEaOHKnu3btLkiZPnqy4uDhNnTpVffv2VXZ2tiZOnKgpU6aoXbt2kqTXX39diYmJWrBggTp06FCh6wIAAAAAACDRA+ucs3nzZiUkJKhOnTr661//qq1bt0qSMjIylJWVpZSUFF/bkJAQtW7dWkuXLpUkrVy5UkeOHPFrk5CQoEaNGvnaFCc3N1c5OTl+AwAAAAAAQFkhwDqHNG/eXK+99po+/vhjvfLKK8rKylLLli31yy+/KCsrS5IUFxfn95y4uDjftKysLAUHBysqKuqEbYozduxYeb1e35CYmFjGawYAAAAAAM5nBFjnkI4dO+rGG29UcnKy2rVrpw8++EDS76cKFvJ4PH7PMbMi4453qjYjRoxQdna2b9ixY8cZrAUAAAAAAIA/AqxzWEREhJKTk7V582bfdbGO70m1e/duX6+s+Ph45eXlad++fSdsU5yQkBBVqVLFbwAAAAAAACgrBFjnsNzcXG3cuFHVq1dXnTp1FB8fr/nz5/um5+XladGiRWrZsqUkqWnTpgoKCvJrk5mZqXXr1vnaAAAAAAAAVDTuQngOGTp0qLp06aKaNWtq9+7d+uc//6mcnBzdcccd8ng8Sk1N1ZgxY5SUlKSkpCSNGTNG4eHhuuWWWyRJXq9Xffr00ZAhQxQTE6Po6GgNHTrUd0oiAAAAAACAEwiwziE7d+7UzTffrJ9//llVq1ZVixYttGzZMtWqVUuSNGzYMB0+fFj9+vXTvn371Lx5c82bN0+RkZG+eaSlpSkwMFA9evTQ4cOH1bZtW6WnpysgIMCp1QIAAAAAAOc5j5mZ00Xg3JKTkyOv16vs7GzXXw+r9vAPnC5BkrTtyU5OlwAAAAAAZ62z6e9QlA7XwAIAAAAAAICrEWABAAAAAADA1QiwAAAAAAAA4GoEWAAAAAAAAHA1AiwAAAAAAAC4GgEWAAAAAAAAXI0ACwAAAAAAAK5GgAUAAAAAAABXI8ACAAAAAACAqxFgAQAAAAAAwNUIsAAAAAAAAOBqBFgAAAAAAABwNQIsAAAAAAAAuBoBFgAAAAAAAFyNAAsAAAAAAACuRoAFAAAAAAAAVyPAAgAAAAAAgKsRYAEAAAAAAMDVCLAAAAAAAADgagRYAAAAAAAAcLVApwuA9Ouvv2r58uXavXu3CgoK/KbdfvvtDlUFAAAAAADgDgRYDnvvvffUq1cvHTx4UJGRkfJ4PL5pHo+HAAsAAAAAAJz3OIWwgs2YMUM//PCD7/GQIUPUu3dv7d+/X7/++qv27dvnG/bu3etgpQAAAAAAAO5AgFXBKleurGuuuUZfffWVJGnXrl0aOHCgwsPDHa4MAAAAAADAnQiwKth1112nd999V/fdd58kqUOHDr4wCwAAAAAAAEVxDSwHJCcn67PPPpMkderUSQ8++KA2bNig5ORkBQUF+bXt2rWrEyUCAAAAAAC4BgGWQ8LCwiRJd999tyRp9OjRRdp4PB7l5+dXaF0AAAAAAABuQ4DlsIKCAqdLAAAAAAAAcDWugeUiv/32W5nNa+zYsfJ4PEpNTfWNMzONGjVKCQkJCgsLU5s2bbR+/Xq/5+Xm5mrAgAGKjY1VRESEunbtqp07d5ZZXQAAAAAAAKeLAMth+fn5+sc//qELL7xQlStX1tatWyVJjz76qCZOnFiqea5YsUL//ve/1bhxY7/xTz31lMaNG6cXX3xRK1asUHx8vNq3b6/9+/f72qSmpmr27NmaPn26lixZogMHDqhz586cyggAAAAAABxDgOWwJ554Qunp6XrqqacUHBzsG5+cnKxXX331tOd34MAB9erVS6+88oqioqJ8481M48eP18iRI9W9e3c1atRIkydP1qFDhzR16lRJUnZ2tiZOnKhnn31W7dq10x/+8Ae9/vrr+uabb7RgwYIzX1kAAAAAAIBSIMBy2GuvvaZ///vf6tWrlwICAnzjGzdurG+//fa053f//ferU6dOateund/4jIwMZWVlKSUlxTcuJCRErVu31tKlSyVJK1eu1JEjR/zaJCQkqFGjRr42AAAAAAAAFY2LuDts165dqlu3bpHxBQUFOnLkyGnNa/r06Vq1apVWrFhRZFpWVpYkKS4uzm98XFycfvjhB1+b4OBgv55bhW0Kn1+c3Nxc5ebm+h7n5OScVt0AAAAAAAAnQw8shzVs2FCLFy8uMn7mzJn6wx/+UOL57NixQ4MGDdLrr7+u0NDQE7bzeDx+j82syLjjnarN2LFj5fV6fUNiYmKJ6wYAAAAAADgVemA57O9//7tuu+027dq1SwUFBXr77be1adMmvfbaa3r//fdLPJ+VK1dq9+7datq0qW9cfn6+PvvsM7344ovatGmTpN97WVWvXt3XZvfu3b5eWfHx8crLy9O+ffv8emHt3r1bLVu2POGyR4wYocGDB/se5+TkEGIBAAAAAIAyQw8sh3Xp0kVvvvmm5s6dK4/Ho8cee0wbN27Ue++9p/bt25d4Pm3bttU333yjNWvW+IZmzZqpV69eWrNmjS666CLFx8dr/vz5vufk5eVp0aJFvnCqadOmCgoK8muTmZmpdevWnTTACgkJUZUqVfwGAAAAAACAskIPLBfo0KGDOnTocEbziIyMVKNGjfzGRUREKCYmxjc+NTVVY8aMUVJSkpKSkjRmzBiFh4frlltukSR5vV716dNHQ4YMUUxMjKKjozV06FAlJycXuSg8AAAAAABARSHAOo8MGzZMhw8fVr9+/bRv3z41b95c8+bNU2RkpK9NWlqaAgMD1aNHDx0+fFht27ZVenq63x0SAQAAAAAAKpLHzMzpIs430dHR+u677xQbG6uoqKiTXiB97969FVhZ2cjJyZHX61V2drbrTyesPfwDp0uQJG17spPTJQAAAADAWets+jsUpUMPLAekpaX5ej2NHz/e2WIAAAAAAABcjgDLAXfccUex/wcAAAAAAEBRBFgukJ+fr9mzZ2vjxo3yeDy69NJL1a1bNwUG8vIAAAAAAACQkDhs3bp16tatm7KyslSvXj1J0nfffaeqVatqzpw5Sk5OdrhCAAAAAAAAZ1VyuoDz3d/+9jc1bNhQO3fu1KpVq7Rq1Srt2LFDjRs31j333ON0eQAAAAAAAI6jB5bD1q5dq6+++kpRUVG+cVFRUXriiSd0xRVXOFgZAAAAAACAO9ADy2H16tXTTz/9VGT87t27VbduXQcqAgAAAAAAcBcCLIeNGTNGAwcO1KxZs7Rz507t3LlTs2bNUmpqqv71r38pJyfHNwAAAAAAAJyPOIXQYZ07d5Yk9ejRQx6PR5JkZpKkLl26+B57PB7l5+c7UyQAAAAAAICDCLAc9umnnzpdAgAAAAAAgKsRYDmsdevWTpcAAAAAAADgagRYLnHo0CFt375deXl5fuMbN24sM1OvXr00depUh6oDAAAAAABwDgGWw/bs2aO77rpLH374YbHTx44dq3bt2umTTz6p4MoAAAAAAADcgbsQOiw1NVX79u3TsmXLFBYWpo8++kiTJ09WUlKS5syZo7CwMPXp00f33nuv06UCAAAAAAA4gh5YDvvPf/6jd999V1dccYUqVaqkWrVqqX379qpSpYrGjh2rJUuWaMCAAU6XCQAAAAAA4Bh6YDns4MGDqlatmiQpOjpae/bskSQlJydr1apVTpYGAAAAAADgCgRYDqtXr542bdokSbrsssv08ssva9euXfp//+//qXr16g5XBwAAAAAA4DxOIXRYamqqMjMzJUl///vf1aFDB73xxhsKDg5Wenq6s8UBAAAAAAC4AAGWw3r16uX7/x/+8Adt27ZN3377rWrWrKnY2FgHKwMAAAAAAHAHTiF02OjRo3Xo0CHf4/DwcF1++eWKiIjQ6NGjHawMAAAAAADAHQiwHPb444/rwIEDRcYfOnRIjz/+uAMVAQAAAAAAuAsBlsPMTB6Pp8j4tWvXKjo62oGKAAAAAAAA3IVrYDkkKipKHo9HHo9Hl1xyiV+IlZ+frwMHDujee+91sEIAAAAAAAB3IMByyPjx42Vm6t27tx5//HF5vV7ftODgYNWuXVtXXnmlgxUCAAAAAAC4AwGWQ+644w5JUp06dXTVVVcpMJCXAgAAAAAAoDhcA8thkZGR2rhxo+/xu+++q+uvv14PP/yw8vLyHKwMAAAAAADAHej247C+fftq+PDhSk5O1tatW9WzZ091795dM2fO1KFDhzR+/HinS4RL1B7+gdMlSJK2PdnJ6RIAAAAAAOcZemA57LvvvtNll10mSZo5c6Zat26tqVOnKj09XW+99ZazxQEAAAAAALgAAZbDzEwFBQWSpAULFui6666TJCUmJurnn392sjQAAAAAAABXIMByWLNmzfTPf/5TU6ZM0aJFi9Sp0++nZ2VkZCguLu605vXSSy+pcePGqlKliqpUqaIrr7xSH374oW+6mWnUqFFKSEhQWFiY2rRpo/Xr1/vNIzc3VwMGDFBsbKwiIiLUtWtX7dy588xXFAAAAAAAoJQIsByWlpamlStXqn///ho5cqTq1q0rSZo1a5Zatmx5WvOqUaOGnnzySX311Vf66quv9Oc//1ndunXzhVRPPfWUxo0bpxdffFErVqxQfHy82rdvr/379/vmkZqaqtmzZ2v69OlasmSJDhw4oM6dOys/P7/sVhoAAAAAAOA0eMzMnC4CRf32228KCAhQUFDQGc0nOjpaTz/9tHr37q2EhASlpqbqoYcekvR7b6u4uDj961//Ut++fZWdna2qVatqypQp6tmzpyTpxx9/VGJioubOnasOHTqUaJk5OTnyer3Kzs5WlSpVzqj+8nY2XRj9bKoVAAAAACrS2fR3KEqHHlgOu/POO/XZZ58VGR8aGnpG4VV+fr6mT5+ugwcP6sorr1RGRoaysrKUkpLiaxMSEqLWrVtr6dKlkqSVK1fqyJEjfm0SEhLUqFEjXxsAAAAAAICKRoDlsP379yslJUVJSUkaM2aMdu3adUbz++abb1S5cmWFhITo3nvv1ezZs9WgQQNlZWVJUpHrasXFxfmmZWVlKTg4WFFRUSdsU5zc3Fzl5OT4DQAAAAAAAGWFAMthb731lnbt2qX+/ftr5syZql27tjp27KiZM2fqyJEjpz2/evXqac2aNVq2bJnuu+8+3XHHHdqwYYNvusfj8WtvZkXGHe9UbcaOHSuv1+sbEhMTT7tuAAAAAACAEyHAcoGYmBgNGjRIq1ev1vLly1W3bl3dfvvtSkhI0AMPPKDNmzeXeF7BwcGqW7eumjVrprFjx6pJkyZ67rnnFB8fL0lFelLt3r3b1ysrPj5eeXl52rdv3wnbFGfEiBHKzs72DTt27ChxvQAAAAAAAKdCgOUimZmZmjdvnubNm6eAgABdd911Wr9+vRo0aKC0tLRSzdPMlJubqzp16ig+Pl7z58/3TcvLy9OiRYt8dzts2rSpgoKC/NpkZmZq3bp1J70jYkhIiKpUqeI3AAAAAAAAlJVApws43x05ckRz5szRpEmTNG/ePDVu3FgPPPCAevXqpcjISEnS9OnTdd999+mBBx446bwefvhhdezYUYmJidq/f7+mT5+uhQsX6qOPPpLH41FqaqrGjBmjpKQk3zW3wsPDdcstt0iSvF6v+vTpoyFDhigmJkbR0dEaOnSokpOT1a5du3LfFgAAAAAAAMUhwHJY9erVVVBQoJtvvlnLly/XZZddVqRNhw4ddMEFF5xyXj/99JNuu+02ZWZmyuv1qnHjxvroo4/Uvn17SdKwYcN0+PBh9evXT/v27VPz5s01b948X1AmSWlpaQoMDFSPHj10+PBhtW3bVunp6QoICCirVQYAAAAAADgtHjMzp4s4n02ZMkU33XSTQkNDnS6lzOTk5Mjr9So7O9v1pxPWHv6B0yVIkrY92emUbc6mWgEAAACgIp1Nf4eidOiB5bD4+HiRIeJcQ9gGAAAAAChLBFgOu/HGG5Wbm6umTZuqdevWatOmja666ipVrlzZ6dIAAAAAAABcgbsQOmzfvn1auHChunbtqtWrV+umm25SdHS0WrRooeHDhztdHgAAAAAAgOMIsBwWEBCgK6+8UsOHD9dHH32kpUuX6pZbbtHKlSv19NNPO10eAAAAAACA4ziF0GEbN27UokWLtHDhQi1atEj5+flq1aqVnn32WbVu3drp8oBzmluu1SVxvS4AAAAAOBkCLIc1bNhQVatWVWpqqh599FE1bNjQ6ZIAAAAAAABchVMIHTZw4EBdeOGFGjVqlHr37q2HHnpIH374oQ4cOOB0aQAAAAAAAK5AgOWw8ePHa9WqVfrpp5/0yCOPKD8/X4899phiY2PVokULp8sDAAAAAABwHAGWSxQUFOjo0aPKy8tTbm6ujhw5om3btjldFgAAAAAAgOO4BpbDBg0apIULF2r9+vWKjo7W1VdfrXvuuUdt2rRRo0aNnC4PgEu45YLzXGweAAAAgBMIsBy2a9cu3X333QRWAAAAAAAAJ0CA5bBZs2Y5XQIAAAAAAICrcQ0sAAAAAAAAuBoBFgAAAAAAAFyNAAsAAAAAAACuRoAFAAAAAAAAVyPAAgAAAAAAgKtxF0KH5efnKy0tTTNmzND27duVl5fnN33v3r0OVQYAAAAAAOAO9MBy2OOPP65x48apR48eys7O1uDBg9W9e3dVqlRJo0aNcro8AAAAAAAAxxFgOeyNN97QK6+8oqFDhyowMFA333yzXn31VT322GNatmyZ0+UBAAAAAAA4jgDLYVlZWUpOTpYkVa5cWdnZ2ZKkzp0764MPPnCyNAAAAAAAAFcgwHJYjRo1lJmZKUmqW7eu5s2bJ0lasWKFQkJCnCwNAAAAAADAFQiwHHbDDTfok08+kSQNGjRIjz76qJKSknT77berd+/eDlcHAAAAAADgPO5C6LAnn3zS9/+//OUvqlGjhpYuXaq6deuqa9euDlYGAAAAAADgDgRYLtOiRQu1aNHC6TIAAAAAAABcgwDLBTZt2qQXXnhBGzdulMfjUf369TVgwADVq1fP6dIAAAAAAAAcxzWwHDZr1iw1atRIK1euVJMmTdS4cWOtWrVKjRo10syZM50uDwAAAAAAwHH0wHLYsGHDNGLECI0ePdpv/N///nc99NBDuummmxyqDAAAAAAAwB3ogeWwrKws3X777UXG33rrrcrKynKgIgAAAAAAAHchwHJYmzZttHjx4iLjlyxZoj/96U+nNa+xY8fqiiuuUGRkpKpVq6brr79emzZt8mtjZho1apQSEhIUFhamNm3aaP369X5tcnNzNWDAAMXGxioiIkJdu3bVzp07T3/lAAAAAAAAygCnEDpgzpw5vv937dpVDz30kFauXOm7++CyZcs0c+ZMPf7446c130WLFun+++/XFVdcoaNHj2rkyJFKSUnRhg0bFBERIUl66qmnNG7cOKWnp+uSSy7RP//5T7Vv316bNm1SZGSkJCk1NVXvvfeepk+frpiYGA0ZMkSdO3fWypUrFRAQUEZbAQAAAAAAoGQIsBxw/fXXFxk3YcIETZgwwW/c/fffr3vvvbfE8/3oo4/8Hk+aNEnVqlXTypUrdfXVV8vMNH78eI0cOVLdu3eXJE2ePFlxcXGaOnWq+vbtq+zsbE2cOFFTpkxRu3btJEmvv/66EhMTtWDBAnXo0OE01xYAAAAAAODMEGA5oKCgoEKWk52dLUmKjo6WJGVkZCgrK0spKSm+NiEhIWrdurWWLl2qvn37auXKlTpy5Ihfm4SEBDVq1EhLly4tNsDKzc1Vbm6u73FOTk55rRKAs0Dt4R84XYIkaduTnZwuAQAAAEAZ4RpYDtu+fbtf+FPIzLR9+/ZSz9fMNHjwYLVq1UqNGjWSJN9F4ePi4vzaxsXF+aZlZWUpODhYUVFRJ2xzvLFjx8rr9fqGxMTEUtcNAAAAAABwPAIsh9WuXVuXX365tmzZ4jd+9+7dqlOnTqnn279/f3399deaNm1akWkej8fvsZkVGXe8k7UZMWKEsrOzfcOOHTtKXTcAAAAAAMDxCLBc4NJLL9Uf//hHffLJJ37jzaxU8xswYIDmzJmjTz/9VDVq1PCNj4+Pl6QiPal2797t65UVHx+vvLw87du374RtjhcSEqIqVar4DQAAAAAAAGWFAMthHo9HEyZM0COPPKJOnTrp+eef95t2OsxM/fv319tvv63//Oc/RXpw1alTR/Hx8Zo/f75vXF5enhYtWqSWLVtKkpo2baqgoCC/NpmZmVq3bp2vDQAAAAAAQEXiIu4OK+xl9cADD6h+/fq6+eab9fXXX+uxxx477Xndf//9mjp1qt59911FRkb6elp5vV6FhYXJ4/EoNTVVY8aMUVJSkpKSkjRmzBiFh4frlltu8bXt06ePhgwZopiYGEVHR2vo0KFKTk723ZUQAM4FbrnYvHTqC867pVYujA8AAACnEGC5SMeOHbV06VJ17dpVy5cvP+3nv/TSS5KkNm3a+I2fNGmS7rzzTknSsGHDdPjwYfXr10/79u1T8+bNNW/ePEVGRvrap6WlKTAwUD169NDhw4fVtm1bpaenKyAgoNTrBgA4P5xNYdvZVCsAAMD5jgDLYa1bt1ZwcLDvcYMGDbR8+XLdcMMNp30NrJK093g8GjVqlEaNGnXCNqGhoXrhhRf0wgsvnNbyAQAAAAAAygMBlsM+/fTTIuOio6O1aNEiB6oBAAAAAABwHwIsh82dO1cBAQHq0KGD3/h58+YpPz9fHTt2dKgyAADgBmfTqY5nU60AAODsQoDlsOHDh+vJJ58sMr6goEDDhw8nwAIAACgHhG0AAJxdKjldwPlu8+bNatCgQZHx9evX1/fff+9ARQAAAAAAAO5CgOUwr9errVu3Fhn//fffKyIiwoGKAAAAAAAA3IUAy2Fdu3ZVamqqtmzZ4hv3/fffa8iQIeratauDlQEAAAAAALgDAZbDnn76aUVERKh+/fqqU6eO6tSpo0svvVQxMTF65plnnC4PAAAAAADAcVzE3WFer1dLly7V/PnztXbtWoWFhalx48a6+uqrnS4NAAAADnPLxeYlLjgPAHAWAZYLeDwepaSkKCUlxelSAAAAAAAAXIcAywHPP/+87rnnHoWGhur5558/aduBAwdWUFUAAAAAAADuRIDlgLS0NPXq1UuhoaFKS0s7YTuPx0OABQAAAAAAznsEWA7IyMgo9v8AAAAAAAAoigALAAAAwBlzywXnudg8AJybCLAcMHjw4BK3HTduXDlWAgAAAAAA4H4EWA5YvXp1idp5PJ5yrgQAAAAAAMD9CLAc8OmnnzpdAgAAAAAAwFmjktMFAAAAAAAAACdDDywAAAAA5xUuOA8AZx8CLAAAAABwIbcEbdKpwza31EooCJy7OIUQAAAAAAAArkYPLAAAAADAeYPeYsDZiQALAAAAAAAXImwD/g+nEAIAAAAAAMDVCLAAAAAAAADgagRYAAAAAAAAcDUCLAAAAAAAALgaARYAAAAAAABcjQALAAAAAAAArkaABQAAAAAAAFcjwDqHfPbZZ+rSpYsSEhLk8Xj0zjvv+E03M40aNUoJCQkKCwtTmzZttH79er82ubm5GjBggGJjYxUREaGuXbtq586dFbgWAAAAAAAA/giwziEHDx5UkyZN9OKLLxY7/amnntK4ceP04osvasWKFYqPj1f79u21f/9+X5vU1FTNnj1b06dP15IlS3TgwAF17txZ+fn5FbUaAAAAAAAAfgKdLgBlp2PHjurYsWOx08xM48eP18iRI9W9e3dJ0uTJkxUXF6epU6eqb9++ys7O1sSJEzVlyhS1a9dOkvT6668rMTFRCxYsUIcOHSpsXQAAAAAAAArRA+s8kZGRoaysLKWkpPjGhYSEqHXr1lq6dKkkaeXKlTpy5Ihfm4SEBDVq1MjXpji5ubnKycnxGwAAAAAAAMoKAdZ5IisrS5IUFxfnNz4uLs43LSsrS8HBwYqKijphm+KMHTtWXq/XNyQmJpZx9QAAAAAA4HxGgHWe8Xg8fo/NrMi4452qzYgRI5Sdne0bduzYUSa1AgAAAAAASARY5434+HhJKtKTavfu3b5eWfHx8crLy9O+fftO2KY4ISEhqlKlit8AAAAAAABQVgiwzhN16tRRfHy85s+f7xuXl5enRYsWqWXLlpKkpk2bKigoyK9NZmam1q1b52sDAAAAAABQ0bgL4TnkwIED+v77732PMzIytGbNGkVHR6tmzZpKTU3VmDFjlJSUpKSkJI0ZM0bh4eG65ZZbJEler1d9+vTRkCFDFBMTo+joaA0dOlTJycm+uxICAAAAAABUNAKsc8hXX32la665xvd48ODBkqQ77rhD6enpGjZsmA4fPqx+/fpp3759at68uebNm6fIyEjfc9LS0hQYGKgePXro8OHDatu2rdLT0xUQEFDh6wMAAAAAACARYJ1T2rRpIzM74XSPx6NRo0Zp1KhRJ2wTGhqqF154QS+88EI5VAgAAAAAAHD6uAYWAAAAAAAAXI0ACwAAAAAAAK5GgAUAAAAAAABXI8ACAAAAAACAqxFgAQAAAAAAwNUIsAAAAAAAAOBqBFgAAAAAAABwNQIsAAAAAAAAuBoBFgAAAAAAAFyNAAsAAAAAAACuRoAFAAAAAAAAVyPAAgAAAAAAgKsRYAEAAAAAAMDVCLAAAAAAAADgagRYAAAAAAAAcDUCLAAAAAAAALgaARYAAAAAAABcjQALAAAAAAAArkaABQAAAAAAAFcjwAIAAAAAAICrEWABAAAAAADA1QiwAAAAAAAA4GoEWAAAAAAAAHA1AiwAAAAAAAC4GgEWAAAAAAAAXI0ACwAAAAAAAK5GgAUAAAAAAABXI8ACAAAAAACAqxFgoVgTJkxQnTp1FBoaqqZNm2rx4sVOlwQAAAAAAM5TBFgo4s0331RqaqpGjhyp1atX609/+pM6duyo7du3O10aAAAAAAA4DxFgoYhx48apT58++tvf/qZLL71U48ePV2Jiol566SWnSwMAAAAAAOchAiz4ycvL08qVK5WSkuI3PiUlRUuXLnWoKgAAAAAAcD4LdLoAuMvPP/+s/Px8xcXF+Y2Pi4tTVlZWsc/Jzc1Vbm6u73F2drYkKScnp/wKLSMFuYecLkFSybYVtZ6+U9Xqljqls6dWXv/ycbbUei69/tLZU+vZUqdEraVxtrz+0tlTK69/+Thbaj2XXn/p7KrVaYU1mpnDlaC8eIxXF8f48ccfdeGFF2rp0qW68sorfeOfeOIJTZkyRd9++22R54waNUqPP/54RZYJAAAAAEARO3bsUI0aNZwuA+WAHljwExsbq4CAgCK9rXbv3l2kV1ahESNGaPDgwb7HBQUF2rt3r2JiYuTxeMq1Xqfl5OQoMTFRO3bsUJUqVZwu56SoteydLXVK1FpezpZaz5Y6JWotD2dLnRK1loezpU6JWsvL2VLr2VKnRK1uZWbav3+/EhISnC4F5YQAC36Cg4PVtGlTzZ8/XzfccINv/Pz589WtW7dinxMSEqKQkBC/cRdccEF5luk6VapUOWsOCNRa9s6WOiVqLS9nS61nS50StZaHs6VOiVrLw9lSp0St5eVsqfVsqVOiVjfyer1Ol4ByRICFIgYPHqzbbrtNzZo105VXXql///vf2r59u+69916nSwMAAAAAAOchAiwU0bNnT/3yyy8aPXq0MjMz1ahRI82dO1e1atVyujQAAAAAAHAeIsBCsfr166d+/fo5XYbrhYSE6O9//3uRUyjdiFrL3tlSp0St5eVsqfVsqVOi1vJwttQpUWt5OFvqlKi1vJwttZ4tdUrUCjiFuxACAAAAAADA1So5XQAAAAAAAABwMgRYAAAAAAAAcDUCLAAAAAAAALgaARYAAAAAAABcjQAL+K+jR4/qkUceUZ06dRQWFqaLLrpIo0ePVkFBQZG2U6dOVUBAgO69994i0xYuXCiPx6OoqCj99ttvftOWL18uj8cjj8dTqhp3796tvn37qmbNmgoJCVF8fLw6dOigL774wtdm9erVuummmxQXF6fQ0FBdcskluvvuu/Xdd9/52qxYsUJt27bVBRdcoKioKKWkpGjNmjV+y5oxY4Yuu+wyhYeHq1atWnr66adLVfPJ7NixQ3369FFCQoKCg4NVq1YtDRo0SL/88ouvTZs2bXzb7NihuG1/ugpfqxMN11xzja/tW2+9pTZt2sjr9apy5cpq3LixRo8erb179/ravPHGG2rSpInCw8NVvXp13XXXXX7rcuTIEY0ePVoXX3yxQkND1aRJE3300Uelrr8k74elS5fquuuuU1RUlEJDQ5WcnKxnn31W+fn5fvM60TaYPn36CZc/duxYeTwepaam+o1fv369evTooapVqyokJERJSUl69NFHdejQIb92tWvXLrK8GjVq+LVxw/u5JPuGn376SXfeeacSEhIUHh6ua6+9Vps3by7xMk6mIrZzSkqKAgICtGzZsiLLv/POO33PO7aGd955Rx6Pp0Jfa6l8P4tlfRwoHGJiYvTnP/9Zn3/+eZG2ZWnp0qUKCAjQtdde6zd+27Zt8ng8CgwM1K5du/ymZWZmKjAwUB6PR9u2bSuXusrq2PXJJ5+oZcuWioyMVPXq1fXQQw/p6NGj5VJzodM9TgUHB+viiy/WiBEjlJubW251ldf+v3LlymrSpInS09NPqx637KeK+zz269dPHo9Hd95552mtU6FTfa4KB6/XqxYtWui9994r1XJKqqy/u/zP//yPLr30UoWFhalevXp67bXXTlmDW47/ZbWOp7NNJ0+erD/+8Y+KiIhQZGSkrr76ar3//vslnl9WVtYpt29ZGDt2rK644gpFRkaqWrVquv7667Vp06YKWTZQrgyAmZn985//tJiYGHv//fctIyPDZs6caZUrV7bx48cXadu2bVsbPny4eb1eO3jwoN+0Tz/91CRZYmKiTZ061W9a3759rWbNmlbaj16rVq2sefPm9p///Me2bdtmX375pY0ZM8bef/99MzN77733LDg42Lp06WLz58+3rVu32rJly2zIkCHWo0cPMzPLycmxqKgou/POO+3bb7+1devW2Y033mjVqlWzvLw8MzObO3euBQYG2ksvvWRbtmyx999/3+Lj4+2FF14oVd3F2bJli1WrVs1atWplCxcutB9++MHmzp1rDRs2tKSkJPvll1/MzKx169Z29913W2Zmpt+QnZ19xjXk5uYWmW9mZqa9/PLL5vF4bMaMGWZm9vDDD1tAQIANHTrUPv/8c8vIyLB58+ZZ9+7dfe+PxYsXW6VKley5556zrVu32uLFi61hw4Z2/fXX+5Y3bNgwS0hIsA8++MC2bNliEyZMsNDQUFu1alWp6j/V++Htt9+2wMBAu/vuu2316tWWkZFhr7zyikVFRdlf/vIXKygo8M1Lkk2aNKnItjh8+HCxy16+fLnVrl3bGjdubIMGDfKN/+KLLywiIsK6detmX375pW3bts1mzJhhiYmJ1rJlS8vNzfW1rVWrlo0ePdpvebt37/ZNd8v7+VT7hoKCAmvRooX96U9/suXLl9u3335r99xzj9WsWdMOHDhQomWcSEVs5x9++MEqV65sAwcOtL/97W9FaujUqZN5PB6rVKmS9e3b1zf+ySefNEkV9lqblf9nsV+/fmV6HNi0aZNlZmba119/bT169DCv12s//fTTSV/zM9GnTx8bNGiQRURE2A8//OAbn5GR4TsujRkzxu85Y8eO9R2XMjIyyqWusjh2rV271oKDg+3xxx+3zZs328KFC61+/fo2ZMiQcqnZrHTHqR9++MFmzZplkZGRNnz48HKrrbz2/99//7098cQTJsk++uijEtXihv3UHXfcYYmJieb1eu3QoUO+8YcPH7YLLrjAatasaXfccUdJN6+fU32uFixYYJmZmbZx40YbMGCABQUF2TfffFOqZZVEWX53mTBhgkVGRtr06dNty5YtNm3aNKtcubLNmTPnhMt3y/G/LNexpNt0yJAhFhISYk8//bRt3rzZNmzYYA8//LBVqlTJ7zvF8ceAY4f8/PzSvOynrUOHDjZp0iRbt26drVmzxjp16lQm30sApxFgAf/VqVMn6927t9+47t2726233uo3LiMjw8LCwuzXX3+15s2b2+TJk/2mFx60HnnkEWvXrp1v/KFDh8zr9dqjjz5aqgBr3759JskWLlxY7PSDBw9abGys3x9pxz/fzGzFihUmybZv3+6b9vXXX5sk+/77783M7Oabb7a//OUvfs9PS0uzGjVq+H3pPRPXXnut1ahRw++LpplZZmamhYeH27333mtmv/9hcOwXpPK2YcMGq1Klio0cOdLMzL788kuTVOwfsGb/t12ffvppu+iii/ymPf/881ajRg3f4+rVq9uLL77o16Zbt27Wq1ev067zVO+HAwcOWExMjHXv3r3ItDlz5pgkmz59um+cJJs9e3aJlr1//35LSkqy+fPn+70+BQUF1qBBA2vWrFmRL2hr1qwxj8djTz75pG9crVq1LC0trdhluOn9fKp9w6ZNm0ySrVu3zjf96NGjFh0dba+88sop538iFbGdzcxGjRplf/3rX23jxo0WGRnp9+V2//79VqVKFWvevLmFhYVZ06ZNfTUkJiaapAp7rSvis5iQkFCmx4HCmsz+7315sj8Mz8SBAwcsMjLSvv32W+vZs6c9/vjjfvUWHpeSkpL8nlevXj3fcak8AqyyOnaNGDHCmjVr5jdt9uzZFhoaajk5OWVac6EzOU51797dLr/88nKpqyL2/9HR0TZ48OBT1uKG/ZTZ7wFWt27dLDk52V5//XXf+DfeeMOSk5OtW7dupQqwSvK5Wr16tW9cTk6OSbLnn3/+tJd1Jkr73eXKK6+0oUOH+k0bNGiQXXXVVcU+z03H//Jax0LHb9MvvvjihK/t4MGDLSgoyPddpLhjgNN2795tkmzRokVOlwKcEU4hBP6rVatW+uSTT3xdk9euXaslS5bouuuu82v3v//7v+rUqZO8Xq9uvfVWTZw4sdj53XbbbVq8eLG2b98u6fcuzrVr19bll19eqvoqV66sypUr65133in2tISPP/5YP//8s4YNG1bs8y+44AJJUr169RQbG6uJEycqLy9Phw8f1sSJE9WwYUPVqlVLkpSbm6vQ0FC/54eFhWnnzp364YcfSlX/sfbu3auPP/5Y/fr1U1hYmN+0+Ph49erVS2+++abM7IyXdTp+/fVXXX/99WrdurX+8Y9/SPr9VKTKlSurX79+xT6ncLu2bNlSO3fu1Ny5c2Vm+umnnzRr1ix16tTJ1/ZE23XJkiWnXeup3g/z5s3TL7/8oqFDhxaZ1qVLF11yySWaNm3aaS9Xku6//3516tRJ7dq18xu/Zs0abdiwQYMHD1alSv6HlyZNmqhdu3YlXqab3s+n2jcUbv9jlxEQEKDg4OBSvbaFKmI7m5kmTZqkW2+9VfXr19cll1yiGTNm+NVw4YUXKj4+XhdddJHWrFmjnTt3as2aNdqxY4ckVdhrXRGfxUOHDpXpcaDQoUOHNGnSJElSUFDQSduW1ptvvql69eqpXr16uvXWWzVp0qQi+9CuXbtq3759vvflkiVLtHfvXnXp0qVcapLK7th1otfst99+08qVK8u87jM5Tq1du1aff/55ub3W5bn/z8/P14wZM7R3794S1e+G/dSx7rrrLt9nTfr9s9q7d+8SLac4JflcFTpy5IheeeUVSeX3OS/OmXx3OdHnavny5Tpy5EiR57np+F9e6ygVv02nTZumypUrq2/fvkXaDxkyREeOHNFbb71VklV0RHZ2tiQpOjra4UqAM+Rcdga4S0FBgQ0fPtw8Ho8FBgaax+MpcqpFfn6+JSYm2jvvvGNmZnv27LGgoCDbvHmzr82xv7pcf/31vl/rrrnmGnvuueds9uzZpT6FcNasWRYVFWWhoaHWsmVLGzFihK1du9bMzP71r3+ZJNu7d+8p57Nu3Tq7+OKLrVKlSlapUiWrX7++X7f4l19+2cLDw23BggWWn59vmzZtsvr165skW7p0aalqP9ayZctO2uNn3LhxJsl++ukna926tQUFBVlERITfkJ6efsZ1HCs/P986duxol156qd/piR07drTGjRuXaB6FpxsFBgaaJOvatavvNDaz33sCNWjQwL777jvLz8+3efPmWVhYmAUHB5eq5pO9HwpP7zrRr39du3a1Sy+91PdYkoWGhhbZzlu2bPF73rRp06xRo0a+UwuP/QV2+vTpRX6NPtbAgQMtLCzM97hWrVoWHBzst7znnnvOzNz1fj7VviEvL89q1aplN910k+3du9dyc3Nt7NixJslSUlJOOf/iVNR2njdvnlWtWtWOHDliZr/3TCv8VbqwhltvvdW6detmrVu3tvj4eOvdu7evhhPty8rjta6Iz2JQUFCZHgcK19Xj8Zgka9q0qV8dZally5a+nghHjhyx2NhYmz9/vpn59xRJTU21u+66y8zM7rrrLnvggQds9erV5XoKYVkcuz7++GOrVKmSTZ061Y4ePWo7d+60Vq1amaQip+uXhdIep4KDg02SVapUyWbNmlXmdRUqr/1/QECASbLo6Gi/93Rx3LCfKlTYA2vPnj0WEhJiGRkZtm3bNgsNDbU9e/aUugdWST5XYWFhFhERYZUqVTJJVrt2bd/ppeXtTL+7jBgxwuLj4+2rr76ygoICW7FihVWrVs0k2Y8//ujX1m3H//JYR7MTb9Nrr73WmjRpcsLleL1eu++++8ys6DGgcLjkkktOWW95KCgosC5dulirVq0cWT5QluiBBfzXm2++qddff11Tp07VqlWrNHnyZD3zzDOaPHmyr828efN08OBBdezYUZIUGxurlJQU/e///m+x8+zdu7fS09O1detWffHFF+rVq9cZ1XjjjTfqxx9/1Jw5c9ShQwctXLhQl19+udLT00vcW+nw4cPq3bu3rrrqKi1btkyff/65GjZsqOuuu06HDx+WJN19993q37+/OnfurODgYLVo0UJ//etfJf3es6S8Fa5L4cXue/XqpTVr1vgNN9xwQ5ku8+GHH9YXX3yhd999V1WqVPGrpSQX3d+wYYMGDhyoxx57TCtXrtRHH32kjIwMvwvKPvfcc0pKSlL9+vUVHBys/v3766677ir1Nj3Z++HY+otT3HqlpaUV2c6JiYm+6Tt27NCgQYP0+uuvF/k1sySKW+aDDz7ot7zbb7/9pHUfryLez6faNwQFBemtt97Sd999p+joaIWHh2vhwoXq2LFjqV7bitzOEydOVM+ePRUYGChJuvnmm/Xll19q4cKFvhqOXYdWrVpp8uTJ2rlzZ5nVUNLXuiI+i5LK9DiwePFirVq1StOmTVOtWrWUnp5eLj0zNm3apOXLl/ve14GBgerZs2exNfXp00czZ85UVlaWZs6ceUa9U0qqLI5dKSkpevrpp3XvvfcqJCREl1xyia9XXUUcl453ouPUF198oR49eqh379668cYby2355bX/nz9/vi677DKlpaWpbt26J1y+G/ZTxV2QOjY2Vp06ddLkyZM1adIkderUSbGxsaddn1Tyz9Wbb76p1atXa86cOapbt65effXVCuvlcqbfXR599FF17NhRLVq0UFBQkLp16+a72P2xnys3Hv/Leh0LnWiblqaexYsX+63jxx9/XOL5laX+/fvr66+/LnXPe8BVKjQuA1ysRo0aRa6J8o9//MPq1avne3zTTTeZJAsICPANHo/HEhIS7OjRo2bm3wPr6NGjVr16dWvTpo3ddNNNZmZn1AOrOH369LGaNWva22+/XaIeJa+++qpVq1bN7xoFubm5Fh4ebtOmTfNrW/grd25urs2dO9f3a/OZ+vnnn83j8dgTTzxR7PS7777boqKirKCgoEKugTV9+nQLCAgo9oK1AwcOtMqVK5+y18Stt95a5DpLixcvLvYXvsOHD9vOnTutoKDAhg0bZg0aNDjzlfiv498Pn3/+ebHtkpKSrFu3br7HKsE1sArfu8e+/yWZx+OxgIAA++qrr0ySvfHGG8U+v3379n6/Xp7sGhhuej+XZN9Q6Ndff/VdiPaPf/yj9evX75TzP15FbedffvnFQkJCrFKlSkWWdcMNN/hq8Hg8vh5Ehf9v3br1SXtglcdrXRGfxcDAwDI/DhRKT0+3unXr2m+//XbS+kvjwQcfLFJTpUqVLCQkxPbu3VvkWj3NmjWzNm3a2BVXXGFmVu49sIpzuseuQgUFBbZr1y47dOiQbdiwwSTZ8uXLy7y+MzlO5eXlWVJSkr366qtlXtfJlNX+f/PmzVa5cmVbv379CZflhv3UsGHDfO0Ke2CZmb3//vtWu3Ztq127tn3wwQdmZqXqgXW6nyszs4ULF1pMTEy53qyhUFl8dymUl5dnO3bssKNHj/ouen7scdWNx/+yXkezkm3TYy9GX2jXrl0mybdObroGVv/+/a1GjRq2detWp0sBygQ9sID/OnToUJHz9gMCAny3T//ll1/07rvvavr06UV6qRw4cEAffvhhkXkGBATotttu08KFC8vtV+4GDRro4MGDSklJUWxsrJ566qli2/3666+S/m89j/2VqPDx8beKDwgI0IUXXqjg4GBNmzZNV155papVq3bGNcfExKh9+/aaMGGCr5dMoaysLL3xxhvq2bNniX5ZO1Nr1qxR79699eSTT6pDhw5Fpt9yyy06cOCAJkyYUOzzj9+uxyr8Zc+O+zUxNDRUF154oY4ePaq33npL3bp1K4M1+d2x74fo6Gg9++yzRdrMmTNHmzdv1s0333xa827btq2++eYbv/d+s2bNfD0PLr/8ctWvX19paWlF3ktr167VggULSrxMN72fT7VvOJbX61XVqlW1efNmffXVV6V6bStqO7/xxhuqUaOG1q5d67es8ePHa8mSJVq9erXWrFmjLl26qE2bNr4aZs2apc8++8zXw6CiXuuK+CwGBgaW+XGg0G233aaCgoIT1l9aR48e1WuvvaZnn33Wr561a9eqVq1aeuONN4o8p3fv3uV6XCqJ0z12FfJ4PEpISFBYWJimTZumxMTEUl9b8mTO5DgVFBSkhx9+WI888ogOHTpU5rWdSFnt/+vWrasbb7xRI0aMOGEbN+ynJk+erKNHjxZ5zrXXXqu8vDzl5eUVe1wvidJ8riSpdevWatSokZ544olSLbekyuq7S6GgoCDVqFFDAQEBmj59ujp37uy3L3Tj8b+s1/FU2/Svf/2rDhw4oJdffrnItGeeeUZBQUHl2uvydJmZ+vfvr7ffflv/+c9/VKdOHadLAsqGwwEa4Bp33HGHXXjhhb7bp7/99tsWGxvr+4UvLS3NqlevXuztb2+55Rbf3VKO/9UlNzfX9uzZ47vbWWl7YP388892zTXX2JQpU2zt2rW2detWmzFjhsXFxfnumvXOO+9YUFCQ77bDGRkZtmLFCnvwwQetZ8+eZma2ceNGCwkJsfvuu882bNhg69ats1tvvdW8Xq+vd8KePXvspZdeso0bN9rq1att4MCBFhoaal9++eVp130i3333ncXGxtqf/vQnW7RokW3fvt0+/PBDa9So0QlvT37sUJJrI53Knj17rFatWnbdddcVe/vkwp40w4YNs4CAAHvwwQdt6dKltm3bNluwYIH95S9/8V0bY9KkSRYYGGgTJkywLVu22JIlS6xZs2b2xz/+0be8ZcuW2VtvvWVbtmyxzz77zP785z9bnTp1SvULXUneDzNnzrSAgAC7++67be3atZaRkWGvvvrqKW+jfuxwqtstH9/zYMmSJRYeHm7XX3+9ffnll/bDDz/43Ub72N4np7rrlFvez6faN5iZzZgxwz799FPbsmWLvfPOO1arVq1i7wBWWuWxnZs0aWIPPfRQkfE5OTkWEhLiu8ZTYc+GY2u47bbbfNf6qajX2qz8P4s333xzuRwHCj3//PNWrVo1O3jw4Am3xemaPXu2BQcH26+//lpk2sMPP2yXXXZZkZ4iR44csT179viuKVSePbDK6thlZvbUU0/Z119/bevWrbPRo0dbUFBQie+eWhqnc5w6vqdwbm6uVa9e3Z5++ukyr6s89v/Hb8evv/7aPB6PrVixosR1uWE/VSg7O9vv+kWn2wOrNJ+rQnPmzLGQkBDbuXNniZd3Osryu8umTZtsypQp9t1339mXX35pPXv2tOjo6BLtC5w+/pflOpZ0mw4aNMhCQkLsmWeese+//942btxoI0eOtEqVKvndnbDwGLBp06Yi8yqv6yAe77777jOv12sLFy70W/7xd1UFzjYEWMB/5eTk2KBBg6xmzZoWGhpqF110kY0cOdLXVTg5OfmEpwO99dZbFhgYaFlZWafsNlzaAOu3336z4cOH2+WXX25er9fCw8OtXr169sgjj/gdjFasWGHdu3e3qlWrWkhIiNWtW9fuuecev4uxzps3z6666irzer0WFRVlf/7zn+2LL77wTd+zZ4+1aNHCIiIiLDw83Nq2bWvLli077ZpPZdu2bXbnnXdafHy8BQUFWWJiog0YMMB+/vlnX5tjT1U6dujQocMZLz89Pb3YeRcOtWrV8rV988037eqrr7bIyEiLiIiwxo0b2+jRo/1e5+eff94aNGhgYWFhVr16devVq5ffF9iFCxfapZdeaiEhIRYTE2O33Xab7dq1q1S1l/T98Nlnn9m1115rXq/XgoODrUGDBvbMM8/4TnUqdKJtMHbs2JPWUdwfbl9//bXdeOONFhMTY0FBQXbxxRfbI488UuSP9lN9gTVzx/v5VPsGM7PnnnvOatSoYUFBQVazZk175JFHij3NoLTKejsXnu5xolOvunTpYl26dDGz4gOsbdu2WUhIiEmq0NfarHw/i+V9HDhw4IBFRUXZv/71r5Nui9PRuXNnu+6664qdtnLlSpPk+/dEF1guzwCrLI9d11xzjXm9XgsNDbXmzZvb3Llzy7ze45X0OFXcqe5PPPGEVa1a1fbv31+mNZXH/r+4ILB9+/bWsWPHEtflhv3UiZxugHUmn6uCggKrV6+e74LeZa0sv7ts2LDBLrvsMgsLC7MqVapYt27d7Ntvvy1RHW44/pfVOp7ONp04caI1a9bMwsLCLDw83Fq1amVz5szxm1/hMaC44djvJ+XpRMufNGlShSwfKC8eswq+Tz0AAAAAAABwGrgGFgAAAAAAAFyNAAsAAAAAAACuRoAFAAAAAAAAVyPAAgAAAAAAgKsRYAEAAAAAAMDVCLAAAAAAAADgagRYAAAAAAAAcDUCLAAAAAAAALgaARYAAAAAAABcjQALAAAAAAAArkaABQAAAAAAAFf7/2omRSpVwV2RAAAAAElFTkSuQmCC","text/plain":""},"metadata":{},"output_type":"display_data"}],"source":["rang_freq_with_labels('voy-words-20', get_words(voynich), top=20)"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2SElEQVR4nO3deXhU5cH+8fvMJJksJJOEkISYCQZlCSBbUGTRYkEqbqVardSt1PpKiwvmrVa0qz81rdalr1YUXutaKnVBqa9LcWMR2cKq7GsCBEJYMlnIJJnM74+ESMpiQpZnJuf7ua65JCcz6e2VY8/Nc57nOVYgEAgIAAAAtuEwHQAAAADtiwIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNhJkOEMpqa2u1Z88excbGyrIs03EAAEATBAIBlZaWKi0tTQ6HPcfCKIAtsGfPHnk8HtMxAADAaSgoKFB6errpGEZQAFsgNjZWUt0JFBcXZzgNAABoCq/XK4/H03AdtyMKYAscve0bFxdHAQQAIMTYefqWPW98AwAA2BgFEAAAwGYogAAAADZDAQQAALAZCiAAAIDNUAABAABshgIIAABgMxRAAAAAm6EAAgAA2AwFEAAAwGYogAAAADZDAQxStbUB0xEAAEAHRQEMQjuKy3Xp/yzQ6oLDpqMAAIAOiAIYhP74wQZt2Fuqa57/Um/m7TIdBwAAdDAUwCD06DX9NSYrWVU1tfrlG6v1+zlfq9pfazoWAADoICiAQSguMlzTbxyiu0b3kCS9tGiHbnxhiQ6U+QwnAwAAHQEFMEg5HJbuvrinnr8xWzERTi3edlBXPvOFvtpdYjoaAAAIcRTAIPe9vql6Z/IIZSbFaPfhI7p62iK9s3K36VgAACCEUQBDQI+UWL0zeYRG9eoiX02tpsxapYf/b51qmBcIAABOAwUwRLijwvXCzedq8kVnSZJmLNiun7y4TIfKqwwnAwAAoYYCGEKcDkv3fK+3nr1+sKIjnFq4pVhX/nWh1u3xmo4GAABCCAUwBF16Tle9/YvhykiMVsHBunmB763ZYzoWAAAIERTAENU7NU5zbh+hC3ok6Ui1X7fPXKk/frBBfh4hBwAAvgUFMITFR0fopYnn6bbvdJckPTdvqya+tEwlFdWGkwEAgGBGAQxxToelqeOy9D8TBiky3KH5m/bryr8u1KZ9paajAQCAIEUB7CCuHJCmt34+XOkJUdp5oELj//qFPvyq0HQsAAAQhGxdAHfv3q0bbrhBnTt3VnR0tAYOHKi8vDzTsU5b3zS35tw+UsPP6qyKKr8mvbZCf/5oo2qZFwgAAI5h2wJ46NAhjRgxQuHh4frggw+0bt06Pf7444qPjzcdrUUSYyL0yk/P0y0jMyVJz3y2RT97Zbm8lcwLBAAAdaxAIGDL4aH77rtPX3zxhRYsWHDaP8Pr9crtdqukpERxcXGtmK51zF65S/e9tVa+mlp1T4rR9JuydXZyrOlYAAAYFezX7/Zg2xHAOXPmaMiQIbrmmmuUnJysQYMGacaMGaf8jM/nk9frbfQKZj8YlK43Jw1XmjtS24rLNf6vizR33T7TsQAAgGG2LYDbtm3TtGnT1KNHD3300UeaNGmS7rzzTr3yyisn/Uxubq7cbnfDy+PxtGPi03NOultz7hipoZmJKvPV6NZXluupjzcxLxAAABuz7S3giIgIDRkyRIsWLWo4duedd2rZsmX68ssvT/gZn88nn8/X8LXX65XH4wmJIeRqf60e/r/1emnRDknSxX1S9MS1AxQbGW42GAAA7YxbwDYeAezatav69OnT6FhWVpby8/NP+hmXy6W4uLhGr1AR7nTo91f21WM/7K+IMIfmrtunHzy7SNv2l5mOBgAA2pltC+CIESO0cePGRsc2bdqkbt26GUrUPq4Z4tE/bxum1LhIbSkq0/f/+oU+3cC8QAAA7MS2BfDuu+/W4sWL9cgjj2jLli2aOXOmpk+frsmTJ5uO1uYGeuI1544ROvfMBJVW1uiWl5frr59tkU1nAwAAYDu2nQMoSe+9956mTp2qzZs3KzMzUzk5Obr11lub/PlQn0NQVVOrB9/7Wq8trrvtPa5fqv58zQDFuMIMJwMAoO2E+vW7Ndi6ALZURzmB/rE0X7999ytV+wPqlRKr6Tdlq1vnGNOxAABoEx3l+t0Str0FjG9MOC9Dr//XMCXHurRxX6mueHqh5m3abzoWAABoIxRASJKyuyXoX3eM1KCMeHkrazTxxaV6bt5W5gUCANABUQDRICUuUq//1/m67lyPagPSHz/YoDv+sVIVVTWmowEAgFZEAUQjrjCncq86Rw+N76cwh6X31hTq6mlfquBgheloAACglVAAcRzLsnTD+d0089bzldQpQusLvbrimYX657ICHSyvMh0PAAC0EKuAW8AOq4gKS45o0qt5Wr2rRJLksKTBGQn6blayxmSlqEdyJ1mWZTglAABNZ4fr97ehALaAXU6gymq/Zszfpve/2qv1hd5G3/MkRml07xSNzkrW0MzOighjUBkAENzscv0+FQpgC9jxBNp9+Ig+3VCkT9bv06KtB1RVU9vwvU6uMF3QI0mjs1J0Ua8u6tzJZTApAAAnZsfr93+iALaA3U+giqoaLdxcrE/WF+mTDUUqLvM1fM+ypEGeeI3OStGYrBT1TOFWMQAgONj9+i1RAFuEE+gbtbUBrd1dok/W79PH64u07j9uFacnRGl072SNzkrR0O6JcoU5DSUFANgd128KYItwAp1cYcmRupHB9fv0xX/cKo6JcOqCHl00OitZ556ZqK7xkRRCAEC74fpNAWwRTqCmqaiq0RdbDuiT9fv0yYYi7S/1HfeepE4R6uqOUld3pNLio5QWH6mu7m/+mRzrUpiTBSYAgJbj+k0BbBFOoOarrQ3oqz0l+nh9kT7bUKRN+0rlO2Z08GScDkspsS51jf+mJHZPitGgjAT1SO4kh4P5hQCApuH6TQFsEU6glgsEAjpUUa09h49oz+EjKiyp1J6SIyo8XKnCkiPac7hSe72V8tee/DSNdYVpgCdegzPiNSgjQYMy4hUfHdGO/xYAgFDC9ZsC2CKcQO3DXxvQ/lJfo2K4+/ARrS/0anVBiY5U+4/7zNHRwUEZ8RqckaCeKZ24hQwAkMT1W6IAtggnkHk1/lpt3FeqlfmHtSL/kFbmH9b24vLj3hcT4dQDl/XRj4dmGEgJAAgmXL8pgC3CCRScDpVXaWXBoYZSuLqgRGW+GoU5LL318+Ea4Ik3HREAYBDXbwpgi3AChQZ/bUB3vr5S/7emUN2TYvTenSMVHRFmOhYAwBCu3xKTotDhOR2WHh7fT6lxkdpWXK5H3l9vOhIAAEZRAGEL8dERevzaAZKk1xbn69MN+wwnAgDAHAogbGPE2Um6ZWSmJOneN9c0enYxAAB2QgGErdzzvV7qlRKr4rIq3ffWGjEFFgBgRxRA2EpkuFNPXTdQEU6HPl5fpNeXFZiOBABAu6MAwnayusbpnu/1kiQ9+K91J9w3EACAjowCCFu6ZWSmhnXvrCPVfk2ZtUrV/m9/HjEAAB0FBRC25HBYevzaAYqLDNPqgsN65tMtpiMBANBuKICwrbT4KD30g3MkSc98tkV5Ow8ZTgQAQPugAMLWrhyQpvED0+SvDSjnn6tU5qsxHQkAgDZHAYTt/eH7/XRGfJR2HqjQH+Z8rdpatoYBAHRsFEDYnjsqXI9fO0CWJb2Rt0tjnpynVxfvVEUVo4EAgI7JCrAT7mnjYdIdy6tf7tCjH25Uaf1t4LjIME0YmqGbhp2pM+KjDKcDALQWrt8UwBbhBOp4ynw1enN5gV5ctEM7D1RIkpwOS5f0S9VPR2RqcEa8LMsynBIA0BJcvymALcIJ1HH5awP6bEOR/vbFdi3aeqDheGZSjGJczhN+xmlZio4IU4zLWf/PMMVEOBXtClOnhmNOxdR/r0dyJyXHRbbXvxIAoB7XbynMdAAgGDkdlsb0SdGYPilaX+jVi19s1zur9rTqU0MsSxqamagrB5yhcf1SlRAT0Wo/GwCAU2EEsAX4G4S9HCjz6as9Xp3sPxl/bUDlVX5V+GpUXuVXua9G5VU1KvfVqMLnr/9z3T9LjlRr2/5vymSYw9IFPZI04uwkpSdEy5MYJU9itOIiw9vrXw8AbIPrNwWwRTiB0BIFByv03ppC/Wv1Hq0r9J7wPXGRYUqMiVB8dITio8OV1MmliSPOVN80dzunBYCOg+s3BbBFOIHQWrYUler9tXu1cV+pdh2sUMGhIzpYXnXC98a6wjTz1vN1TjolEABOB9dvCmCLcAKhLZX5alR4+IgOH6nW4YpqHa6o0qxlBVq+85Dio8P1j1vPV1ZXzjsAaC6u3xTAFuEEQnsrrazWjS8s1aqCw+ocE6FZtw3T2cmdTMcCgJDC9ZsngQAhJTYyXC9PPE990+J0oLxKP56xWDsPtN7KZACAPVAAgRDjjg7Xq7cMVa+UWBWV+nTT35Zqf6nPdCwAQAihAAIhKDEmQq/+7Dx5EqO080CFJr60VGU+nl0MAGga2xbA3//+97Isq9ErNTXVdCygyZJjI/XKT4eqc0yEvtrt1aRX81RVU2s6FgAgBNi2AEpS3759VVhY2PBau3at6UhAs2QmxejFiecqOsKphVuK9cs3Vp90o2oAAI6ydQEMCwtTampqw6tLly6mIwHN1j89Xs/dkK0wh6U5q/do2rytpiMBAIKcrQvg5s2blZaWpszMTF133XXatm3bKd/v8/nk9XobvYBgcGHPLnrw+/0kSX/+aKMWbi42nAgAEMxsWwCHDh2qV155RR999JFmzJihvXv3avjw4Tpw4MBJP5Obmyu3293w8ng87ZgYOLUJ53l0TXa6agPSna+v1O7DR0xHAgAEKTaCrldeXq6zzjpL9957r3Jyck74Hp/PJ5/vm+02vF6vPB6PrTeSRHCprPbr6mmL9PUerwaku/X3W89XJ1eY6VgAEFTYCFriylAvJiZG55xzjjZv3nzS97hcLrlcrnZMBTRPZLhTz92QrcufXqjVu0p07kMf63t9U/T9gWcoLT5KkhQR5tCZnaNlWZbhtAAAUyiA9Xw+n9avX68LLrjAdBSgRTyJ0Zp+Y7bue3uttheX651Ve/TOqj2N3nNxnxQ9PWGQIsOdhlICAEyy7S3gX/7yl7riiiuUkZGhoqIiPfTQQ5o3b57Wrl2rbt26NelnMISMYBYIBLR6V4neWblbH6/fp8pqvyTpcEW1amoDuqBHkmbcNIQSCMB2uH7beARw165dmjBhgoqLi9WlSxedf/75Wrx4cZPLHxDsLMvSQE+8Bnri9fsr+zYcX7SlWLe8vFwLNhdr4ovLNGnUWeqeFKOUuEhZlmRJCnPadn0YANiCbUcAWwN/g0CoWrr9oCa+uFTlVf4Tfr9/ultXDkjTZf27qqs7qp3TAUDb4vpNAWwRTiCEsrW7SjRt3hZt3lemnQcqVOU//jFyliWde2aivj8wTVcPTud2MYAOges3BbBFOIHQUfhrAyrz1UiSKqpq9PG6fZqzeo+W7TjU8J4z4qN037jeurx/V1YQAwhpXL8pgC3CCYSObvfhI3pv9R69vGiH9pRUSpKmjOmhKWN6Gk4GAKeP67eNnwQC4NudER+l275zlj7571G67cLukqRZywrE3xsBILRRAAF8q6gIp+6+uKciwx0qLKnUhr2lpiMBAFqAAgigSSLDnRpxVpIk6bONRYbTAABaggIIoMlG9U6WJH22gQIIAKGMAgigyS7q1UWSlLfzkEoqqg2nAQCcLgoggCZLT4hWz5ROqg1I8zfvNx0HAHCaKIAAmuWiXnW3gWcs2Ka3V+xiJBAAQhAFEECzjO2bKklas6tEOf9crR//72K2hQGAEEMBBNAs2d0SNPPWobrtwu5yhTn09R6v1uwqMR0LANAMFEAAzTb8rCRNvTRLl/SrGw18I6/AcCIAQHNQAAGctmuyPZKkOav2qLLabzgNAKCpKIAATtvwszorzR0pb2WN/r1un+k4AIAmogACOG0Oh6Wrs9MlSdPnb1XJEVYEA0AooAACaJHrzstQJ1eYvtrt1TXPLdL6Qi+rggEgyFEAAbTIGfFRmnXb+UqOdWnTvjKN+8sCjX58nvJ2HjIdDQBwEhRAAC3WN82t2ZNHaExWiiKcDm0rLteUWStZGAIAQYoCCKBVnBEfpf+9eYiWPTBGXd2RKjh4RM9+vtV0LADACVAAAbQqd3S4fnN5H0nSc/O26ulPNmvXoQrDqQAAx7ICzNY+bV6vV263WyUlJYqLizMdBwgagUBAP3t5uT7ZUNRwbFj3zro6O13j+qUqxhVmMB0Au+P6TQFsEU4g4OR8NX7NWbVHb63YpcXbDjYcj45w6soBaRqckaDkOJe+07OLLMsymBSA3XD9pgC2CCcQ0DQFByv0zsrdemvFLu040Ph28H9d2F33X5plKBkAO+L6TQFsEU4goHkCgYCWbD+ot/J2aa+3Ugs2F0uSnr8xW9/rm2o4HQC74PpNAWwRTiCgZR56b53+d+F2ucIcmnbDYH23d4rpSABsgOs3q4ABGPSrcb01JitZvppa3fpKnu55Y7XyD7BiGADaGgUQgDHhToem3ZCta4eky18b0Bt5u/Tdxz/XfW+tUcFBiiAAtBVuAbcAQ8hA61mRf0hPfbxZ8zftlySFOy1dP7SbBmXES5K6dY7RQE+8uYAAOgyu3xTAFuEEAlpf3s6DenLuZi3cUtzouGVJs38xghIIoMW4flMAW4QTCGg7CzcX65Uvd6i8qkaFhyu1rbhc552ZqFm3nc++gQBahOs3BbBFOIGA9lFYckSjHvtcvppa/TA7Xb+5rI/c0eGmYwEIUVy/WQQCIAR0dUfpV5f0lmVJb+bt0ugn5unnr+Vp7rp9pqMBQEiiAAIICT8dmak3bhums7rEqLjMpw++2qv//ucqlVZWm44GACGHAgggZAw5M1Hv33WB/nLdQEmSt7JGf1+SbzYUAISgMNMBAKA5XGFOfX/gGaqqqdU9b67Rk3M3aWtRmUb2SNKVA9JYIAIATcAIIICQNH7QGRrdu+4pIm/k7dJdr6/SlFmrdKTKbzoaAAQ9CiCAkBTudGjGTUP0+DUDdNWgM+R0WHp31R79aPqXqqymBALAqVAAAYQsh8PS1dnpeuJHA/X3nw1VfHS41uwq0Ytf7DAdDQCCGgUQQIdwfvfO+s1lfSRJz3y6WUWllYYTAUDwogAC6DB+MOgMDfDEq7zKrz9/tNF0HAAIWhRAAB2Gw2Hpt5fXjQK+kbdL6wu9hhMBQHCiANbLzc2VZVmaMmWK6SgAWiC7W4Iu699VgYA07i8LNHNJvnjiJQA0RgGUtGzZMk2fPl39+/c3HQVAK/jvi3sqzFG3H+D9s9fqqY83G04EAMHF9gWwrKxM119/vWbMmKGEhATTcQC0gu5dOmnWbcP0w+x0SdJfPtmsZz/fYjgVAAQP2xfAyZMn67LLLtOYMWNMRwHQirK7JejP1wzQry7pLUl69MONuujPn+uzDUWGkwGAebZ+FNzrr7+uFStWaNmyZU16v8/nk8/na/ja62WCORDsfj7qLPlq/Hrq483aXlyuiS8t00BPvP735iFK6uQyHQ8AjLDtCGBBQYHuuusuvfbaa4qMjGzSZ3Jzc+V2uxteHo+njVMCaA1TxvTU3Lsv1PndEyVJqwoO6+VFO8yGAgCDrIBNl8e98847+sEPfiCn09lwzO/3y7IsORwO+Xy+Rt+TTjwC6PF4VFJSori4uHbLDuD0BAIBPTl3k/7n07r5gLdekKmp47LkqF8wAsAevF6v3G63ra/ftr0FPHr0aK1du7bRsYkTJ6p379761a9+dVz5kySXyyWXi1tGQKiyLEt3jO6hd1fv0c4DFZqxYLsSYiL0i1Fnm44GAO3KtgUwNjZW/fr1a3QsJiZGnTt3Pu44gI4j3OnQnNtH6q+fbdH0+dv054826t9f71OvlFg99IN+CnfadmYMABvh/+kA2I47KlxTx/XWNdnpqg3UzQmctbxAT3/CfoEA7MG2cwBbA3MIgNAWCAS0ZPtBrcg/pEc/rHt28A+z0/Xg9/sqOsK2N0iADo/rNyOAAGzMsiyd372zfjHqbI0fmCZJejNvl2YuyTecDADaFgUQACQ9ctU56p0aK0n64Ku9htMAQNuiAAKApOiIML008TxJUt7OQ/rwq71ihgyAjooCCAD1Ut2RuvScVEnSpNfy9Pz8bYYTAUDbYBFICzCJFOh49pZU6spnFqqotG7T9winQ11iXfrHrecro3O04XQAWgPXb0YAAaCRVHekltw/Whf0SJIkVflrtfvwEV3/wmLdPWuVKqv9hhMCQMuxzwEA/AfLsvTyxPNUVOpT/sEK/XjGYhUcPKKCg7t1Ue9kXTkgzXREAGgRRgAB4AQcDkup7kidl5mod28fofSEKEnSy4t2qLaWmTMAQhsFEAC+Rd80t35/RV9JdSuEWRwCINRRAAGgCUb2SFL3pBhJ0p8+3KDn5201nAgATh8FEACaIDLcqbk531FmfQl8Yu4mHSjzGU4FAKeHAggATeR0WHr/zguUHOuSr6ZW768tNB0JAE4LBRAAmiEqwqkJ52VIklbmHzYbBgBOEwUQAJppYEa8JOntlbu1dleJ2TAAcBoogADQTIM9CQ1/fn4+i0EAhB4KIAA0kzs6XL+7oo8k6avdjAACCD0UQAA4DeMHniFJ2nGgQq8u3mk4DQA0D4+CA4DTkBAToW6do7XzQIWemrtJ3ZNiZEnyJEbLkxhtOh4AnJIVCAR4ptFp8nq9crvdKikpUVxcnOk4ANrZ/lKfzn3440bHIsMdmnfPRUqJizSUCsC34frNCCAAnLYusS499aOBem7eVtUGAiosqVRpZY0mvZanru5Idenk0tRLsxQZ7jQdFQAaoQACQAuMH3SGxg+qmw/42uKd+vU7X2ll/mGtrP9+9y6ddPPwM43lA4AToQACQCuZcF6GYiPD5D1SrSXbD+q9NYX63ZyvtaWoTP9vfD/T8QCgAQUQAFqJ02Hp+/Wrgy/qnaz31xaqNiC9uninvpuVrIt6JRtOCAB12AYGANpAekK0Nj40TkmdXJKkiS8u0+JtBwynAoA6FEAAaCPhTodyrzqn4evc99dr+vytYvMFAKZRAAGgDV3cJ0XP3ZAtSVq9q0SPvL9By3YcMpwKgN1RAAGgjY3tk6I/XnWO+qe7JUlfbuVWMACzKIAA0MYcDkvXnZehH53rkSR9ua3YcCIAdkcBBIB2cn73zpKkJdsPauSfPtXKfG4FAzCDAggA7aR7Uox6p8YqEJB2HTqiN/J2mY4EwKYogADQTizL0ru3j9BD9ZtCz1ySry1FZYZTAbAjCiAAtCNXmFNXDEhr+PqDtYUG0wCwKwogALQzd1S47r+0tyTp8bmbdKi8ynAiAHZDAQQAA77XN7Xhz/M37zeYBIAdWQG2pD9tXq9XbrdbJSUliouLMx0HQIi5983V+ufyXerkClN0hFOSlBAdoRk3DVFG52jD6YCOi+s3I4AAYMy4c7pKksp8NSoq9amo1KeN+0r13to9hpMB6OgYAWwB/gYBoKV2HapQyZFqSdLbK3brhYXb1dUdqbOTO6mTK0z3X5olTyKjgUBr4vothZkOAAB2lp4QrfSEuj9XVPn1wsLtKiypVGFJpSQpMylG917S22BCAB0RBRAAgsS5ZyZq5s+Gal9ppRZvPahZywv06YYixUWFKz4qXFcNTldEGDN3ALQcBRAAgsjws5MkSWnuKM1aXqANe0v1xw82SJKcDkvXDPGYjAegg+CvkgAQhM49M1E5F/fUD7PTldW1bo7SyoLDKvJWqshbKV+N33BCAKGMRSAtwCRSAO3h70t26oHZXzU6ltQpQp/kjJI7OtxQKiB0cf228QjgtGnT1L9/f8XFxSkuLk7Dhg3TBx98YDoWABznOz27KDUuUg5Lclh1x4rLqvTVnhKzwQCELNuOAP7rX/+S0+nU2WefLUl6+eWX9dhjj2nlypXq27dvk34Gf4MAYMLEF5fqs437dd6ZicpMitF153k0KCPBdCwgZHD9tvEI4BVXXKFLL71UPXv2VM+ePfXwww+rU6dOWrx4seloAHBKPVNiJUlLd9StFH7k/fWGEwEINawCluT3+/XGG2+ovLxcw4YNMx0HAE7pF6POVlp8lPIPVuiFhdu1uahM/tqAnEfvDwPAt7DtCKAkrV27Vp06dZLL5dKkSZM0e/Zs9enT56Tv9/l88nq9jV4A0N7c0eG6efiZ+sWosyRJhyuqNejBf6vgYIXhZABCha0LYK9evbRq1SotXrxYP//5z3XzzTdr3bp1J31/bm6u3G53w8vjYT8uAOYkxkRoSLe6uX/eyhot2X7QcCIAocK2i0BOZMyYMTrrrLP0/PPPn/D7Pp9PPp+v4Wuv1yuPx2PrSaQAzAoEAvr5ayv04dd7ddXgM3T90G4anBEvy+J2MHAyLAKx+QjgfwoEAo0K3n9yuVwN28YcfQGASZZlqVdq3aKQt1fs1tXTFmnuun2GUwEIdrZdBHL//fdr3Lhx8ng8Ki0t1euvv67PP/9cH374oeloANAsVw0+QyvyD2l9oVfFZVXasLdUY/ummo4FIIjZdgRw3759uvHGG9WrVy+NHj1aS5Ys0YcffqiLL77YdDQAaJZunWP06i1D9eOh3SRJf/1si8p8NYZTAQhmth0BfOGFF0xHAIBWdUZ8pCTJV1Or5+dt1X+P7WU4EYBgZdsRQADoaMad07Xhz9uLyw0mARDsKIAA0EHERYbrfyYMkiRt2Fuqfy4v0Kcb9qm2ls0eADRGAQSADiQ1ru428JaiMt375hr99KXl+nxTkeFUAIINBRAAOpDsbgn6yfAz9d3eyQ1lcNt+bgcDaIwCCAAdiNNh6fdX9tXffnKuLulXtxXMtuJybd1fpr0llYbTAQgWtl0FDAAdXeeYCEnSzCX5mrkkX5L0xLUDdNXgdJOxAAQBRgABoIManZWijMRouaPC5Qqr+7/7lfmHzYYCEBQYAQSADqpPWpzm33uRJOlvC7frwffW6VBFleFUAIIBBRAAbCAhJlyStGjrAd30t6WSpHCHpVsv7K7zu3c2GQ2AARRAALCBzKROkqSD5VWav2l/w/Hq2gAFELAhCiAA2MCAdLdm3jq0YSXwhr2lmj5/mw6Vc0sYsCMKIADYgGVZGn5WUsPXy3cc1PT523T4SJXKfDUNx52WpagIp4mIANoRBRAAbCguqm5OYMHBI+r3u48ajluW9NvL+2jiiExT0QC0A7aBAQAb6tY5Wj2SOx13PBCQFmwuNpAIQHtiBBAAbMgV5tRHUy5Ulb+24dhHX+/VXa+vUlllzSk+CaAjoAACgE05HJYiHd/M90uIrntyyKGKKu0tqVSMy6nYyHBT8QC0IW4BAwAkSZ0i68YENheV6fzcT5T9/z7WivxDhlMBaAsUQACAJCkrNU69U2MV7rRkWVKVv1arCw6bjgWgDVAAAQCSpKgIpz6ccqE2P3yprs32SJIqqvyGUwFoCxRAAMBxol11cwOP3SMQQMfBIhAAwHFiIuouD39fvFMffbVXknT5gDTlXNzTZCwArYQRQADAcXqk1O0R6K2s0bbicm0rLtfz87YaTgWgtTACCAA4zpUD0tQ7NU7eymqVVlbrpy8tl6+mVv7agJwOy3Q8AC1EAQQAHMeyLPVKjZUkHTlmIUhltV8xLi4dQKjjv2IAwCm5wr6ZLbR0x0G5o8LljgrXWV2Of5QcgNBAAQQAnJLDYSk6wqmKKr8mvris4fhzN2Trkn6pBpMBOF0sAgEAfKufjcxURmK0MhKj1an+FvCWolLDqQCcLgogAOBb5Yztpfn3XqT5916kH2anS5Iqq2sNpwJwuiiAAIBmcYXXXToqq3lKCBCqmAMIAGgWV1jdU0L2l/m0bX+ZJCkp1qW4yHCTsQA0AwUQANAsUeF1BfDdVXv07qo9Dcc+v2eUUuIiTUYD0ETcAgYANMuoXl3kSYxSbGSYYiPD5LCkI9V+bSkqMx0NQBMxAggAaJasrnFacO93G76+4umFWru7RFU1LAoBQgUjgACAFomo3yjaRwEEQgYFEADQIq6GAsiqYCBUcAsYANAiR0cAZ6/cra/3eBuOW5LG9k1RdrdEQ8kAnAwFEADQIonREZKkzzfu1+cb9zf63r/X7dNnvxxlIBWAU6EAAgBa5O6LeyotPkpV/m/mAB4qr9Ibebt0uKLKYDIAJ0MBBAC0iCcxWr/8Xq9Gx3YUl+uNvF2q9gcMpQJwKiwCAQC0uvD6eYHVflYGA8GIAggAaHXhTksSBRAIVtwCBgC0ughn3fhCbUD6bGORHFZdIQx3WMo+M6HhecIAzLBtAczNzdXbb7+tDRs2KCoqSsOHD9ef/vQn9erV69s/DAA4paNbw0jSxBeXNfretUPS9egPB7R3JADHsO0t4Hnz5mny5MlavHix5s6dq5qaGo0dO1bl5eWmowFAyIuOCNNt3+muPl3jGl5nxEdJkgoOHjGcDoAVCARYoiVp//79Sk5O1rx583ThhRc26TNer1dut1slJSWKi4tr44QAENreX1uoX/x9hc49M0FvTBpuOg5sjOu3jUcA/1NJSYkkKTGRHesBoC2EOY4uDGHcATDNtnMAjxUIBJSTk6ORI0eqX79+J32fz+eTz+dr+Nrr9Z70vQCAxsLrF4bU1LIyGDCNEUBJt99+u9asWaN//OMfp3xfbm6u3G53w8vj8bRTQgAIfWH1W8PUMAIIGGf7EcA77rhDc+bM0fz585Wenn7K906dOlU5OTkNX3u9XkogADRRmKNuzKG8qkYb95Ye9/3YyDCl1S8UAdC2bFsAA4GA7rjjDs2ePVuff/65MjMzv/UzLpdLLperHdIBQMcTEVY3Alhw8Ii+99T8E75nxk1DdHGflPaMBdiSbQvg5MmTNXPmTL377ruKjY3V3r17JUlut1tRUfwNFABaW980t7K7JWhH8fHbbZX6alRVU6tN+0opgEA7sG0BnDZtmiRp1KhRjY6/+OKL+slPftL+gQCgg4sMd+qtn594+5cHZq/V35fkMz8QaCe2LYBsfwgAwcNZv0WMnxXCQLtgFTAAwLiGAshfzoF2QQEEABh3dJPomloKINAeKIAAAOOc9VvE+JkDCLQLCiAAwLj6h4QwAgi0E9suAgEABI+jI4CvfLlDM5fmn/A9rjCH/nhVf13Wv2t7RgM6JEYAAQDGDUh3y2FJtQGpqqb2hK/SyhrNXbfXdFSgQ2AEEABg3OisFK34zcWqqPKf8PtvLN+lJz/epGpuEQOtggIIAAgK8dERio8+8fc6d4qQJNX42ScQaA3cAgYABL1wZ/02MawSBloFBRAAEPTC65cJVzECCLQKCiAAIOiF1RdARgCB1kEBBAAEvfD6J4VUMwIItAoKIAAg6B29BcwqYKB1sAoYABD0wuoXgRyuqNKCzftP+d7eqXHqEutqj1hAyKIAAgCCnivMKUnaeaBCN76w9JTvTerk0pL7R8tZf9sYwPEogACAoDcoI15j+6So4NCRk74nEAhow95SFZf5VFntV4yLSxxwMvzXAQAIepHhTk2/acgp31NVU6uev/5AklTDXEHglFgEAgDoEMKOueXrpwACp0QBBAB0CA4KINBkFEAAQIdxdBSQAgicGgUQANBhHF35W1PLhtHAqVAAAQAdhpMRQKBJKIAAgA6DAgg0DQUQANBhMAcQaBoKIACgw/hmDiAFEDgVNoIGAHQYRwvg/60p1Mr8w9/6/shwhy7uk6LYyPA2TgYEFwogAKDDiAqve2bwM59tafJnbvtOd00dl9VWkYCgRAEEAHQY943L0tsrdqkpN4B3FJdrc1GZikur2jwXEGwogACADuOSfqm6pF9qk947ff5WPfL+BgUCzBeE/bAIBABgSw6rbr5gLQUQNkQBBADY0jcF0HAQwAAKIADAluoXDMvPCCBsiAIIALAlR30DZA4g7IgCCACwJevoLeBaw0EAAyiAAABbcrIIBDZGAQQA2NLROYAsAoEdUQABALbENjCwMwogAMCWrIYRQAog7IcCCACwJaeDfQBhXxRAAIAtHb0FzDYwsCOeBQwAsKWjt4Arq/0qKq08rZ/RpZOrYTsZIJRQAAEAtnR0BHDZjkM67+FPTutnXNI3Vc/dmN2asYB2wS1gAIAtDcqIV2pcpCxLzX4dtXznQXP/AkAL2HoEcP78+XrssceUl5enwsJCzZ49W+PHjzcdCwDQDtITorX4/tGn9dlN+0o19sn5YvogQpWtRwDLy8s1YMAAPfPMM6ajAABCiIMtZBDibD0COG7cOI0bN850DABAiGl4jjD9DyHK1gWwuXw+n3w+X8PXXq/XYBoAgCk8RQShzta3gJsrNzdXbre74eXxeExHAgAYcPQWMP0PoYoC2AxTp05VSUlJw6ugoMB0JACAAZbYRBqhjVvAzeByueRyuUzHAAAY9s1zhM3mAE4XI4AAADSTw8EcQIQ2W48AlpWVacuWLQ1fb9++XatWrVJiYqIyMjIMJgMABDPmACLU2boALl++XBdddFHD1zk5OZKkm2++WS+99JKhVACAYMcqYIQ6WxfAUaNGMYEXANBsR58GxxUEoYo5gAAANJPFCCBCHAUQAIBmOnYOIHeSEIoogAAANNPROYASC0EQmiiAAAA007EFkNvACEUUQAAAmuub/sdCEIQkCiAAAM3kOKYAMgKIUEQBBACgmZgDiFBHAQQAoJmYA4hQZ+uNoAEAOB3H9D89OXeTIsJafzwlxhWmCedmKCEmotV/NkABBACgmcIcllxhDvlqajVjwfY2+9/x+wO6Y3SPNvv5sC8KIAAAzRTmdOjpCYP05bYDbfLzl+04qK92e1Xqq2mTnw9QAAEAOA1j+6ZqbN/UNvnZj7y/Xl/t9vKUEbQZFoEAABBkjk4xpP+hrVAAAQAINkefNWw2BTowCiAAAEHGOvZRI0AboAACABBkjm4zwy1gtBUKIAAAQaZhDiA3gdFGKIAAAAQpRgDRViiAAAAEGYspgGhjFEAAAILM0UUg7AOItkIBBAAgyFhsA4M2RgEEACDIsBE02hoFEACAYFM/BMgqYLQVCiAAAEGGNSBoaxRAAACCDBtBo61RAAEACDINq4AN50DHRQEEACDIMAKItkYBBAAgyHwzB5AGiLZBAQQAIMgwAoi2RgEEACBIUQDRViiAAAAEGYt9ANHGKIAAAAQpRgDRViiAAAAEGYudoNHGKIAAAAQZ9gFEW6MAAgAQZFgFjLZGAQQAIMgcvQPMIhC0FQogAABBxvqmAQJtggIIAECQYQ4g2hoFEACAIPPNHEAqINoGBRAAgCBF/UNboQACABBkGp4EQgNEG6EAAgAQZFgDgrZm+wL47LPPKjMzU5GRkcrOztaCBQtMRwIAAGhTti6As2bN0pQpU/TAAw9o5cqVuuCCCzRu3Djl5+ebjgYAsDEWgaCt2boAPvHEE7rlllv0s5/9TFlZWXrqqafk8Xg0bdo009EAADbGLWC0tTDTAUypqqpSXl6e7rvvvkbHx44dq0WLFp3wMz6fTz6fr+Frr9fbphkBAPZ0dBHIqvzDmvL6SsNpzLqkX6ou6dfVdIwOx7YFsLi4WH6/XykpKY2Op6SkaO/evSf8TG5urv7whz+0RzwAgI0lxERIknYfPqLdq44YTmPWmUkxFMA2YNsCeJTV8LydOoFA4LhjR02dOlU5OTkNX3u9Xnk8njbNBwCwn0v6puqJawfoYHmV6SjGDcpIMB2hQ7JtAUxKSpLT6TxutK+oqOi4UcGjXC6XXC5Xe8QDANhYRJhDVw1ONx0DHZhtF4FEREQoOztbc+fObXR87ty5Gj58uKFUAAAAbc+2I4CSlJOToxtvvFFDhgzRsGHDNH36dOXn52vSpEmmowEAALQZWxfAH/3oRzpw4IAefPBBFRYWql+/fnr//ffVrVs309EAAADajBVgl8nT5vV65Xa7VVJSori4ONNxAABAE3D9tvEcQAAAALuiAAIAANgMBRAAAMBmKIAAAAA2QwEEAACwGQogAACAzVAAAQAAbIYCCAAAYDMUQAAAAJux9aPgWuroQ1S8Xq/hJAAAoKmOXrft/DA0CmALlJaWSpI8Ho/hJAAAoLlKS0vldrtNxzCCZwG3QG1trfbs2aPY2FhZltWqP9vr9crj8aigoMC2zykMZvx+gh+/o+DG7yf4deTfUSAQUGlpqdLS0uRw2HM2HCOALeBwOJSent6m/xtxcXEd7j+8joTfT/DjdxTc+P0Ev476O7LryN9R9qy9AAAANkYBBAAAsBkKYJByuVz63e9+J5fLZToKToDfT/DjdxTc+P0EP35HHRuLQAAAAGyGEUAAAACboQACAADYDAUQAADAZiiAAAAANkMBDELPPvusMjMzFRkZqezsbC1YsMB0JNTLzc3Vueeeq9jYWCUnJ2v8+PHauHGj6Vg4idzcXFmWpSlTppiOgmPs3r1bN9xwgzp37qzo6GgNHDhQeXl5pmNBUk1NjX79618rMzNTUVFR6t69ux588EHV1taajoZWRgEMMrNmzdKUKVP0wAMPaOXKlbrgggs0btw45efnm44GSfPmzdPkyZO1ePFizZ07VzU1NRo7dqzKy8tNR8N/WLZsmaZPn67+/fubjoJjHDp0SCNGjFB4eLg++OADrVu3To8//rji4+NNR4OkP/3pT3ruuef0zDPPaP369Xr00Uf12GOP6emnnzYdDa2MbWCCzNChQzV48GBNmzat4VhWVpbGjx+v3Nxcg8lwIvv371dycrLmzZunCy+80HQc1CsrK9PgwYP17LPP6qGHHtLAgQP11FNPmY4FSffdd5+++OIL7mwEqcsvv1wpKSl64YUXGo5dffXVio6O1quvvmowGVobI4BBpKqqSnl5eRo7dmyj42PHjtWiRYsMpcKplJSUSJISExMNJ8GxJk+erMsuu0xjxowxHQX/Yc6cORoyZIiuueYaJScna9CgQZoxY4bpWKg3cuRIffLJJ9q0aZMkafXq1Vq4cKEuvfRSw8nQ2sJMB8A3iouL5ff7lZKS0uh4SkqK9u7daygVTiYQCCgnJ0cjR45Uv379TMdBvddff10rVqzQsmXLTEfBCWzbtk3Tpk1TTk6O7r//fi1dulR33nmnXC6XbrrpJtPxbO9Xv/qVSkpK1Lt3bzmdTvn9fj388MOaMGGC6WhoZRTAIGRZVqOvA4HAccdg3u233641a9Zo4cKFpqOgXkFBge666y79+9//VmRkpOk4OIHa2loNGTJEjzzyiCRp0KBB+vrrrzVt2jQKYBCYNWuWXnvtNc2cOVN9+/bVqlWrNGXKFKWlpenmm282HQ+tiAIYRJKSkuR0Oo8b7SsqKjpuVBBm3XHHHZozZ47mz5+v9PR003FQLy8vT0VFRcrOzm445vf7NX/+fD3zzDPy+XxyOp0GE6Jr167q06dPo2NZWVl66623DCXCse655x7dd999uu666yRJ55xzjnbu3Knc3FwKYAfDHMAgEhERoezsbM2dO7fR8blz52r48OGGUuFYgUBAt99+u95++219+umnyszMNB0Jxxg9erTWrl2rVatWNbyGDBmi66+/XqtWraL8BYERI0Yct3XSpk2b1K1bN0OJcKyKigo5HI2rgdPpZBuYDogRwCCTk5OjG2+8UUOGDNGwYcM0ffp05efna9KkSaajQXWLC2bOnKl3331XsbGxDaO1brdbUVFRhtMhNjb2uPmYMTEx6ty5M/M0g8Tdd9+t4cOH65FHHtG1116rpUuXavr06Zo+fbrpaJB0xRVX6OGHH1ZGRob69u2rlStX6oknntBPf/pT09HQytgGJgg9++yzevTRR1VYWKh+/frpySefZIuRIHGyuZgvvviifvKTn7RvGDTJqFGj2AYmyLz33nuaOnWqNm/erMzMTOXk5OjWW281HQuSSktL9Zvf/EazZ89WUVGR0tLSNGHCBP32t79VRESE6XhoRRRAAAAAm2EOIAAAgM1QAAEAAGyGAggAAGAzFEAAAACboQACAADYDAUQAADAZiiAAAAANkMBBAAAsBkKIAAAgM1QAAEAAGyGAggAAGAzFEAAAACboQACAADYDAUQAADAZiiAAAAANkMBBAAAsBkKIAAAgM1QAAEAAGyGAggAAGAzFEAAAACboQACAADYDAUQAADAZiiAAAAANkMBBAAAsBkKIAAAgM1QAAEAAGyGAggAAGAzFEAAAACboQACAADYDAUQAADAZiiAAAAANvP/AaFiaqrJfHMyAAAAAElFTkSuQmCC","text/plain":""},"metadata":{},"output_type":"display_data"}],"source":["log_rang_log_freq('voy-words-log-log', get_words(voynich))"]},{"cell_type":"markdown","metadata":{},"source":["### Język DNA\n\n"]},{"cell_type":"markdown","metadata":{},"source":["Kod genetyczny przejawia własności zaskakująco podobne do języków naturalnych.\nPrzede wszystkim ma charakter dyskretny, genotyp to ciąg symboli ze skończonego alfabetu.\nPodstawowe litery są tylko cztery, reprezentują one nukleotydy, z których zbudowana jest nić DNA:\na, g, c, t.\n\n"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":"TATAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTA"}],"source":["import requests\n\ndna_url = 'https://raw.githubusercontent.com/egreen18/NanO_GEM/master/rawGenome.txt'\ndna = requests.get(dna_url).content.decode('utf-8')\n\ndna = ''.join(dna.split('\\n')[1:])\ndna = dna.replace('N', 'A')\n\ndna[0:100]"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABLAAAAEsCAYAAADTvUpQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwBElEQVR4nO3df1iUdb7/8dcEMiLCBLJAY5R26ZIE9gM3JdvFPQVoItt2NjthJCeXbDWJ0GOZm6mb0JqiJz22ZRbmj2NHzVObxUJuaV5GEEmJGtamx18g7oqgZIAw3z827++OjLYWct8yz8d1zXUxn/vNzIu5rnuvfO3nvsfmcrlcAgAAAAAAACzqMrMDAAAAAAAAAOdDgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNIosAAAAAAAAGBpFFgAAAAAAACwNAosAAAAAAAAWBoFFgAAAAAAACyNAgsAAAAAAACWRoEFAAAAAAAAS6PAAgAAAAAAgKVRYAEAAAAAAMDSKLAAAAAAAABgaRRYAAAAAAAAsDQKLAAAAAAAAFgaBRYAAAAAAAAsjQILAAAAAAAAlkaBBQAAAAAAAEujwAIAAAAAAIClUWABAAAAAADA0iiwAAAAAAAAYGkUWAAAAAAAALA0CiwAAAAAAABYGgUWAAAAAAAALI0CCwAAAAAAAJZGgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNIosAAAAAAAAGBpFFgAAAAAAACwNAosAAAAAAAAWBoFFgAAAAAAACyNAgsAAAAAAACWRoEFAAAAAAAAS/M1OwC6nra2Nh0+fFiBgYGy2WxmxwEAAAAAdHEul0snTpyQ0+nUZZexV6crosBChzt8+LAiIyPNjgEAAAAA8DIHDhzQlVdeaXYMXAQUWOhwgYGBkv7+PxxBQUEmpwEAAAAAdHUNDQ2KjIw0/j2KrocCCx3uzGWDQUFBFFgAAAAAgE7DbWy6Li4MBQAAAAAAgKVRYAEAAAAAAMDSKLAAAAAAAABgaRRYAAAAAAAAsDQKLAAAAAAAAFgaBRYAAAAAAAAsjQILAAAAAAAAlkaBBQAAAAAAAEvzNTsAYKY+j280OwLwg+17ZqTZEQAAAADgoqLAAgB0OspjdAWUxwAAAJ2HSwgBAAAAAABgaRRYAAAAAAAAsDQKLAAAAAAAAFgaBRYAAAAAAAAsjQILAAAAAAAAlkaBBQAAAAAAAEujwAIAAAAAAIClUWABAAAAAADA0iiwAAAAAAAAYGkUWAAAAAAAALA0CiwAAAAAAABYGgUWAAAAAAAALI0CCwAAAAAAAJZGgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNIosAAAAAAAAGBpFFgAAAAAAACwNAosAAAAAAAAWBoFVifLy8uTzWZTdna2seZyuTRz5kw5nU75+/tr2LBh2rlzp9vvNTU1adKkSQoNDVVAQIBSU1N18OBBt5m6ujqlp6fL4XDI4XAoPT1dx48fd5vZv3+/Ro0apYCAAIWGhiorK0vNzc1uMzt27FBCQoL8/f3Vu3dvzZ49Wy6Xq0M/BwAAAAAAgH8WBVYnKisr04svvqiBAwe6rc+dO1f5+flavHixysrKFBERocTERJ04ccKYyc7O1oYNG7RmzRpt3bpVJ0+eVEpKilpbW42ZtLQ0VVRUqLCwUIWFhaqoqFB6erpxvLW1VSNHjlRjY6O2bt2qNWvWaP369Zo8ebIx09DQoMTERDmdTpWVlWnRokWaN2+e8vPzL+InAwAAAAAAcG6+ZgfwFidPntSYMWO0dOlSPf3008a6y+XSwoULNX36dN11112SpOXLlys8PFyrV6/W+PHjVV9fr2XLlmnFihW6/fbbJUkrV65UZGSk3n33XSUnJ2v37t0qLCxUSUmJBg8eLElaunSp4uPjVVVVpaioKBUVFWnXrl06cOCAnE6nJGn+/PnKyMjQnDlzFBQUpFWrVumbb75RQUGB7Ha7YmJitGfPHuXn5ysnJ0c2m62TPzkAAAAAAODt2IHVSSZOnKiRI0caBdQZe/fuVU1NjZKSkow1u92uhIQEbdu2TZJUXl6ulpYWtxmn06mYmBhj5sMPP5TD4TDKK0kaMmSIHA6H20xMTIxRXklScnKympqaVF5ebswkJCTIbre7zRw+fFj79u3z+Lc1NTWpoaHB7QEAAAAAANBRKLA6wZo1a/TJJ58oLy+v3bGamhpJUnh4uNt6eHi4caympkZ+fn4KDg4+70xYWFi71w8LC3ObOft9goOD5efnd96ZM8/PzJwtLy/PuO+Ww+FQZGSkxzkAAAAAAIDvgwLrIjtw4IAeeeQRrVy5Ut27dz/n3NmX5rlcru+8XO/sGU/zHTFz5gbu58ozbdo01dfXG48DBw6cNzcAAAAAAMCFoMC6yMrLy1VbW6u4uDj5+vrK19dXmzdv1nPPPSdfX99z7m6qra01jkVERKi5uVl1dXXnnTly5Ei79z969KjbzNnvU1dXp5aWlvPO1NbWSmq/S+wMu92uoKAgtwcAAAAAAEBHocC6yG677Tbt2LFDFRUVxmPQoEEaM2aMKioqdM011ygiIkLFxcXG7zQ3N2vz5s265ZZbJElxcXHq1q2b20x1dbUqKyuNmfj4eNXX16u0tNSY+eijj1RfX+82U1lZqerqamOmqKhIdrtdcXFxxsyWLVvU3NzsNuN0OtWnT5+O/4AAAAAAAAC+A99CeJEFBgYqJibGbS0gIEC9evUy1rOzs5Wbm6v+/furf//+ys3NVY8ePZSWliZJcjgcGjdunCZPnqxevXopJCREU6ZMUWxsrHFT+AEDBmj48OHKzMzUCy+8IEl68MEHlZKSoqioKElSUlKSoqOjlZ6ermeffVbHjh3TlClTlJmZaeyaSktL06xZs5SRkaEnnnhCX3zxhXJzczVjxgy+gRAAAAAAAJiCAssCpk6dqlOnTmnChAmqq6vT4MGDVVRUpMDAQGNmwYIF8vX11ejRo3Xq1CnddtttKigokI+PjzGzatUqZWVlGd9WmJqaqsWLFxvHfXx8tHHjRk2YMEFDhw6Vv7+/0tLSNG/ePGPG4XCouLhYEydO1KBBgxQcHKycnBzl5OR0wicBAAAAAADQns115g7dQAdpaGiQw+FQfX295e+H1efxjWZHAH6wfc+MNDvCBePcQ1dwKZ57AAB0VZfSv0Px/XAPLAAAAAAAAFgalxACAAB4AXY+oitg5yMAeC8KLAAAAAC4SCiP0RVQHsMKuIQQAAAAAAAAlkaBBQAAAAAAAEujwAIAAAAAAIClUWABAAAAAADA0iiwAAAAAAAAYGkUWAAAAAAAALA0CiwAAAAAAABYGgUWAAAAAAAALI0CCwAAAAAAAJZGgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNIosAAAAAAAAGBpvmYHsKrjx4+rtLRUtbW1amtrczt2//33m5QKAAAAAADA+1BgefDHP/5RY8aMUWNjowIDA2Wz2YxjNpuNAgsAAAAAAKATcQmhpP/5n//R//3f/xnPJ0+erAceeEAnTpzQ8ePHVVdXZzyOHTtmYlIAAAAAAADvQ4ElqWfPnvr5z3+ujz/+WJJ06NAhZWVlqUePHiYnAwAAAAAAAAWWpDvuuENvvPGGfvOb30iSkpOTjTILAAAAAAAA5uIeWN+KjY3Vli1bJEkjR47Uf/zHf2jXrl2KjY1Vt27d3GZTU1PNiAgAAAAAAOCVKLD+gb+/vyQpMzNTkjR79ux2MzabTa2trZ2aCwAAAAAAwJtRYHnQ1tZmdgQAAAAAAAB8i3tgfYdvvvnG7AgAAAAAAABejQLLg9bWVv3ud79T79691bNnT3311VeSpCeffFLLli0zOR0AAAAAAIB3ocDyYM6cOSooKNDcuXPl5+dnrMfGxuqll14yMRkAAAAAAID3ocDy4NVXX9WLL76oMWPGyMfHx1gfOHCgPv/8cxOTAQAAAAAAeB8KLA8OHTqkfv36tVtva2tTS0uLCYkAAAAAAAC8FwWWB9ddd50++OCDdutr167VjTfeaEIiAAAAAAAA7+VrdgAreuqpp5Senq5Dhw6pra1Nr7/+uqqqqvTqq6/qrbfeMjseAAAAAACAV2EHlgejRo3Sa6+9prfffls2m00zZszQ7t279cc//lGJiYlmxwMAAAAAAPAq7MA6h+TkZCUnJ5sdAwAAAAAAwOuxAwsAAAAAAACWxg6sb4WEhGjPnj0KDQ1VcHCwbDbbOWePHTvWickAAAAAAAC8GwXWtxYsWKDAwEBJ0sKFC80NAwAAAAAAAAMF1rfGjh3r8WcAAAAAAACYi3tgnUNra6vWrVun3/3ud3r66ae1fv16nT59+oJf5/nnn9fAgQMVFBSkoKAgxcfH65133jGOu1wuzZw5U06nU/7+/ho2bJh27tzp9hpNTU2aNGmSQkNDFRAQoNTUVB08eNBtpq6uTunp6XI4HHI4HEpPT9fx48fdZvbv369Ro0YpICBAoaGhysrKUnNzs9vMjh07lJCQIH9/f/Xu3VuzZ8+Wy+W64L8bAAAAAACgo1BgeVBZWakf//jHGjt2rDZs2KDXX39dY8eOVf/+/bVjx44Leq0rr7xSzzzzjD7++GN9/PHH+pd/+Rf94he/MEqquXPnKj8/X4sXL1ZZWZkiIiKUmJioEydOGK+RnZ2tDRs2aM2aNdq6datOnjyplJQUtba2GjNpaWmqqKhQYWGhCgsLVVFRofT0dON4a2urRo4cqcbGRm3dulVr1qzR+vXrNXnyZGOmoaFBiYmJcjqdKisr06JFizRv3jzl5+d/348SAAAAAADgB+MSQg9+/etf67rrrtPHH3+s4OBgSX/f4ZSRkaEHH3xQH3744T/9WqNGjXJ7PmfOHD3//PMqKSlRdHS0Fi5cqOnTp+uuu+6SJC1fvlzh4eFavXq1xo8fr/r6ei1btkwrVqzQ7bffLklauXKlIiMj9e677yo5OVm7d+9WYWGhSkpKNHjwYEnS0qVLFR8fr6qqKkVFRamoqEi7du3SgQMH5HQ6JUnz589XRkaG5syZo6CgIK1atUrffPONCgoKZLfbFRMToz179ig/P185OTnnvbE9AAAAAADAxcIOLA8+/fRT5eXlGeWVJAUHB2vOnDmqqKj43q/b2tqqNWvWqLGxUfHx8dq7d69qamqUlJRkzNjtdiUkJGjbtm2SpPLycrW0tLjNOJ1OxcTEGDMffvihHA6HUV5J0pAhQ+RwONxmYmJijPJKkpKTk9XU1KTy8nJjJiEhQXa73W3m8OHD2rdv3/f+uwEAAAAAAH4ICiwPoqKidOTIkXbrtbW16tev3wW/3o4dO9SzZ0/Z7XY99NBD2rBhg6Kjo1VTUyNJCg8Pd5sPDw83jtXU1MjPz8+tTPM0ExYW1u59w8LC3GbOfp/g4GD5+fmdd+bM8zMznjQ1NamhocHtAQAAAAAA0FEosDzIzc1VVlaW1q1bp4MHD+rgwYNat26dsrOz9fvf//6Ci5qoqChVVFSopKREv/nNbzR27Fjt2rXLOH72pXkul+s7L9c7e8bTfEfMnLmB+/ny5OXlGTePdzgcioyMPG92AAAAAACAC8E9sDxISUmRJI0ePdoobs4UOWfuaXWm+PnHG6mfi5+fn7Fza9CgQSorK9N//ud/6rHHHpP0991NV1xxhTFfW1tr7HyKiIhQc3Oz6urq3HZh1dbW6pZbbjFmPO0YO3r0qNvrfPTRR27H6+rq1NLS4jZz9k6r2tpaSe13if2jadOmKScnx3je0NBAiQUAAAAAADoMBZYH77333kV9fZfLpaamJvXt21cREREqLi7WjTfeKElqbm7W5s2b9fvf/16SFBcXp27duqm4uFijR4+WJFVXV6uyslJz586VJMXHx6u+vl6lpaW6+eabJUkfffSR6uvrjZIrPj5ec+bMUXV1tVGWFRUVyW63Ky4uzph54okn1NzcLD8/P2PG6XSqT58+5/x77Ha7232zAAAAAAAAOhIFlgcJCQkd9lpPPPGERowYocjISJ04cUJr1qzR+++/r8LCQtlsNmVnZys3N1f9+/dX//79lZubqx49eigtLU2S5HA4NG7cOE2ePFm9evVSSEiIpkyZotjYWONbCQcMGKDhw4crMzNTL7zwgiTpwQcfVEpKiqKioiRJSUlJio6OVnp6up599lkdO3ZMU6ZMUWZmpoKCgiRJaWlpmjVrljIyMvTEE0/oiy++UG5urmbMmME3EAIAAAAAANNQYJ3H119/rf3796u5udltfeDAgXK5XBozZoxWr1593tc4cuSI0tPTVV1dLYfDoYEDB6qwsFCJiYmSpKlTp+rUqVOaMGGC6urqNHjwYBUVFSkwMNB4jQULFsjX11ejR4/WqVOndNttt6mgoEA+Pj7GzKpVq5SVlWV8W2FqaqoWL15sHPfx8dHGjRs1YcIEDR06VP7+/kpLS9O8efOMGYfDoeLiYk2cOFGDBg1ScHCwcnJy3C4PBAAAAAAA6Gw215mbO8Fw9OhR/fu//7veeecdj8fz8vJ0++23a8SIER7vPeXtGhoa5HA4VF9fb+zusqo+j280OwLwg+17ZqTZES4Y5x66gkvt3OO8Q1dwqZ13EuceuoZL4dy7lP4diu+HbyH0IDs7W3V1dSopKZG/v78KCwu1fPly9e/fX2+++ab8/f01btw4PfTQQ2ZHBQAAAAAA6PK4hNCDP//5z3rjjTf0k5/8RJdddpmuvvpqJSYmKigoSHl5edq6dasmTZpkdkwAAAAAAACvwA4sDxobGxUWFiZJCgkJ0dGjRyVJsbGx+uSTT8yMBgAAAAAA4HUosDyIiopSVVWVJOmGG27QCy+8oEOHDukPf/iDrrjiCpPTAQAAAAAAeBcuIfQgOztb1dXVkqSnnnpKycnJWrVqlfz8/FRQUGBuOAAAAAAAAC9DgeXBmDFjjJ9vvPFG7du3T59//rmuuuoqhYaGmpgMAAAAAADA+3AJoQezZ8/W119/bTzv0aOHbrrpJgUEBGj27NkmJgMAAAAAAPA+FFgezJo1SydPnmy3/vXXX2vWrFkmJAIAAAAAAPBeFFgeuFwu2Wy2duuffvqpQkJCTEgEAAAAAADgvbgH1j8IDg6WzWaTzWbTj3/8Y7cSq7W1VSdPntRDDz1kYkIAAAAAAADvQ4H1DxYuXCiXy6UHHnhAs2bNksPhMI75+fmpT58+io+PNzEhAAAAAACA96HA+gdjx46VJPXt21dDhw6Vry8fDwAAAAAAgNm4B5YHgYGB2r17t/H8jTfe0J133qknnnhCzc3NJiYDAAAAAADwPhRYHowfP1579uyRJH311Ve655571KNHD61du1ZTp041OR0AAAAAAIB3ocDyYM+ePbrhhhskSWvXrlVCQoJWr16tgoICrV+/3txwAAAAAAAAXoYCywOXy6W2tjZJ0rvvvqs77rhDkhQZGam//vWvZkYDAAAAAADwOhRYHgwaNEhPP/20VqxYoc2bN2vkyJGSpL179yo8PNzkdAAAAAAAAN6FAsuDBQsWqLy8XA8//LCmT5+ufv36SZLWrVunW265xeR0AAAAAAAA3sXX7ABWdP3116uysrLd+rPPPisfHx8TEgEAAAAAAHgvdmB5kJGRoS1btrRb7969u7p162ZCIgAAAAAAAO9FgeXBiRMnlJSUpP79+ys3N1eHDh0yOxIAAAAAAIDXosDyYP369Tp06JAefvhhrV27Vn369NGIESO0du1atbS0mB0PAAAAAADAq1BgnUOvXr30yCOPaPv27SotLVW/fv10//33y+l06tFHH9UXX3xhdkQAAAAAAACvQIH1Haqrq1VUVKSioiL5+Pjojjvu0M6dOxUdHa0FCxaYHQ8AAAAAAKDLo8DyoKWlRevXr1dKSoquvvpqrV27Vo8++qiqq6u1fPlyFRUVacWKFZo9e7bZUQEAAAAAALo8X7MDWNEVV1yhtrY23XvvvSotLdUNN9zQbiY5OVmXX355p2cDAAAAAADwNhRYHixYsEB33323unfvfs6Z4OBg7d27txNTAQAAAAAAeCcuIfQgIiJCLpfL7BgAAAAAAAAQO7A8+td//Vc1NTUpLi5OCQkJGjZsmIYOHaqePXuaHQ0AAAAAAMDrsAPLg7q6Or3//vtKTU3V9u3bdffddyskJERDhgzR448/bnY8AAAAAAAAr0KB5YGPj4/i4+P1+OOPq7CwUNu2bVNaWprKy8v17LPPmh0PAAAAAADAq3AJoQe7d+/W5s2b9f7772vz5s1qbW3Vrbfeqvnz5yshIcHseAAAAAAAAF6FAsuD6667Tj/60Y+UnZ2tJ598Utddd53ZkQAAAAAAALwWlxB6kJWVpd69e2vmzJl64IEH9Nhjj+mdd97RyZMnzY4GAAAAAADgdSiwPFi4cKE++eQTHTlyRL/97W/V2tqqGTNmKDQ0VEOGDDE7HgAAAAAAgFehwDqPtrY2nT59Ws3NzWpqalJLS4v27dtndiwAAAAAAACvQoHlwSOPPKLrr79eYWFhGj9+vA4fPqwHH3xQn376qWpqasyOBwAAAAAA4FW4ibsHhw4dUmZmpoYNG6aYmBiz4wAAAAAAAHg1dmB5sG7dOj388MMdUl7l5eXpJz/5iQIDAxUWFqY777xTVVVVbjMul0szZ86U0+mUv7+/hg0bpp07d7rNNDU1adKkSQoNDVVAQIBSU1N18OBBt5m6ujqlp6fL4XDI4XAoPT1dx48fd5vZv3+/Ro0apYCAAIWGhiorK0vNzc1uMzt27FBCQoL8/f3Vu3dvzZ49Wy6X6wd/FgAAAAAAAN8HBdZFtnnzZk2cOFElJSUqLi7W6dOnlZSUpMbGRmNm7ty5ys/P1+LFi1VWVqaIiAglJibqxIkTxkx2drY2bNigNWvWaOvWrTp58qRSUlLU2tpqzKSlpamiokKFhYUqLCxURUWF0tPTjeOtra0aOXKkGhsbtXXrVq1Zs0br16/X5MmTjZmGhgYlJibK6XSqrKxMixYt0rx585Sfn3+RPykAAAAAAADPuITwIissLHR7/sorrygsLEzl5eX62c9+JpfLpYULF2r69Om66667JEnLly9XeHi4Vq9erfHjx6u+vl7Lli3TihUrdPvtt0uSVq5cqcjISL377rtKTk7W7t27VVhYqJKSEg0ePFiStHTpUsXHx6uqqkpRUVEqKirSrl27dODAATmdTknS/PnzlZGRoTlz5igoKEirVq3SN998o4KCAtntdsXExGjPnj3Kz89XTk6ObDZbJ356AAAAAAAA7MDqdPX19ZKkkJAQSdLevXtVU1OjpKQkY8ZutyshIUHbtm2TJJWXl6ulpcVtxul0KiYmxpj58MMP5XA4jPJKkoYMGSKHw+E2ExMTY5RXkpScnKympiaVl5cbMwkJCbLb7W4zhw8f5hsYAQAAAACAKSiwOpHL5VJOTo5uvfVW4/5aZ77VMDw83G02PDzcOFZTUyM/Pz8FBwefdyYsLKzde4aFhbnNnP0+wcHB8vPzO+/Mmefn+gbGpqYmNTQ0uD0AAAAAAAA6CgVWJ3r44Yf12Wef6b//+7/bHTv70jyXy/Wdl+udPeNpviNmztzA/Vx58vLyjBvHOxwORUZGnjc3AAAAAADAhaDA8qC1tVXz5s3TzTffrIiICIWEhLg9vo9JkybpzTff1Hvvvacrr7zSWI+IiJDUfndTbW2tsfMpIiJCzc3NqqurO+/MkSNH2r3v0aNH3WbOfp+6ujq1tLScd6a2tlZS+11iZ0ybNk319fXG48CBA+f5JAAAAAAAAC4MBZYHs2bNUn5+vkaPHq36+nrl5OTorrvu0mWXXaaZM2de0Gu5XC49/PDDev311/XnP/9Zffv2dTvet29fRUREqLi42Fhrbm7W5s2bdcstt0iS4uLi1K1bN7eZ6upqVVZWGjPx8fGqr69XaWmpMfPRRx+pvr7ebaayslLV1dXGTFFRkex2u+Li4oyZLVu2qLm52W3G6XSqT58+Hv9Gu92uoKAgtwcAAAAAAEBHocDyYNWqVVq6dKmmTJkiX19f3XvvvXrppZc0Y8YMlZSUXNBrTZw4UStXrtTq1asVGBiompoa1dTU6NSpU5L+flledna2cnNztWHDBlVWViojI0M9evRQWlqaJMnhcGjcuHGaPHmyNm3apO3bt+u+++5TbGys8a2EAwYM0PDhw5WZmamSkhKVlJQoMzNTKSkpioqKkiQlJSUpOjpa6enp2r59uzZt2qQpU6YoMzPTKJ3S0tJkt9uVkZGhyspKbdiwQbm5uXwDIQAAAAAAMI2v2QGsqKamRrGxsZKknj17Gt8cmJKSoieffPKCXuv555+XJA0bNsxt/ZVXXlFGRoYkaerUqTp16pQmTJiguro6DR48WEVFRQoMDDTmFyxYIF9fX40ePVqnTp3SbbfdpoKCAvn4+Bgzq1atUlZWlvFthampqVq8eLFx3MfHRxs3btSECRM0dOhQ+fv7Ky0tTfPmzTNmHA6HiouLNXHiRA0aNEjBwcHKyclRTk7OBf3dAAAAAAAAHYUCy4Mrr7xS1dXVuuqqq9SvXz8VFRXppptuUllZmex2+wW91pkboJ+PzWbTzJkzz3t5Yvfu3bVo0SItWrTonDMhISFauXLled/rqquu0ltvvXXemdjYWG3ZsuW8MwAAAAAAAJ2FSwg9+OUvf6lNmzZJkh555BE9+eST6t+/v+6//3498MADJqcDAAAAAADwLuzA8uCZZ54xfv7Vr36lK6+8Utu2bVO/fv2UmppqYjIAAAAAAADvQ4H1TxgyZIiGDBlidgwAAAAAAACvRIF1DlVVVVq0aJF2794tm82ma6+9VpMmTTK+0Q8AAAAAAACdg3tgebBu3TrFxMSovLxc119/vQYOHKhPPvlEMTExWrt2rdnxAAAAAAAAvAo7sDyYOnWqpk2bptmzZ7utP/XUU3rsscd09913m5QMAAAAAADA+7ADy4Oamhrdf//97dbvu+8+1dTUmJAIAAAAAADAe1FgeTBs2DB98MEH7da3bt2qn/70pyYkAgAAAAAA8F5cQvitN9980/g5NTVVjz32mMrLy41vHywpKdHatWs1a9YssyICAAAAAAB4JQqsb915553t1pYsWaIlS5a4rU2cOFEPPfRQJ6UCAAAAAAAABda32trazI4AAAAAAAAAD7gHlgf79+9XU1NTu3WXy6X9+/ebkAgAAAAAAMB7UWB50KdPH9100036y1/+4rZeW1urvn37mpQKAAAAAADAO1FgncOAAQN08803a9OmTW7rLpfLpEQAAAAAAADeiQLLA5vNpiVLlui3v/2tRo4cqeeee87tGAAAAAAAADoPN3H34Mwuq0cffVTXXnut7r33Xn322WeaMWOGyckAAAAAAAC8DwXWdxgxYoS2bdum1NRUlZaWmh0HAAAAAADA63AJoQcJCQny8/MznkdHR6u0tFTBwcHcAwsAAAAAAKCTsQPLg/fee6/dWkhIiDZv3mxCGgAAAAAAAO/GDiwP3n77bf3pT39qt15UVKR33nnHhEQAAAAAAADeiwLLg8cff1ytra3t1tva2vT444+bkAgAAAAAAMB7UWB58MUXXyg6Orrd+rXXXqsvv/zShEQAAAAAAADeiwLLA4fDoa+++qrd+pdffqmAgAATEgEAAAAAAHgvCiwPUlNTlZ2drb/85S/G2pdffqnJkycrNTXVxGQAAAAAAADehwLLg2effVYBAQG69tpr1bdvX/Xt21cDBgxQr169NG/ePLPjAQAAAAAAeBVfswNYkcPh0LZt21RcXKxPP/1U/v7+GjhwoH72s5+ZHQ0AAAAAAMDrUGCdg81mU1JSkpKSksyOAgAAAAAA4NUosL713HPP6cEHH1T37t313HPPnXc2Kyurk1IBAAAAAACAAutbCxYs0JgxY9S9e3ctWLDgnHM2m40CCwAAAAAAoBNRYH1r7969Hn8GAAAAAACAufgWQgAAAAAAAFgaO7C+lZOT80/P5ufnX8QkAAAAAAAA+EcUWN/avn37PzVns9kuchIAAAAAAAD8Iwqsb7333ntmRwAAAAAAAIAH3AMLAAAAAAAAlkaBBQAAAAAAAEujwAIAAAAAAIClUWABAAAAAADA0iiwOsGWLVs0atQoOZ1O2Ww2/e///q/bcZfLpZkzZ8rpdMrf31/Dhg3Tzp073Waampo0adIkhYaGKiAgQKmpqTp48KDbTF1dndLT0+VwOORwOJSenq7jx4+7zezfv1+jRo1SQECAQkNDlZWVpebmZreZHTt2KCEhQf7+/urdu7dmz54tl8vVYZ8HAAAAAADAhaDA6gSNjY26/vrrtXjxYo/H586dq/z8fC1evFhlZWWKiIhQYmKiTpw4YcxkZ2drw4YNWrNmjbZu3aqTJ08qJSVFra2txkxaWpoqKipUWFiowsJCVVRUKD093Tje2tqqkSNHqrGxUVu3btWaNWu0fv16TZ482ZhpaGhQYmKinE6nysrKtGjRIs2bN0/5+fkX4ZMBAAAAAAD4br5mB/AGI0aM0IgRIzwec7lcWrhwoaZPn6677rpLkrR8+XKFh4dr9erVGj9+vOrr67Vs2TKtWLFCt99+uyRp5cqVioyM1Lvvvqvk5GTt3r1bhYWFKikp0eDBgyVJS5cuVXx8vKqqqhQVFaWioiLt2rVLBw4ckNPplCTNnz9fGRkZmjNnjoKCgrRq1Sp98803KigokN1uV0xMjPbs2aP8/Hzl5OTIZrN1wicGAAAAAADw/7EDy2R79+5VTU2NkpKSjDW73a6EhARt27ZNklReXq6Wlha3GafTqZiYGGPmww8/lMPhMMorSRoyZIgcDofbTExMjFFeSVJycrKamppUXl5uzCQkJMhut7vNHD58WPv27fP4NzQ1NamhocHtAQAAAAAA0FEosExWU1MjSQoPD3dbDw8PN47V1NTIz89PwcHB550JCwtr9/phYWFuM2e/T3BwsPz8/M47c+b5mZmz5eXlGffdcjgcioyM/O4/HAAAAAAA4J9EgWURZ1+a53K5vvNyvbNnPM13xMyZG7ifK8+0adNUX19vPA4cOHDe3AAAAAAAABeCAstkERERktrvbqqtrTV2PkVERKi5uVl1dXXnnTly5Ei71z969KjbzNnvU1dXp5aWlvPO1NbWSmq/S+wMu92uoKAgtwcAAAAAAEBHocAyWd++fRUREaHi4mJjrbm5WZs3b9Ytt9wiSYqLi1O3bt3cZqqrq1VZWWnMxMfHq76+XqWlpcbMRx99pPr6ereZyspKVVdXGzNFRUWy2+2Ki4szZrZs2aLm5ma3GafTqT59+nT8BwAAAAAAAPAdKLA6wcmTJ1VRUaGKigpJf79xe0VFhfbv3y+bzabs7Gzl5uZqw4YNqqysVEZGhnr06KG0tDRJksPh0Lhx4zR58mRt2rRJ27dv13333afY2FjjWwkHDBig4cOHKzMzUyUlJSopKVFmZqZSUlIUFRUlSUpKSlJ0dLTS09O1fft2bdq0SVOmTFFmZqaxayotLU12u10ZGRmqrKzUhg0blJubyzcQAgAAAAAA0/iaHcAbfPzxx/r5z39uPM/JyZEkjR07VgUFBZo6dapOnTqlCRMmqK6uToMHD1ZRUZECAwON31mwYIF8fX01evRonTp1SrfddpsKCgrk4+NjzKxatUpZWVnGtxWmpqZq8eLFxnEfHx9t3LhREyZM0NChQ+Xv76+0tDTNmzfPmHE4HCouLtbEiRM1aNAgBQcHKycnx8gMAAAAAADQ2WyuM3foBjpIQ0ODHA6H6uvrLX8/rD6PbzQ7AvCD7XtmpNkRLhjnHrqCS+3c47xDV3CpnXcS5x66hkvh3LuU/h2K74dLCAEAAAAAAGBpFFgAAAAAAACwNAosAAAAAAAAWBoFFgAAAAAAACyNAgsAAAAAAACWRoEFAAAAAAAAS6PAAgAAAAAAgKVRYAEAAAAAAMDSKLAAAAAAAABgaRRYAAAAAAAAsDQKLAAAAAAAAFgaBRYAAAAAAAAsjQILAAAAAAAAlkaBBQAAAAAAAEujwAIAAAAAAIClUWABAAAAAADA0iiwAAAAAAAAYGkUWAAAAAAAALA0CiwAAAAAAABYGgUWAAAAAAAALI0CCwAAAAAAAJZGgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNIosAAAAAAAAGBpFFgAAAAAAACwNAosAAAAAAAAWBoFFgAAAAAAACyNAgsAAAAAAACWRoEFAAAAAAAAS6PAAgAAAAAAgKVRYAEAAAAAAMDSKLAAAAAAAABgaRRYAAAAAAAAsDQKLAAAAAAAAFgaBRYAAAAAAAAsjQILAAAAAAAAlkaBBY+WLFmivn37qnv37oqLi9MHH3xgdiQAAAAAAOClKLDQzmuvvabs7GxNnz5d27dv109/+lONGDFC+/fvNzsaAAAAAADwQhRYaCc/P1/jxo3Tr3/9aw0YMEALFy5UZGSknn/+ebOjAQAAAAAAL0SBBTfNzc0qLy9XUlKS23pSUpK2bdtmUioAAAAAAODNfM0OAGv561//qtbWVoWHh7uth4eHq6amxuPvNDU1qampyXheX18vSWpoaLh4QTtIW9PXZkcAfrBL4Vw7G+ceuoJL7dzjvENXcKmddxLnHrqGS+HcO5PR5XKZnAQXCwUWPLLZbG7PXS5Xu7Uz8vLyNGvWrHbrkZGRFyUbAHeOhWYnALwT5x7Q+TjvAHNcSufeiRMn5HA4zI6Bi4ACC25CQ0Pl4+PTbrdVbW1tu11ZZ0ybNk05OTnG87a2Nh07dky9evU6Z+kF79DQ0KDIyEgdOHBAQUFBZscBvAbnHtD5OO8Ac3Du4QyXy6UTJ07I6XSaHQUXCQUW3Pj5+SkuLk7FxcX65S9/aawXFxfrF7/4hcffsdvtstvtbmuXX375xYyJS0xQUBD/QQGYgHMP6Hycd4A5OPcgiZ1XXRwFFtrJyclRenq6Bg0apPj4eL344ovav3+/HnroIbOjAQAAAAAAL0SBhXbuuece/e1vf9Ps2bNVXV2tmJgYvf3227r66qvNjgYAAAAAALwQBRY8mjBhgiZMmGB2DFzi7Ha7nnrqqXaXmAK4uDj3gM7HeQeYg3MP8B42F98xCQAAAAAAAAu7zOwAAAAAAAAAwPlQYAEAAAAAAMDSKLAAAAAAAABgaRRYAAAAAAAAsDQKLAAXRU1NjSZNmqRrrrlGdrtdkZGRGjVqlDZt2mR2NKDLqqmp0SOPPKJ+/fqpe/fuCg8P16233qo//OEP+vrrr82OB3Q5NpvtvI+MjAyzIwJd2rZt2+Tj46Phw4ebHQVAJ/A1OwCArmffvn0aOnSoLr/8cs2dO1cDBw5US0uL/vSnP2nixIn6/PPPzY4IdDlfffWVcd7l5uYqNjZWp0+f1p49e/Tyyy/L6XQqNTXV7JhAl1JdXW38/Nprr2nGjBmqqqoy1vz9/c2IBXiNl19+WZMmTdJLL72k/fv366qrrjI7EoCLyOZyuVxmhwDQtdxxxx367LPPVFVVpYCAALdjx48f1+WXX25OMKALGz58uHbu3KnPP/+83XknSS6XSzabzYRkgHcoKChQdna2jh8/bnYUwCs0NjbqiiuuUFlZmZ566ilFR0drxowZZscCcBFxCSGADnXs2DEVFhZq4sSJHv8RTXkFdLy//e1vKioqOud5J4nyCgDQpbz22muKiopSVFSU7rvvPr3yyitibwbQtVFgAehQX375pVwul6699lqzowBe48x5FxUV5bYeGhqqnj17qmfPnnrsscdMSgcAQMdbtmyZ7rvvPkl/34V88uRJ7rUKdHEUWAA61Jn/54vdHkDnO/u8Ky0tVUVFha677jo1NTWZlAoAgI5VVVWl0tJS/du//ZskydfXV/fcc49efvllk5MBuJi4iTuADtW/f3/ZbDbt3r1bd955p9lxAK/Qr18/2Wy2dl+QcM0110jiRtIAgK5l2bJlOn36tHr37m2suVwudevWTXV1dQoODjYxHYCLhR1YADpUSEiIkpOT9V//9V9qbGxsd5yb2wIdr1evXkpMTNTixYs9nncAAHQVp0+f1quvvqr58+eroqLCeHz66ae6+uqrtWrVKrMjArhIKLAAdLglS5aotbVVN998s9avX68vvvhCu3fv1nPPPaf4+Hiz4wFd0pIlS3T69GkNGjRIr732mnbv3q2qqiqtXLlSn3/+uXx8fMyOCADAD/bWW2+prq5O48aNU0xMjNvjV7/6lZYtW2Z2RAAXic3FVzUAuAiqq6s1Z84cvfXWW6qurtaPfvQjxcXF6dFHH9WwYcPMjgd0SdXV1crNzdXGjRt18OBB2e12RUdH6+6779aECRPUo0cPsyMCXVZBQYGys7PZaQxcZKNGjVJbW5s2btzY7tgnn3yiuLg4lZeX66abbjIhHYCLiQILAAAAAAAAlsYlhAAAAAAAALA0CiwAAAAAAABYGgUWAAAAAAAALI0CCwAAAAAAAJZGgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNIosAAAAAAAAGBpFFgAAAAAAACwNAosAAAAAAAAWBoFFgAAAAAAACzt/wHC7ROMdRsXcgAAAABJRU5ErkJggg==","text/plain":""},"metadata":{},"output_type":"display_data"}],"source":["rang_freq_with_labels('dna-chars', get_characters(dna))"]},{"cell_type":"markdown","metadata":{},"source":["#### Tryplety — znaczące cząstki genotypu\n\n"]},{"cell_type":"markdown","metadata":{},"source":["Nukleotydy rzeczywiście są jak litery, same w sobie nie niosą\nznaczenia. Dopiero ciągi trzech nukleotydów, *tryplety*, kodują jeden\nz dwudziestu aminokwasów.\n\n"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABLAAAAEsCAYAAADTvUpQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9HUlEQVR4nO3de1hU9b7H8c8EgogwgQRE4qU0UtEuVEq2A1NBN4hd9rYTRllutU2JpB7TPBlWonkvOXYxDfOSZWal7gg1MQlJQ6lM0txqooFaIl4yQJzzR4/rNKLuGLG1pPfreeZ5nLW+rPnMqFw+/NYam8PhcAgAAAAAAACwqMvMDgAAAAAAAACcDwUWAAAAAAAALI0CCwAAAAAAAJZGgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNIosAAAAAAAAGBpFFgAAAAAAACwNAosAAAAAAAAWBoFFgAAAAAAACyNAgsAAAAAAACWRoEFAAAAAAAAS6PAAgAAAAAAgKVRYAEAAAAAAMDSKLAAAAAAAABgaRRYAAAAAAAAsDQKLAAAAAAAAFgaBRYAAAAAAAAsjQILAAAAAAAAlkaBBQAAAAAAAEujwAIAAAAAAIClUWABAAAAAADA0iiwAAAAAAAAYGkUWAAAAAAAALA0CiwAAAAAAABYGgUWAAAAAAAALI0CCwAAAAAAAJZGgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNIosAAAAAAAAGBpFFgAAAAAAACwNAosAAAAAAAAWBoFFgAAAAAAACzN3ewAqH9OnTqlH374QT4+PrLZbGbHAQAAAADUcw6HQ0ePHlVISIguu4y1OvURBRbq3A8//KDQ0FCzYwAAAAAA/mSKi4vVtGlTs2PgIqDAQp3z8fGR9OsnDl9fX5PTAAAAAADquyNHjig0NNT4eRT1DwUW6tzp0wZ9fX0psAAAAAAAfxguY1N/cWIoAAAAAAAALI0CCwAAAAAAAJZGgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNIosAAAAAAAAGBpFFgAAAAAAACwNAosAAAAAAAAWJq72QEAM7UYucLsCNo9Ic7sCAAAAAAAWBorsAAAAAAAAGBprMACLM7sVWKsEAMAAAAAmI0VWAAAAAAAALA0CiwAAAAAAABYGgUWAAAAAAAALI0CCwAAAAAAAJZGgQUAAAAAAABL410IAVww3ikRAAAAAHAxsQILAAAAAAAAlkaBBQAAAAAAAEujwLKAtLQ02Ww2p1twcLCx3+FwKC0tTSEhIfLy8lJ0dLS++eYbp2NUVFRo8ODBCggIkLe3txISErR3716nmbKyMiUlJclut8tutyspKUmHDx92mtmzZ4969eolb29vBQQEKCUlRZWVlRftuQMAAAAAAPwnFFgW0a5dO5WUlBi3r7/+2tg3ceJETZ06VRkZGdq4caOCg4PVvXt3HT161JhJTU3V0qVLtWjRIuXm5urYsWOKj49XdXW1MZOYmKjCwkJlZWUpKytLhYWFSkpKMvZXV1crLi5Ox48fV25urhYtWqQlS5Zo2LBhf8yLAAAAAAAAcBZcxN0i3N3dnVZdneZwODR9+nSNHj1a99xzjyRp7ty5CgoK0sKFCzVo0CCVl5dr9uzZmjdvnrp16yZJmj9/vkJDQ7Vq1SrFxsaqqKhIWVlZys/PV8eOHSVJs2bNUmRkpLZt26awsDBlZ2dr69atKi4uVkhIiCRpypQp6tevn8aNGydfX98/6NUAAAAAAAD4f6zAsojvvvtOISEhatmypf7rv/5LO3fulCTt2rVLpaWliomJMWY9PT0VFRWlvLw8SVJBQYGqqqqcZkJCQhQeHm7MrF+/Xna73SivJKlTp06y2+1OM+Hh4UZ5JUmxsbGqqKhQQUHBObNXVFToyJEjTjcAAAAAAIC6QoFlAR07dtSbb76pjz/+WLNmzVJpaaluu+02/fTTTyotLZUkBQUFOX1MUFCQsa+0tFQeHh7y8/M770xgYGCNxw4MDHSaOfNx/Pz85OHhYcyczfjx443ratntdoWGhtbyFQAAAAAAADg3CiwL6Nmzp+699161b99e3bp104oVKyT9eqrgaTabzeljHA5HjW1nOnPmbPOuzJxp1KhRKi8vN27FxcXnzQUAAAAAAFAbFFgW5O3trfbt2+u7774zrot15gqoAwcOGKulgoODVVlZqbKysvPO7N+/v8ZjHTx40GnmzMcpKytTVVVVjZVZv+Xp6SlfX1+nGwAAAAAAQF2hwLKgiooKFRUV6corr1TLli0VHByslStXGvsrKyu1du1a3XbbbZKkiIgINWjQwGmmpKREW7ZsMWYiIyNVXl6uDRs2GDOff/65ysvLnWa2bNmikpISYyY7O1uenp6KiIi4qM8ZAAAAAADgXHgXQgsYPny4evXqpWbNmunAgQN6/vnndeTIET300EOy2WxKTU1Venq6WrdurdatWys9PV2NGjVSYmKiJMlut6t///4aNmyYmjRpIn9/fw0fPtw4JVGS2rRpox49emjAgAF69dVXJUkDBw5UfHy8wsLCJEkxMTFq27atkpKSNGnSJB06dEjDhw/XgAEDWFUFAAAAAABMQ4FlAXv37tX999+vH3/8UVdccYU6deqk/Px8NW/eXJI0YsQInThxQsnJySorK1PHjh2VnZ0tHx8f4xjTpk2Tu7u7+vTpoxMnTqhr167KzMyUm5ubMbNgwQKlpKQY71aYkJCgjIwMY7+bm5tWrFih5ORkde7cWV5eXkpMTNTkyZP/oFcCAAAAAACgJpvD4XCYHQL1y5EjR2S321VeXm75lVstRq4wO4J2T4g7736zM/6nfNKlkREAAABA/XUp/RwK13ANLAAAAAAAAFgaBRYAAAAAAAAsjQILAAAAAAAAlkaBBQAAAAAAAEujwAIAAAAAAIClUWABAAAAAADA0iiwAAAAAAAAYGkUWAAAAAAAALA0CiwAAAAAAABYGgUWAAAAAAAALI0CCwAAAAAAAJZGgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNLczQ4AABdbi5ErzI6g3RPizI4AAAAAAJcsCiwAsACzSzYKNgAAAABWximEAAAAAAAAsDQKLAAAAAAAAFgaBRYAAAAAAAAsjQILAAAAAAAAlkaBBQAAAAAAAEujwAIAAAAAAIClUWABAAAAAADA0iiwAAAAAAAAYGkUWAAAAAAAALA0CiwAAAAAAABYmrvZAS5lhw8f1oYNG3TgwAGdOnXKad+DDz5oUioAAAAAAID6hQLLRcuWLVPfvn11/Phx+fj4yGazGftsNhsFFgAAAAAAQB3hFMLf6Z133tH3339v3B82bJgeeeQRHT16VIcPH1ZZWZlxO3TokIlJAQAAAAAA6hcKrN+pcePG6tKli7744gtJ0r59+5SSkqJGjRqZnAwAAAAAAKB+o8D6nf7617/qgw8+0D//+U9JUmxsrFFm1bXx48fLZrMpNTXV2OZwOJSWlqaQkBB5eXkpOjpa33zzjdPHVVRUaPDgwQoICJC3t7cSEhK0d+9ep5mysjIlJSXJbrfLbrcrKSlJhw8fdprZs2ePevXqJW9vbwUEBCglJUWVlZUX5bkCAAAAAAD8J1wDqxbat2+vTz/9VJIUFxen//7v/9bWrVvVvn17NWjQwGk2ISHBpcfYuHGjXnvtNXXo0MFp+8SJEzV16lRlZmbq2muv1fPPP6/u3btr27Zt8vHxkSSlpqZq2bJlWrRokZo0aaJhw4YpPj5eBQUFcnNzkyQlJiZq7969ysrKkiQNHDhQSUlJWrZsmSSpurpacXFxuuKKK5Sbm6uffvpJDz30kBwOh2bMmOHScwIAAAAAALgQFFi15OXlJUkaMGCAJOnZZ5+tMWOz2VRdXV3rYx87dkx9+/bVrFmz9PzzzxvbHQ6Hpk+frtGjR+uee+6RJM2dO1dBQUFauHChBg0apPLycs2ePVvz5s1Tt27dJEnz589XaGioVq1apdjYWBUVFSkrK0v5+fnq2LGjJGnWrFmKjIzUtm3bFBYWpuzsbG3dulXFxcUKCQmRJE2ZMkX9+vXTuHHj5OvrW+vnBQAAAAAAcCE4hdBFp06dOufNlfJKkh577DHFxcUZBdRpu3btUmlpqWJiYoxtnp6eioqKUl5eniSpoKBAVVVVTjMhISEKDw83ZtavXy+73W6UV5LUqVMn2e12p5nw8HCjvJJ+PV2yoqJCBQUFZ81dUVGhI0eOON0AAAAAAADqCgVWHfjll18u+BiLFi3Spk2bNH78+Br7SktLJUlBQUFO24OCgox9paWl8vDwkJ+f33lnAgMDaxw/MDDQaebMx/Hz85OHh4cxc6bx48cb19Sy2+0KDQ39PU8ZAAAAAADgd6HAclF1dbWee+45XXXVVWrcuLF27twpSXr66ac1e/bsWh2ruLhYQ4YM0fz589WwYcNzztlsNqf7DoejxrYznTlztnlXZn5r1KhRKi8vN27FxcXnzQQAAAAAAFAbFFguGjdunDIzMzVx4kR5eHgY29u3b6/XX3+9VscqKCjQgQMHFBERIXd3d7m7u2vt2rV66aWX5O7ubqyIOnMF1IEDB4x9wcHBqqysVFlZ2Xln9u/fX+PxDx486DRz5uOUlZWpqqqqxsqs0zw9PeXr6+t0AwAAAAAAqCsUWC5688039dprr6lv377GO/xJUocOHfTtt9/W6lhdu3bV119/rcLCQuN28803q2/fviosLNTVV1+t4OBgrVy50viYyspKrV27VrfddpskKSIiQg0aNHCaKSkp0ZYtW4yZyMhIlZeXa8OGDcbM559/rvLycqeZLVu2qKSkxJjJzs6Wp6enIiIiavW8AAAAAAAA6gLvQuiiffv2qVWrVjW2nzp1SlVVVbU6lo+Pj8LDw522eXt7q0mTJsb21NRUpaenq3Xr1mrdurXS09PVqFEjJSYmSpLsdrv69++vYcOGqUmTJvL399fw4cPVvn1746Lwbdq0UY8ePTRgwAC9+uqrkqSBAwcqPj5eYWFhkqSYmBi1bdtWSUlJmjRpkg4dOqThw4drwIABrKwCAAAAAACmoMByUbt27bRu3To1b97cafvixYt144031vnjjRgxQidOnFBycrLKysrUsWNHZWdny8fHx5iZNm2a3N3d1adPH504cUJdu3ZVZmam0wqxBQsWKCUlxXi3woSEBGVkZBj73dzctGLFCiUnJ6tz587y8vJSYmKiJk+eXOfPCQAAAAAA4PegwHLRM888o6SkJO3bt0+nTp3Se++9p23btunNN9/U8uXLL/j4OTk5TvdtNpvS0tKUlpZ2zo9p2LChZsyYoRkzZpxzxt/fX/Pnzz/vYzdr1qxOngMAAAAAAEBdoMByUa9evfT2228rPT1dNptNY8aM0U033aRly5ape/fuZscDgDrXYuQKUx9/94Q4Ux8fAAAAgHkosC5AbGysYmNjzY4BAAAAAABQr/EuhAAAAAAAALA0VmDVgr+/v7Zv366AgAD5+fnJZrOdc/bQoUN/YDIAAAAAAID6iwKrFqZNm2a869/06dPNDQMAAAAAAPAnQYFVCw899NBZ/wwAAAAAAICLhwLrAlRXV2vp0qUqKiqSzWZTmzZt1Lt3b7m787ICAAAAAADUFZoWF23ZskW9e/dWaWmpwsLCJEnbt2/XFVdcoQ8//FDt27c3OSEAAAAAAED9wLsQuugf//iH2rVrp71792rTpk3atGmTiouL1aFDBw0cONDseAAAAAAAAPUGK7Bc9OWXX+qLL76Qn5+fsc3Pz0/jxo3TLbfcYmIyAAAAAACA+oUVWC4KCwvT/v37a2w/cOCAWrVqZUIiAAAAAACA+okCy0Xp6elKSUnRu+++q71792rv3r169913lZqaqhdeeEFHjhwxbgAAAAAAAHAdpxC6KD4+XpLUp08f2Ww2SZLD4ZAk9erVy7hvs9lUXV1tTkgAAAAAAIB6gALLRWvWrDE7AgAAAAAAwJ8CBZaLoqKizI4AAAAAAADwp0CBdYF+/vln7dmzR5WVlU7bO3ToIIfDob59+2rhwoUmpQMAAAAAALj0UWC56ODBg3r44Yf10UcfnXX/+PHj1a1bN61evfoPTgYAAAAAAFC/8C6ELkpNTVVZWZny8/Pl5eWlrKwszZ07V61bt9aHH34oLy8v9e/fX48++qjZUQEAAAAAAC5prMBy0SeffKIPPvhAt9xyiy677DI1b95c3bt3l6+vr8aPH6/c3FwNHjzY7JgAAAAAAACXPFZguej48eMKDAyUJPn7++vgwYOSpPbt22vTpk1mRgMAAAAAAKhXKLBcFBYWpm3btkmSbrjhBr366qvat2+fXnnlFV155ZUmpwMAAAAAAKg/OIXQRampqSopKZEkPfPMM4qNjdWCBQvk4eGhzMxMc8MBAAAAAADUIxRYLurbt6/x5xtvvFG7d+/Wt99+q2bNmikgIMDEZAAAAAAAAPULpxC66Nlnn9XPP/9s3G/UqJFuuukmeXt769lnnzUxGQAAAAAAQP1CgeWisWPH6tixYzW2//zzzxo7dqwJiQAAAAAAAOonCiwXORwO2Wy2Gtu//PJL+fv7m5AIAAAAAACgfuIaWLXk5+cnm80mm82ma6+91qnEqq6u1rFjx/Too4+amBAAAAAAAKB+ocCqpenTp8vhcOiRRx7R2LFjZbfbjX0eHh5q0aKFIiMjTUwIAAAAAABQv1Bg1dJDDz0kSWrZsqU6d+4sd3deQgAAAAAAgIuJa2C5yMfHR0VFRcb9Dz74QHfddZeeeuopVVZWmpgMAAAAAACgfqHActGgQYO0fft2SdLOnTt13333qVGjRlq8eLFGjBhRq2O9/PLL6tChg3x9feXr66vIyEh99NFHxn6Hw6G0tDSFhITIy8tL0dHR+uabb5yOUVFRocGDBysgIEDe3t5KSEjQ3r17nWbKysqUlJQku90uu92upKQkHT582Glmz5496tWrl7y9vRUQEKCUlBQKOQAAAAAAYCoKLBdt375dN9xwgyRp8eLFioqK0sKFC5WZmaklS5bU6lhNmzbVhAkT9MUXX+iLL77QnXfeqd69exsl1cSJEzV16lRlZGRo48aNCg4OVvfu3XX06FHjGKmpqVq6dKkWLVqk3NxcHTt2TPHx8aqurjZmEhMTVVhYqKysLGVlZamwsFBJSUnG/urqasXFxen48ePKzc3VokWLtGTJEg0bNuwCXikAAAAAAIALwwWcXORwOHTq1ClJ0qpVqxQfHy9JCg0N1Y8//lirY/Xq1cvp/rhx4/Tyyy8rPz9fbdu21fTp0zV69Gjdc889kqS5c+cqKChICxcu1KBBg1ReXq7Zs2dr3rx56tatmyRp/vz5Cg0N1apVqxQbG6uioiJlZWUpPz9fHTt2lCTNmjVLkZGR2rZtm8LCwpSdna2tW7equLhYISEhkqQpU6aoX79+GjdunHx9fV1/wQAAAAAAAFzECiwX3XzzzXr++ec1b948rV27VnFxcZKkXbt2KSgoyOXjVldXa9GiRTp+/LgiIyO1a9culZaWKiYmxpjx9PRUVFSU8vLyJEkFBQWqqqpymgkJCVF4eLgxs379etntdqO8kqROnTrJbrc7zYSHhxvllSTFxsaqoqJCBQUF58xcUVGhI0eOON0AAAAAAADqCgWWi6ZNm6aCggI9/vjjGj16tFq1aiVJevfdd3XbbbfV+nhff/21GjduLE9PTz366KNaunSp2rZtq9LSUkmqUYoFBQUZ+0pLS+Xh4SE/P7/zzgQGBtZ43MDAQKeZMx/Hz89PHh4exszZjB8/3riult1uV2hoaC2fPQAAAAAAwLlxCqGLrr/+em3ZsqXG9kmTJsnNza3WxwsLC1NhYaEOHz6sJUuW6KGHHtLatWuN/TabzWne4XDU2HamM2fONu/KzJlGjRqloUOHGvePHDlCiQUAAAAAAOoMK7Bc1K9fP3366ac1tjds2FANGjSo9fE8PDzUqlUr3XzzzRo/fryuv/56vfjiiwoODpakGiugDhw4YKyWCg4OVmVlpcrKys47s3///hqPe/DgQaeZMx+nrKxMVVVV5z0t0tPT03gHxdM3AAAAAACAukKB5aKjR48qJiZGrVu3Vnp6uvbt21enx3c4HKqoqFDLli0VHByslStXGvsqKyu1du1a41TFiIgINWjQwGmmpKREW7ZsMWYiIyNVXl6uDRs2GDOff/65ysvLnWa2bNmikpISYyY7O1uenp6KiIio0+cHAAAAAADwe1FguWjJkiXat2+fHn/8cS1evFgtWrRQz549tXjxYlVVVdXqWE899ZTWrVun3bt36+uvv9bo0aOVk5Ojvn37ymazKTU1Venp6Vq6dKm2bNmifv36qVGjRkpMTJQk2e129e/fX8OGDdPq1au1efNmPfDAA2rfvr3xroRt2rRRjx49NGDAAOXn5ys/P18DBgxQfHy8wsLCJEkxMTFq27atkpKStHnzZq1evVrDhw/XgAEDWFUFAAAAAABMwzWwLkCTJk00ZMgQDRkyRJs3b9acOXP04IMPqnHjxnrggQeUnJys1q1b/8fj7N+/X0lJSSopKZHdbleHDh2UlZWl7t27S5JGjBihEydOKDk5WWVlZerYsaOys7Pl4+NjHGPatGlyd3dXnz59dOLECXXt2lWZmZlO1+NasGCBUlJSjHcrTEhIUEZGhrHfzc1NK1asUHJysjp37iwvLy8lJiZq8uTJdfWSAcBF02LkCrMjaPeEOLMjAAAAAPUSBVYdKCkpUXZ2trKzs+Xm5qa//vWv+uabb9S2bVtNnDhRTzzxxHk/fvbs2efdb7PZlJaWprS0tHPONGzYUDNmzNCMGTPOOePv76/58+ef97GaNWum5cuXn3cGAOAas0s2CjYAAABcqjiF0EVVVVVasmSJ4uPj1bx5cy1evFhPPPGESkpKNHfuXGVnZ2vevHl69tlnzY4KAAAAAABwSWMFlouuvPJKnTp1Svfff782bNigG264ocZMbGysLr/88j88GwAAAAAAQH1CgeWiadOm6e9//7saNmx4zhk/Pz/t2rXrD0wFAAAAAABQ/3AKoYuCg4PlcDjMjgEAAAAAAFDvsQLLRffee68qKioUERGhqKgoRUdHq3PnzmrcuLHZ0QAAAAAAAOoVVmC5qKysTDk5OUpISNDmzZv197//Xf7+/urUqZNGjhxpdjwAAAAAAIB6gwLLRW5uboqMjNTIkSOVlZWlvLw8JSYmqqCgQJMmTTI7HgAAAAAAQL3BKYQuKioq0tq1a5WTk6O1a9equrpat99+u6ZMmaKoqCiz4wEAAAAAANQbFFguateuna644gqlpqbq6aefVrt27cyOBAAAAAAAUC9xCqGLUlJSdNVVVyktLU2PPPKInnzySX300Uc6duyY2dEAAAAAAADqFQosF02fPl2bNm3S/v379T//8z+qrq7WmDFjFBAQoE6dOpkdDwAAAAAAoN6gwLpAp06d0smTJ1VZWamKigpVVVVp9+7dZscCAAAAAACoNyiwXDRkyBBdf/31CgwM1KBBg/TDDz9o4MCB+vLLL1VaWmp2PAAAAAAAgHqDi7i7aN++fRowYICio6MVHh5udhwAAAAAAIB6iwLLRe+++67ZEQAAAAAAAP4UOIUQAAAAAAAAlkaBBQAAAAAAAEujwAIAAAAAAIClUWABAAAAAADA0iiwAAAAAAAAYGm8C6GLqqurNW3aNL3zzjvas2ePKisrnfYfOnTIpGQAALimxcgVZkfQ7glxZkcAAACABbECy0Vjx47V1KlT1adPH5WXl2vo0KG65557dNlllyktLc3seAAAAAAAAPUGBZaLFixYoFmzZmn48OFyd3fX/fffr9dff11jxoxRfn6+2fEAAAAAAADqDQosF5WWlqp9+/aSpMaNG6u8vFySFB8frxUrzD8FAwAAAAAAoL6gwHJR06ZNVVJSIklq1aqVsrOzJUkbN26Up6enmdEAAAAAAADqFQosF919991avXq1JGnIkCF6+umn1bp1az344IN65JFHTE4HAAAAAABQf/AuhC6aMGGC8ee//e1vatq0qfLy8tSqVSslJCSYmAwAAAAAAKB+ocCqI506dVKnTp3MjgEAAAAAAFDvUGBdgG3btmnGjBkqKiqSzWbTddddp8GDByssLMzsaAAAAAAAAPUG18By0bvvvqvw8HAVFBTo+uuvV4cOHbRp0yaFh4dr8eLFZscDAAAAAACoNyiwXDRixAiNGjVK69ev19SpUzV16lTl5eXpqaee0pNPPlmrY40fP1633HKLfHx8FBgYqLvuukvbtm1zmnE4HEpLS1NISIi8vLwUHR2tb775xmmmoqJCgwcPVkBAgLy9vZWQkKC9e/c6zZSVlSkpKUl2u112u11JSUk6fPiw08yePXvUq1cveXt7KyAgQCkpKaqsrKzVcwIAAAAAAKgrFFguKi0t1YMPPlhj+wMPPKDS0tJaHWvt2rV67LHHlJ+fr5UrV+rkyZOKiYnR8ePHjZmJEydq6tSpysjI0MaNGxUcHKzu3bvr6NGjxkxqaqqWLl2qRYsWKTc3V8eOHVN8fLyqq6uNmcTERBUWFiorK0tZWVkqLCxUUlKSsb+6ulpxcXE6fvy4cnNztWjRIi1ZskTDhg2r1XMCAAAAAACoK1wDy0XR0dFat26dWrVq5bQ9NzdXf/nLX2p1rKysLKf7b7zxhgIDA1VQUKA77rhDDodD06dP1+jRo3XPPfdIkubOnaugoCAtXLhQgwYNUnl5uWbPnq158+apW7dukqT58+crNDRUq1atUmxsrIqKipSVlaX8/Hx17NhRkjRr1ixFRkZq27ZtCgsLU3Z2trZu3ari4mKFhIRIkqZMmaJ+/fpp3Lhx8vX1den1AgCgLrQYucLsCNo9Ic7sCAAAAH86FFi18OGHHxp/TkhI0JNPPqmCggLj3Qfz8/O1ePFijR079oIep7y8XJLk7+8vSdq1a5dKS0sVExNjzHh6eioqKkp5eXkaNGiQCgoKVFVV5TQTEhKi8PBw5eXlKTY2VuvXr5fdbjfKK+nXd0+02+3Ky8tTWFiY1q9fr/DwcKO8kqTY2FhVVFSooKBAXbp0qZG3oqJCFRUVxv0jR45c0PMHAAAAAAD4LQqsWrjrrrtqbJs5c6ZmzpzptO2xxx7To48+6tJjOBwODR06VLfffrvCw8MlyTglMSgoyGk2KChI33//vTHj4eEhPz+/GjOnP760tFSBgYE1HjMwMNBp5szH8fPzk4eHxzlPjRw/fvwFl3YAANQXZq8SY4UYAACoj7gGVi2cOnXqd91+e82p2nr88cf11Vdf6a233qqxz2azOd13OBw1tp3pzJmzzbsy81ujRo1SeXm5cSsuLj5vJgAAAAAAgNqgwHLRnj17nE6bO83hcGjPnj0uHXPw4MH68MMPtWbNGjVt2tTYHhwcLEk1VkAdOHDAWC0VHBysyspKlZWVnXdm//79NR734MGDTjNnPk5ZWZmqqqpqrMw6zdPTU76+vk43AAAAAACAusIphC5q0aKF2rRpow8//FDXXHONsf3AgQNq2bJlrVZhORwODR48WEuXLlVOTo5atmzptL9ly5YKDg7WypUrdeONN0qSKisrtXbtWr3wwguSpIiICDVo0EArV65Unz59JEklJSXasmWLJk6cKEmKjIxUeXm5NmzYoFtvvVWS9Pnnn6u8vFy33XabMTNu3DiVlJToyiuvlCRlZ2fL09NTERERrrxUAADAQsw+xVHiNEcAAFB7FFgXoE2bNrr11lv1zjvvqGvXrsZ2h8NRq+M89thjWrhwoT744AP5+PgYK6Dsdru8vLxks9mUmpqq9PR0tW7dWq1bt1Z6eroaNWqkxMREY7Z///4aNmyYmjRpIn9/fw0fPlzt27c33pWwTZs26tGjhwYMGKBXX31VkjRw4EDFx8crLCxMkhQTE6O2bdsqKSlJkyZN0qFDhzR8+HANGDCAlVUAAOAPQckGAADORIHlIpvNppkzZ2rBggWKi4vTxIkTlZKSYuyrjZdfflmSFB0d7bT9jTfeUL9+/SRJI0aM0IkTJ5ScnKyysjJ17NhR2dnZ8vHxMeanTZsmd3d39enTRydOnFDXrl2VmZkpNzc3Y2bBggVKSUkx3q0wISFBGRkZxn43NzetWLFCycnJ6ty5s7y8vJSYmKjJkyfX6jkBAADUZ2aXbBRsAIA/GwosF51eZfXEE0/ouuuu0/3336+vvvpKY8aMcflY52Oz2ZSWlqa0tLRzzjRs2FAzZszQjBkzzjnj7++v+fPnn/exmjVrpuXLl//HTAAAAAAAAH8ECqw60LNnT+Xl5SkhIUEbNmwwOw4AAAD+5MxeISaxSgwAULd4F0IXRUVFycPDw7jftm1bbdiwQX5+frW+BhYAAAAAAADOjRVYLlqzZk2Nbf7+/lq7dq0JaQAAAAAAAOovVmC56F//+pc+/vjjGtuzs7P10UcfmZAIAAAAAACgfqLActHIkSNVXV1dY/upU6c0cuRIExIBAAAAAADUTxRYLvruu+/Utm3bGtuvu+467dixw4REAAAAAAAA9RMFlovsdrt27txZY/uOHTvk7e1tQiIAAAAAAID6iQLLRQkJCUpNTdW///1vY9uOHTs0bNgwJSQkmJgMAAAAAACgfqHActGkSZPk7e2t6667Ti1btlTLli3Vpk0bNWnSRJMnTzY7HgAAAAAAQL3hbnaAS5XdbldeXp5WrlypL7/8Ul5eXurQoYPuuOMOs6MBAAAAltdi5ApTH3/3hDhTHx8AUDsUWBfAZrMpJiZGMTExZkcBAAAAAACotyiwauGll17SwIED1bBhQ7300kvnnU1JSfmDUgEAAAAAANRvFFi1MG3aNPXt21cNGzbUtGnTzjlns9kosAAAAAAAAOoIBVYt7Nq166x/BgAAAAAAwMVDgQUAAAAAZ8GF5gHAOiiwamHo0KG/e3bq1KkXMQkAAAAAAMCfBwVWLWzevPl3zdlstoucBAAAAAAA4M+DAqsW1qxZY3YEAAAAAACAP53LzA4AAAAAAAAAnA8FFgAAAAAAACyNAgsAAAAAAACWRoEFAAAAAAAAS+Mi7gAAAABwCWoxcoXZEbR7QpzZEQD8SbACCwAAAAAAAJZGgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNIosAAAAAAAAGBpFFgAAAAAAACwNAosAAAAAAAAWBoFlgV8+umn6tWrl0JCQmSz2fT+++877Xc4HEpLS1NISIi8vLwUHR2tb775xmmmoqJCgwcPVkBAgLy9vZWQkKC9e/c6zZSVlSkpKUl2u112u11JSUk6fPiw08yePXvUq1cveXt7KyAgQCkpKaqsrLwYTxsAAAAAAOB3ocCygOPHj+v6669XRkbGWfdPnDhRU6dOVUZGhjZu3Kjg4GB1795dR48eNWZSU1O1dOlSLVq0SLm5uTp27Jji4+NVXV1tzCQmJqqwsFBZWVnKyspSYWGhkpKSjP3V1dWKi4vT8ePHlZubq0WLFmnJkiUaNmzYxXvyAAAAAAAA/4G72QEg9ezZUz179jzrPofDoenTp2v06NG65557JElz585VUFCQFi5cqEGDBqm8vFyzZ8/WvHnz1K1bN0nS/PnzFRoaqlWrVik2NlZFRUXKyspSfn6+OnbsKEmaNWuWIiMjtW3bNoWFhSk7O1tbt25VcXGxQkJCJElTpkxRv379NG7cOPn6+v4BrwYAAAAAAIAzCiyL27Vrl0pLSxUTE2Ns8/T0VFRUlPLy8jRo0CAVFBSoqqrKaSYkJETh4eHKy8tTbGys1q9fL7vdbpRXktSpUyfZ7Xbl5eUpLCxM69evV3h4uFFeSVJsbKwqKipUUFCgLl26nDVjRUWFKioqjPtHjhypy5cAAAAAwCWqxcgVpj7+7glxpj4+gLpDgWVxpaWlkqSgoCCn7UFBQfr++++NGQ8PD/n5+dWYOf3xpaWlCgwMrHH8wMBAp5kzH8fPz08eHh7GzNmMHz9eY8eOreUzAwAAAADzUbIBlwaugXWJsNlsTvcdDkeNbWc6c+Zs867MnGnUqFEqLy83bsXFxefNBQAAAAAAUBsUWBYXHBwsSTVWQB04cMBYLRUcHKzKykqVlZWdd2b//v01jn/w4EGnmTMfp6ysTFVVVTVWZv2Wp6enfH19nW4AAAAAAAB1hQLL4lq2bKng4GCtXLnS2FZZWam1a9fqtttukyRFRESoQYMGTjMlJSXasmWLMRMZGany8nJt2LDBmPn8889VXl7uNLNlyxaVlJQYM9nZ2fL09FRERMRFfZ4AAAAAAADnwjWwLODYsWPasWOHcX/Xrl0qLCyUv7+/mjVrptTUVKWnp6t169Zq3bq10tPT1ahRIyUmJkqS7Ha7+vfvr2HDhqlJkyby9/fX8OHD1b59e+NdCdu0aaMePXpowIABevXVVyVJAwcOVHx8vMLCwiRJMTExatu2rZKSkjRp0iQdOnRIw4cP14ABA1hVBQAAAAAATEOBZQFffPGF0zv8DR06VJL00EMPKTMzUyNGjNCJEyeUnJyssrIydezYUdnZ2fLx8TE+Ztq0aXJ3d1efPn104sQJde3aVZmZmXJzczNmFixYoJSUFOPdChMSEpSRkWHsd3Nz04oVK5ScnKzOnTvLy8tLiYmJmjx58sV+CQAAAAAAZ2H2ReYlLjQPa6DAsoDo6Gg5HI5z7rfZbEpLS1NaWto5Zxo2bKgZM2ZoxowZ55zx9/fX/Pnzz5ulWbNmWr58+X/MDAAAAAAA8EfhGlgAAAAAAACwNAosAAAAAAAAWBoFFgAAAAAAACyNAgsAAAAAAACWRoEFAAAAAAAAS6PAAgAAAAAAgKVRYAEAAAAAAMDSKLAAAAAAAABgaRRYAAAAAAAAsDQKLAAAAAAAAFgaBRYAAAAAAAAsjQILAAAAAAAAlkaBBQAAAAAAAEujwAIAAAAAAIClUWABAAAAAADA0iiwAAAAAAAAYGkUWAAAAAAAALA0CiwAAAAAAABYGgUWAAAAAAAALI0CCwAAAAAAAJZGgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNIosAAAAAAAAGBpFFgAAAAAAACwNAosAAAAAAAAWBoFFgAAAAAAACyNAgsAAAAAAACWRoEFAAAAAAAAS6PAwlnNnDlTLVu2VMOGDRUREaF169aZHQkAAAAAAPxJUWChhrffflupqakaPXq0Nm/erL/85S/q2bOn9uzZY3Y0AAAAAADwJ0SBhRqmTp2q/v376x//+IfatGmj6dOnKzQ0VC+//LLZ0QAAAAAAwJ8QBRacVFZWqqCgQDExMU7bY2JilJeXZ1IqAAAAAADwZ+ZudgBYy48//qjq6moFBQU5bQ8KClJpaelZP6aiokIVFRXG/fLycknSkSNHLl7QOnKq4mezI/zH18nsjL/n79HqGc3OJ1k/I3/PdcPqGa2eTyJjXbB6PomMdcHq+STrZ+RrX92wekb+nuvGpfCz3emMDofD5CS4WGwO/nbxGz/88IOuuuoq5eXlKTIy0tg+btw4zZs3T99++22Nj0lLS9PYsWP/yJgAAAAAANRQXFyspk2bmh0DFwErsOAkICBAbm5uNVZbHThwoMaqrNNGjRqloUOHGvdPnTqlQ4cOqUmTJrLZbBc1r9mOHDmi0NBQFRcXy9fX1+w4NVg9n2T9jFbPJ5GxLlg9n0TGumD1fBIZ64LV80lkrAtWzyeRsS5YPZ9k/YxWz1eXHA6Hjh49qpCQELOj4CKhwIITDw8PRUREaOXKlbr77ruN7StXrlTv3r3P+jGenp7y9PR02nb55ZdfzJiW4+vra+kvCFbPJ1k/o9XzSWSsC1bPJ5GxLlg9n0TGumD1fBIZ64LV80lkrAtWzydZP6PV89UVu91udgRcRBRYqGHo0KFKSkrSzTffrMjISL322mvas2ePHn30UbOjAQAAAACAPyEKLNRw33336aefftKzzz6rkpIShYeH61//+peaN29udjQAAAAAAPAnRIGFs0pOTlZycrLZMSzP09NTzzzzTI1TKK3C6vkk62e0ej6JjHXB6vkkMtYFq+eTyFgXrJ5PImNdsHo+iYx1wer5JOtntHo+oDZ4F0IAAAAAAABY2mVmBwAAAAAAAADOhwILAAAAAAAAlkaBBQAAAAAAAEujwAIAAAAAAIClUWABtdSvXz/ZbDbZbDa5u7urWbNm+uc//6mysjKzozk5cOCABg0apGbNmsnT01PBwcGKjY3V+vXrzY4m6dfX8a677jI7xnmVlpZqyJAhatWqlRo2bKigoCDdfvvteuWVV/Tzzz+bHc/p32KDBg109dVXa/jw4Tp+/LjZ0Zzk5eXJzc1NPXr0MDuKk9Ov3blu/fr1MzVfr1691K1bt7PuW79+vWw2mzZt2vQHpzq73/5b/O3NKn/nZ/t88+6776phw4aaOHGiOaHOcK7XcMeOHWZHc1JaWqrBgwfr6quvlqenp0JDQ9WrVy+tXr3a7GhOrPo1pri4WP3791dISIg8PDzUvHlzDRkyRD/99JPZ0SSd+3XLycmRzWbT4cOH//BMl5ozvzYHBQWpe/fumjNnjk6dOmV2PEn/n3HChAlO299//33ZbDaTUkmvvPKKfHx8dPLkSWPbsWPH1KBBA/3lL39xml23bp1sNpu2b9/+R8eUJDkcDnXr1k2xsbE19s2cOVN2u1179uwxIdmvTv8dP/roozX2JScnW+L7HMAVFFiAC3r06KGSkhLt3r1br7/+upYtW6bk5GSzYzm599579eWXX2ru3Lnavn27PvzwQ0VHR+vQoUNmR7sk7Ny5UzfeeKOys7OVnp6uzZs3a9WqVXriiSe0bNkyrVq1yuyIkv7/3+LOnTv1/PPPa+bMmRo+fLjZsZzMmTNHgwcPVm5urqnfzJ2ppKTEuE2fPl2+vr5O21588UVT8/Xv31+ffPKJvv/++xr75syZoxtuuEE33XSTCcnO7vS/xd/e3nrrLbNjndXrr7+uvn37KiMjQyNGjDA7juFsr2HLli3NjmXYvXu3IiIi9Mknn2jixIn6+uuvlZWVpS5duuixxx4zO57l7dy5UzfffLO2b9+ut956Szt27NArr7yi1atXKzIykq/P9chvv0/86KOP1KVLFw0ZMkTx8fFO5YyZGjZsqBdeeMFSv4Dt0qWLjh07pi+++MLYtm7dOgUHB2vjxo1OvzzMyclRSEiIrr32WjOiymaz6Y033tDnn3+uV1991di+a9cuPfnkk3rxxRfVrFkzU7KdFhoaqkWLFunEiRPGtl9++UVvvfWW6dkAV7mbHQC4FJ1e0SRJTZs21X333afMzExzQ/3G4cOHlZubq5ycHEVFRUmSmjdvrltvvdXkZJeO5ORkubu764svvpC3t7exvX379rr33nvlcDhMTPf/fvtvMTExUWvWrNH777+vl19+2eRkvzp+/Ljeeecdbdy4UaWlpcrMzNSYMWPMjiVJxusmSXa7XTabzWmb2eLj4xUYGKjMzEw988wzxvaff/5Zb7/9ttLT001MV9Nv/y1a2cSJEzVmzBgtXLhQ9957r9lxnFj9NTz9W/sNGzY4fV5s166dHnnkEROTXRoee+wxeXh4KDs7W15eXpKkZs2a6cYbb9Q111yj0aNHW+ZzNy7Mb/8vX3XVVbrpppvUqVMnde3aVZmZmfrHP/5hckKpW7du2rFjh8aPH2+ZlahhYWEKCQlRTk6OOnXqJOnXoqp3795as2aN8vLyjJXJOTk56tKli5lxFRoaqhdffFGPP/64YmJi1KJFC/Xv319du3a1xOqmm266STt37tR7772nvn37SpLee+89hYaG6uqrrzY5HeAaVmABF2jnzp3KyspSgwYNzI5iaNy4sRo3bqz3339fFRUVZse55Pz000/Kzs7WY4895vRD2m+ZucT+fLy8vFRVVWV2DMPbb7+tsLAwhYWF6YEHHtAbb7xhmfLP6tzd3fXggw8qMzPT6TVbvHixKisrjW9G8fuNHDlSzz33nJYvX2658srqDh06pKysrHN+Xrz88sv/+FCXkEOHDunjjz9WcnKyUV6dFhwcrL59++rtt9/m82M9duedd+r666/Xe++9Z3YUSZKbm5vS09M1Y8YM7d271+w4hujoaK1Zs8a4v2bNGkVHRysqKsrYXllZqfXr15teYEnSQw89pK5du+rhhx9WRkaGtmzZotdee83sWIaHH35Yb7zxhnF/zpw5/MIBlzQKLMAFy5cvV+PGjeXl5aVrrrlGW7du1ZNPPml2LIO7u7syMzM1d+5cXX755ercubOeeuopffXVV2ZHuyTs2LFDDodDYWFhTtsDAgKMctBKf9+nbdiwQQsXLlTXrl3NjmKYPXu2HnjgAUm/nlJx7Ngxy10rx8oeeeQR7d69Wzk5Oca2OXPm6J577pGfn595wc7i9OfF396ee+45s2MZPvroI73wwgv64IMPznltMbOd+Rr+/e9/NzuS4fTnxeuuu87sKJek7777Tg6HQ23atDnr/jZt2qisrEwHDx78g5PVdLb/yz179jQ7Vr1w3XXXaffu3WbHMNx999264YYbnFb5mi06OlqfffaZTp48qaNHj2rz5s264447FBUVZXwtzM/P14kTJyxRYEnSa6+9pq1btyo1NVWvvvqqAgMDzY5kSEpKUm5urnbv3q3vv/9en332mfF9GXAp4hRCwAVdunTRyy+/rJ9//lmvv/66tm/frsGDB5sdy8m9996ruLg4rVu3TuvXr1dWVpYmTpyo119/3RLLmi8FZ66y2rBhg06dOqW+fftaZmXb6R80Tp48qaqqKvXu3VszZswwO5Ykadu2bdqwYYPx22Z3d3fdd999mjNnjmULBKu57rrrdNttt2nOnDnq0qWL/v3vf2vdunXKzs42O1oNpz8v/pa/v79JaWrq0KGDfvzxR40ZM0a33HKLfHx8zI5Uw5mv4blWgJrh9Mogq64+vdSdfn09PDxMTnL2/8uff/45P/TWAYfDYbn/Qy+88ILuvPNODRs2zOwokn7993f8+HFt3LhRZWVluvbaaxUYGKioqCglJSXp+PHjysnJUbNmzSxzGlxgYKAGDhyo999/X3fffbfZcZwEBAQoLi5Oc+fOlcPhUFxcnAICAsyOBbiMFViAC7y9vdWqVSt16NBBL730kioqKjR27FizY9XQsGFDde/eXWPGjFFeXp769etnqd+yWVWrVq1ks9n07bffOm2/+uqr1apVqxqnf5ipS5cuKiws1LZt2/TLL7/ovffes8xv/mbPnq2TJ0/qqquukru7u9zd3fXyyy/rvffes9RFY62uf//+WrJkiY4cOaI33nhDzZs3t9Qqu9NOf1787c1KBdZVV12ltWvXqqSkRD169NDRo0fNjlTDma/hlVdeaXYkQ+vWrWWz2VRUVGR2lEvS6a8rW7duPev+b7/9VldccYUlTsU82//lq666yuxY9UJRUZGl3phBku644w7FxsbqqaeeMjuKpF//rzRt2lRr1qzRmjVrjGu5BgcHq2XLlvrss8+0Zs0a3XnnnSYndXb6+xwreuSRR4wzMzh9EJc6CiygDjzzzDOaPHmyfvjhB7OjnFfbtm11/Phxs2NYXpMmTdS9e3dlZGRY/vU6/YNG8+bNLXUdtpMnT+rNN9/UlClTVFhYaNy+/PJLNW/eXAsWLDA74iWjT58+cnNz08KFCzV37lw9/PDDlvsN/qWiWbNmWrt2rQ4cOKCYmBgdOXLE7EiXDH9/f8XGxup///d/z/p58fDhw398qEvI6a8rM2fOdHpHMEkqLS3VggULWB1dz33yySf6+uuvLXn9vQkTJmjZsmXKy8szO4qkX385l5OTo5ycHEVHRxvbo6Ki9PHHHys/P98ypw9eCnr06KHKykpVVlYqNjbW7DjABaHAAupAdHS02rVrZ5l3Bfvpp5905513av78+frqq6+0a9cuLV68WBMnTlTv3r3NjmcoLy93KjcKCwu1Z88es2NJkmbOnKmTJ0/q5ptv1ttvv62ioiJt27ZN8+fP17fffis3NzezI1ra8uXLVVZWpv79+ys8PNzp9re//U2zZ882O+Ilo3Hjxrrvvvv01FNP6YcffrDsD7kVFRUqLS11uv34449mx6qhadOmysnJ0U8//aSYmBiVl5ebHemSMXPmTFVXV+vWW2/VkiVL9N1336moqEgvvfSSIiMjzY5neRkZGaqoqFBsbKw+/fRTFRcXKysrS927d9e1115rmXdoxYU7/flw37592rRpk9LT09W7d2/Fx8frwQcfNDteDe3bt1ffvn0tcwmCLl26KDc3V4WFhcYKLOnXAmvWrFn65ZdfKLBqwc3NTUVFRSoqKuL7V1zyKLCAOjJ06FDNmjVLxcXFZkdR48aN1bFjR02bNk133HGHwsPD9fTTT2vAgAHKyMgwO54hJydHN954o9PNKt/AX3PNNdq8ebO6deumUaNG6frrr9fNN9+sGTNmaPjw4Za6OLUVzZ49W926dZPdbq+x795771VhYaE2bdpkQrJLU//+/VVWVqZu3bqpWbNmZsc5q6ysLF155ZVOt9tvv93sWGd1+nTCw4cPq3v37qwe+p1atmypTZs2qUuXLho2bJjCw8PVvXt3rV69usY1k1BT69attXHjRl199dXq06ePmjdvrp49e+raa6/VZ599psaNG5sdEXXk9OfDFi1aqEePHlqzZo1eeuklffDBB5YtEJ577jnLvAtmly5ddOLECbVq1UpBQUHG9qioKB09elTXXHONQkNDTUx46fH19ZWvr6/ZMYALZnNY5TMVAAAA8CfyzDPPaOrUqcrOzmYVGwAA/wEFFgAAAGCSN954Q+Xl5UpJSdFll3FyxH+yZ88etW3b9pz7t27datmVqgCAC0OBBQAAAOCScPLkSe3evfuc+1u0aGHZd4MDAFwYCiwAAAAAAABYGuuUAQAAAAAAYGkUWAAAAAAAALA0CiwAAAAAAABYGgUWAAAAAAAALI0CCwAAAAAAAJZGgQUAAAAAAABLo8ACAAAAAACApVFgAQAAAAAAwNL+D1Zdk/6zbq58AAAAAElFTkSuQmCC","text/plain":""},"metadata":{},"output_type":"display_data"}],"source":["genetic_code = {\n 'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M',\n 'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T',\n 'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K',\n 'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R',\n 'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L',\n 'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P',\n 'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q',\n 'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R',\n 'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V',\n 'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A',\n 'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E',\n 'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G',\n 'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S',\n 'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L',\n 'TAC':'Y', 'TAT':'Y', 'TAA':'_', 'TAG':'_',\n 'TGC':'C', 'TGT':'C', 'TGA':'_', 'TGG':'W',\n }\n\ndef get_triplets(t):\n for triplet in re.finditer(r'.{3}', t):\n yield genetic_code[triplet.group(0)]\n\nrang_freq_with_labels('dna-aminos', get_triplets(dna))"]},{"cell_type":"markdown","metadata":{},"source":["#### „Zdania” w języku DNA\n\n"]},{"cell_type":"markdown","metadata":{},"source":["Z aminokwasów zakodowanych przez tryplet budowane są białka.\nMaszyneria budująca białka czyta sekwencję aż do napotkania\ntrypletu STOP (\\_ powyżej). Taka sekwencja to *gen*.\n\n"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0B0lEQVR4nO3df3RU9Z3/8deU/DBkk1sCZIZZI6ZuSsFEV0M3JP0BKxBgjanHHsGGneKRAhaFzgrLj3W7RU+bAN2Cu83WokuFIm56vucYt6fQlLDVVDYE0mhaiEDpMfKjZBLqTiZB00kM9/uHh1smiYAKzEw+z8c59xzmc9/3zuc9dzAvP5k7uGzbtgUAAABjfCLaEwAAAMD1RQAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMkRHsC8ez8+fM6c+aM0tLS5HK5oj0dAABwBWzbVnd3t7xerz7xCTPXwgiAH8OZM2eUlZUV7WkAAICP4NSpU7rxxhujPY2oIAB+DGlpaZLefwOlp6dHeTYAAOBKdHV1KSsry/k5biIC4Mdw4de+6enpBEAAAOKMyR/fMvMX3wAAAAYjAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABgmIdoTwAe7ec2uiMdvrb87SjMBAADDCSuAAAAAhom5APjee+/pn//5n5Wdna2UlBR96lOf0pNPPqnz5887NbZta926dfJ6vUpJSdG0adPU0tIScZ5wOKxly5ZpzJgxSk1NVWlpqU6fPh1REwwG5fP5ZFmWLMuSz+dTZ2fn9WgTAAAgamIuAG7YsEE//OEPVVlZqSNHjmjjxo367ne/q+9///tOzcaNG7Vp0yZVVlaqsbFRHo9HM2fOVHd3t1Pj9/tVXV2tqqoq7du3T+fOnVNJSYn6+/udmrKyMjU3N6umpkY1NTVqbm6Wz+e7rv0CAABcby7btu1oT+JiJSUlcrvd2rp1qzP25S9/WSNHjtSOHTtk27a8Xq/8fr9Wr14t6f3VPrfbrQ0bNmjJkiUKhUIaO3asduzYoXnz5kmSzpw5o6ysLO3evVuzZs3SkSNHNGnSJDU0NKigoECS1NDQoMLCQh09elQTJky47Fy7urpkWZZCoZDS09Ov+mvBZwABALj6rvXP73gQcyuAn//85/U///M/+t3vfidJ+s1vfqN9+/bp7/7u7yRJra2tCgQCKi4udo5JTk7W1KlTVV9fL0lqampSX19fRI3X61Vubq5Ts3//flmW5YQ/SZoyZYosy3JqBgqHw+rq6orYAAAA4k3M3QW8evVqhUIhfeYzn9GIESPU39+v73znO/rKV74iSQoEApIkt9sdcZzb7daJEyecmqSkJI0aNWpQzYXjA4GAMjMzBz1/ZmamUzNQRUWFnnjiiY/XIAAAQJTF3ArgT37yEz3//PN64YUX9Nprr2n79u3613/9V23fvj2izuVyRTy2bXvQ2EADa4aqv9R51q5dq1Ao5GynTp260rYAAABiRsytAP7jP/6j1qxZowceeECSlJeXpxMnTqiiokILFiyQx+OR9P4K3rhx45zjOjo6nFVBj8ej3t5eBYPBiFXAjo4OFRUVOTXt7e2Dnv/s2bODVhcvSE5OVnJy8tVpFAAAIEpibgXw3Xff1Sc+ETmtESNGOF8Dk52dLY/Ho9raWmd/b2+v6urqnHCXn5+vxMTEiJq2tjYdPnzYqSksLFQoFNLBgwedmgMHDigUCjk1AAAAw1HMrQDec889+s53vqObbrpJt956q15//XVt2rRJDz30kKT3f23r9/tVXl6unJwc5eTkqLy8XCNHjlRZWZkkybIsLVy4UCtWrNDo0aOVkZGhlStXKi8vTzNmzJAkTZw4UbNnz9aiRYu0ZcsWSdLixYtVUlJyRXcAAwAAxKuYC4Df//739c1vflNLly5VR0eHvF6vlixZon/5l39xalatWqWenh4tXbpUwWBQBQUF2rNnj9LS0pyazZs3KyEhQXPnzlVPT4+mT5+ubdu2acSIEU7Nzp07tXz5cudu4dLSUlVWVl6/ZgEAAKIg5r4HMJ7wPYAAAMQfvgcwBj8DCAAAgGuLAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhom5AHjzzTfL5XIN2h555BFJkm3bWrdunbxer1JSUjRt2jS1tLREnCMcDmvZsmUaM2aMUlNTVVpaqtOnT0fUBINB+Xw+WZYly7Lk8/nU2dl5vdoEAACImpgLgI2NjWpra3O22tpaSdL9998vSdq4caM2bdqkyspKNTY2yuPxaObMmeru7nbO4ff7VV1draqqKu3bt0/nzp1TSUmJ+vv7nZqysjI1NzerpqZGNTU1am5uls/nu77NAgAARIHLtm072pO4FL/fr5/97Gc6fvy4JMnr9crv92v16tWS3l/tc7vd2rBhg5YsWaJQKKSxY8dqx44dmjdvniTpzJkzysrK0u7duzVr1iwdOXJEkyZNUkNDgwoKCiRJDQ0NKiws1NGjRzVhwoQrmltXV5csy1IoFFJ6evpV7/3mNbsiHr+1/u6r/hwAAJjmWv/8jgcxtwJ4sd7eXj3//PN66KGH5HK51NraqkAgoOLiYqcmOTlZU6dOVX19vSSpqalJfX19ETVer1e5ublOzf79+2VZlhP+JGnKlCmyLMupGUo4HFZXV1fEBgAAEG9iOgC+9NJL6uzs1IMPPihJCgQCkiS32x1R53a7nX2BQEBJSUkaNWrUJWsyMzMHPV9mZqZTM5SKigrnM4OWZSkrK+sj9wYAABAtMR0At27dqjlz5sjr9UaMu1yuiMe2bQ8aG2hgzVD1lzvP2rVrFQqFnO3UqVNX0gYAAEBMidkAeOLECe3du1df+9rXnDGPxyNJg1bpOjo6nFVBj8ej3t5eBYPBS9a0t7cPes6zZ88OWl28WHJystLT0yM2AACAeBOzAfC5555TZmam7r77zzc+ZGdny+PxOHcGS+9/TrCurk5FRUWSpPz8fCUmJkbUtLW16fDhw05NYWGhQqGQDh486NQcOHBAoVDIqQEAABiuEqI9gaGcP39ezz33nBYsWKCEhD9P0eVyye/3q7y8XDk5OcrJyVF5eblGjhypsrIySZJlWVq4cKFWrFih0aNHKyMjQytXrlReXp5mzJghSZo4caJmz56tRYsWacuWLZKkxYsXq6Sk5IrvAAYAAIhXMRkA9+7dq5MnT+qhhx4atG/VqlXq6enR0qVLFQwGVVBQoD179igtLc2p2bx5sxISEjR37lz19PRo+vTp2rZtm0aMGOHU7Ny5U8uXL3fuFi4tLVVlZeW1bw4AACDKYv57AGMZ3wMIAED84XsAY/gzgAAAALg2CIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYJiYDIB/+MMf9Pd///caPXq0Ro4cqb/+679WU1OTs9+2ba1bt05er1cpKSmaNm2aWlpaIs4RDoe1bNkyjRkzRqmpqSotLdXp06cjaoLBoHw+nyzLkmVZ8vl86uzsvB4tAgAARE3MBcBgMKjPfe5zSkxM1M9//nO98cYb+t73vqdPfvKTTs3GjRu1adMmVVZWqrGxUR6PRzNnzlR3d7dT4/f7VV1draqqKu3bt0/nzp1TSUmJ+vv7nZqysjI1NzerpqZGNTU1am5uls/nu57tAgAAXHcu27btaE/iYmvWrNH//u//6tVXXx1yv23b8nq98vv9Wr16taT3V/vcbrc2bNigJUuWKBQKaezYsdqxY4fmzZsnSTpz5oyysrK0e/duzZo1S0eOHNGkSZPU0NCggoICSVJDQ4MKCwt19OhRTZgw4bJz7erqkmVZCoVCSk9Pv0qvwJ/dvGZXxOO31t991Z8DAADTXOuf3/Eg5lYAf/rTn2ry5Mm6//77lZmZqTvuuEPPPvuss7+1tVWBQEDFxcXOWHJysqZOnar6+npJUlNTk/r6+iJqvF6vcnNznZr9+/fLsiwn/EnSlClTZFmWUwMAADAcxVwAfPPNN/X0008rJydHv/jFL/Twww9r+fLl+vGPfyxJCgQCkiS32x1xnNvtdvYFAgElJSVp1KhRl6zJzMwc9PyZmZlOzUDhcFhdXV0RGwAAQLxJiPYEBjp//rwmT56s8vJySdIdd9yhlpYWPf300/rqV7/q1LlcrojjbNseNDbQwJqh6i91noqKCj3xxBNX3AsAAEAsirkVwHHjxmnSpEkRYxMnTtTJkyclSR6PR5IGrdJ1dHQ4q4Iej0e9vb0KBoOXrGlvbx/0/GfPnh20unjB2rVrFQqFnO3UqVMfoUMAAIDoirkA+LnPfU7Hjh2LGPvd736n8ePHS5Kys7Pl8XhUW1vr7O/t7VVdXZ2KiookSfn5+UpMTIyoaWtr0+HDh52awsJChUIhHTx40Kk5cOCAQqGQUzNQcnKy0tPTIzYAAIB4E3O/Av6Hf/gHFRUVqby8XHPnztXBgwf1zDPP6JlnnpH0/q9t/X6/ysvLlZOTo5ycHJWXl2vkyJEqKyuTJFmWpYULF2rFihUaPXq0MjIytHLlSuXl5WnGjBmS3l9VnD17thYtWqQtW7ZIkhYvXqySkpIrugMYAAAgXsVcAPzsZz+r6upqrV27Vk8++aSys7P11FNPaf78+U7NqlWr1NPTo6VLlyoYDKqgoEB79uxRWlqaU7N582YlJCRo7ty56unp0fTp07Vt2zaNGDHCqdm5c6eWL1/u3C1cWlqqysrK69csAABAFMTc9wDGE74HEACA+MP3AMbgZwABAABwbREAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwMRcA161bJ5fLFbF5PB5nv23bWrdunbxer1JSUjRt2jS1tLREnCMcDmvZsmUaM2aMUlNTVVpaqtOnT0fUBINB+Xw+WZYly7Lk8/nU2dl5PVoEAACIqpgLgJJ06623qq2tzdkOHTrk7Nu4caM2bdqkyspKNTY2yuPxaObMmeru7nZq/H6/qqurVVVVpX379uncuXMqKSlRf3+/U1NWVqbm5mbV1NSopqZGzc3N8vl817VPAACAaEiI9gSGkpCQELHqd4Ft23rqqaf0+OOP67777pMkbd++XW63Wy+88IKWLFmiUCikrVu3aseOHZoxY4Yk6fnnn1dWVpb27t2rWbNm6ciRI6qpqVFDQ4MKCgokSc8++6wKCwt17NgxTZgw4fo1CwAAcJ3F5Arg8ePH5fV6lZ2drQceeEBvvvmmJKm1tVWBQEDFxcVObXJysqZOnar6+npJUlNTk/r6+iJqvF6vcnNznZr9+/fLsiwn/EnSlClTZFmWUwMAADBcxdwKYEFBgX784x/r05/+tNrb2/Xtb39bRUVFamlpUSAQkCS53e6IY9xut06cOCFJCgQCSkpK0qhRowbVXDg+EAgoMzNz0HNnZmY6NUMJh8MKh8PO466uro/WJAAAQBTFXACcM2eO8+e8vDwVFhbqlltu0fbt2zVlyhRJksvlijjGtu1BYwMNrBmq/nLnqaio0BNPPHFFfQAAAMSqmPwV8MVSU1OVl5en48ePO58LHLhK19HR4awKejwe9fb2KhgMXrKmvb190HOdPXt20OrixdauXatQKORsp06d+li9AQAAREPMB8BwOKwjR45o3Lhxys7OlsfjUW1trbO/t7dXdXV1KioqkiTl5+crMTExoqatrU2HDx92agoLCxUKhXTw4EGn5sCBAwqFQk7NUJKTk5Wenh6xAQAAxJuY+xXwypUrdc899+imm25SR0eHvv3tb6urq0sLFiyQy+WS3+9XeXm5cnJylJOTo/Lyco0cOVJlZWWSJMuytHDhQq1YsUKjR49WRkaGVq5cqby8POeu4IkTJ2r27NlatGiRtmzZIklavHixSkpKuAMYAAAMezEXAE+fPq2vfOUr+uMf/6ixY8dqypQpamho0Pjx4yVJq1atUk9Pj5YuXapgMKiCggLt2bNHaWlpzjk2b96shIQEzZ07Vz09PZo+fbq2bdumESNGODU7d+7U8uXLnbuFS0tLVVlZeX2bBQAAiAKXbdt2tCcRr7q6umRZlkKh0DX5dfDNa3ZFPH5r/d1X/TkAADDNtf75HQ9i/jOAAAAAuLoIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYWI6AFZUVMjlcsnv9ztjtm1r3bp18nq9SklJ0bRp09TS0hJxXDgc1rJlyzRmzBilpqaqtLRUp0+fjqgJBoPy+XyyLEuWZcnn86mzs/M6dAUAABBdMRsAGxsb9cwzz+i2226LGN+4caM2bdqkyspKNTY2yuPxaObMmeru7nZq/H6/qqurVVVVpX379uncuXMqKSlRf3+/U1NWVqbm5mbV1NSopqZGzc3N8vl8160/AACAaInJAHju3DnNnz9fzz77rEaNGuWM27atp556So8//rjuu+8+5ebmavv27Xr33Xf1wgsvSJJCoZC2bt2q733ve5oxY4buuOMOPf/88zp06JD27t0rSTpy5Ihqamr0n//5nyosLFRhYaGeffZZ/exnP9OxY8ei0jMAAMD1EpMB8JFHHtHdd9+tGTNmRIy3trYqEAiouLjYGUtOTtbUqVNVX18vSWpqalJfX19EjdfrVW5urlOzf/9+WZalgoICp2bKlCmyLMupGUo4HFZXV1fEBgAAEG8Soj2BgaqqqvTaa6+psbFx0L5AICBJcrvdEeNut1snTpxwapKSkiJWDi/UXDg+EAgoMzNz0PkzMzOdmqFUVFToiSee+HANAQAAxJiYWgE8deqUvvGNb+j555/XDTfc8IF1Lpcr4rFt24PGBhpYM1T95c6zdu1ahUIhZzt16tQlnxMAACAWxVQAbGpqUkdHh/Lz85WQkKCEhATV1dXp3//935WQkOCs/A1cpevo6HD2eTwe9fb2KhgMXrKmvb190POfPXt20OrixZKTk5Wenh6xAQAAxJuYCoDTp0/XoUOH1Nzc7GyTJ0/W/Pnz1dzcrE996lPyeDyqra11junt7VVdXZ2KiookSfn5+UpMTIyoaWtr0+HDh52awsJChUIhHTx40Kk5cOCAQqGQUwMAADBcxdRnANPS0pSbmxsxlpqaqtGjRzvjfr9f5eXlysnJUU5OjsrLyzVy5EiVlZVJkizL0sKFC7VixQqNHj1aGRkZWrlypfLy8pybSiZOnKjZs2dr0aJF2rJliyRp8eLFKikp0YQJE65jxwAAANdfTAXAK7Fq1Sr19PRo6dKlCgaDKigo0J49e5SWlubUbN68WQkJCZo7d656eno0ffp0bdu2TSNGjHBqdu7cqeXLlzt3C5eWlqqysvK69wMAAHC9uWzbtqM9iXjV1dUly7IUCoWuyecBb16zK+LxW+vvvurPAQCAaa71z+94EFOfAQQAAMC1RwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwyREewK4cjev2TVo7K31d0dhJgAAIJ6xAggAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGibkA+PTTT+u2225Tenq60tPTVVhYqJ///OfOftu2tW7dOnm9XqWkpGjatGlqaWmJOEc4HNayZcs0ZswYpaamqrS0VKdPn46oCQaD8vl8sixLlmXJ5/Ops7PzerQIAAAQVTEXAG+88UatX79ev/71r/XrX/9ad911l770pS85IW/jxo3atGmTKisr1djYKI/Ho5kzZ6q7u9s5h9/vV3V1taqqqrRv3z6dO3dOJSUl6u/vd2rKysrU3Nysmpoa1dTUqLm5WT6f77r3CwAAcL25bNu2oz2Jy8nIyNB3v/tdPfTQQ/J6vfL7/Vq9erWk91f73G63NmzYoCVLligUCmns2LHasWOH5s2bJ0k6c+aMsrKytHv3bs2aNUtHjhzRpEmT1NDQoIKCAklSQ0ODCgsLdfToUU2YMOGK5tXV1SXLshQKhZSenn7V+755za7L1ry1/u6r/rwAAAxn1/rndzyIuRXAi/X396uqqkrvvPOOCgsL1draqkAgoOLiYqcmOTlZU6dOVX19vSSpqalJfX19ETVer1e5ublOzf79+2VZlhP+JGnKlCmyLMupGUo4HFZXV1fEBgAAEG9iMgAeOnRIf/EXf6Hk5GQ9/PDDqq6u1qRJkxQIBCRJbrc7ot7tdjv7AoGAkpKSNGrUqEvWZGZmDnrezMxMp2YoFRUVzmcGLctSVlbWx+oTAAAgGmIyAE6YMEHNzc1qaGjQ17/+dS1YsEBvvPGGs9/lckXU27Y9aGyggTVD1V/uPGvXrlUoFHK2U6dOXWlLAAAAMSMmA2BSUpL+6q/+SpMnT1ZFRYVuv/12/du//Zs8Ho8kDVql6+jocFYFPR6Pent7FQwGL1nT3t4+6HnPnj07aHXxYsnJyc7dyRc2AACAeBOTAXAg27YVDoeVnZ0tj8ej2tpaZ19vb6/q6upUVFQkScrPz1diYmJETVtbmw4fPuzUFBYWKhQK6eDBg07NgQMHFAqFnBoAAIDhKiHaExjon/7pnzRnzhxlZWWpu7tbVVVVeuWVV1RTUyOXyyW/36/y8nLl5OQoJydH5eXlGjlypMrKyiRJlmVp4cKFWrFihUaPHq2MjAytXLlSeXl5mjFjhiRp4sSJmj17thYtWqQtW7ZIkhYvXqySkpIrvgMYAAAgXsVcAGxvb5fP51NbW5ssy9Jtt92mmpoazZw5U5K0atUq9fT0aOnSpQoGgyooKNCePXuUlpbmnGPz5s1KSEjQ3Llz1dPTo+nTp2vbtm0aMWKEU7Nz504tX77cuVu4tLRUlZWV17dZAACAKIiL7wGMVXwPIAAA8YfvAYyTzwACAADg6iEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhYi4AVlRU6LOf/azS0tKUmZmpe++9V8eOHYuosW1b69atk9frVUpKiqZNm6aWlpaImnA4rGXLlmnMmDFKTU1VaWmpTp8+HVETDAbl8/lkWZYsy5LP51NnZ+e1bhEAACCqYi4A1tXV6ZFHHlFDQ4Nqa2v13nvvqbi4WO+8845Ts3HjRm3atEmVlZVqbGyUx+PRzJkz1d3d7dT4/X5VV1erqqpK+/bt07lz51RSUqL+/n6npqysTM3NzaqpqVFNTY2am5vl8/mua78AAADXm8u2bTvak7iUs2fPKjMzU3V1dfriF78o27bl9Xrl9/u1evVqSe+v9rndbm3YsEFLlixRKBTS2LFjtWPHDs2bN0+SdObMGWVlZWn37t2aNWuWjhw5okmTJqmhoUEFBQWSpIaGBhUWFuro0aOaMGHCZefW1dUly7IUCoWUnp5+1Xu/ec2uy9a8tf7uq/68AAAMZ9f653c8iLkVwIFCoZAkKSMjQ5LU2tqqQCCg4uJipyY5OVlTp05VfX29JKmpqUl9fX0RNV6vV7m5uU7N/v37ZVmWE/4kacqUKbIsy6kBAAAYjhKiPYFLsW1bjz32mD7/+c8rNzdXkhQIBCRJbrc7otbtduvEiRNOTVJSkkaNGjWo5sLxgUBAmZmZg54zMzPTqRkoHA4rHA47j7u6uj5iZwAAANET0yuAjz76qH7729/qv/7rvwbtc7lcEY9t2x40NtDAmqHqL3WeiooK54YRy7KUlZV1JW0AAADElJgNgMuWLdNPf/pTvfzyy7rxxhudcY/HI0mDVuk6OjqcVUGPx6Pe3l4Fg8FL1rS3tw963rNnzw5aXbxg7dq1CoVCznbq1KmP3iAAAECUxFwAtG1bjz76qF588UX98pe/VHZ2dsT+7OxseTwe1dbWOmO9vb2qq6tTUVGRJCk/P1+JiYkRNW1tbTp8+LBTU1hYqFAopIMHDzo1Bw4cUCgUcmoGSk5OVnp6esQGAAAQb2LuM4CPPPKIXnjhBf33f/+30tLSnJU+y7KUkpIil8slv9+v8vJy5eTkKCcnR+Xl5Ro5cqTKysqc2oULF2rFihUaPXq0MjIytHLlSuXl5WnGjBmSpIkTJ2r27NlatGiRtmzZIklavHixSkpKrugOYAAAgHgVcwHw6aefliRNmzYtYvy5557Tgw8+KElatWqVenp6tHTpUgWDQRUUFGjPnj1KS0tz6jdv3qyEhATNnTtXPT09mj59urZt26YRI0Y4NTt37tTy5cudu4VLS0tVWVl5bRsEAACIspj/HsBYxvcAAgAQf/gewBj8DCAAAACurZj7FTA+nIGrhKwIAgCAy2EFEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDxFwA/NWvfqV77rlHXq9XLpdLL730UsR+27a1bt06eb1epaSkaNq0aWppaYmoCYfDWrZsmcaMGaPU1FSVlpbq9OnTETXBYFA+n0+WZcmyLPl8PnV2dl7j7gAAAKIv5gLgO++8o9tvv12VlZVD7t+4caM2bdqkyspKNTY2yuPxaObMmeru7nZq/H6/qqurVVVVpX379uncuXMqKSlRf3+/U1NWVqbm5mbV1NSopqZGzc3N8vl817w/AACAaHPZtm1HexIfxOVyqbq6Wvfee6+k91f/vF6v/H6/Vq9eLen91T63260NGzZoyZIlCoVCGjt2rHbs2KF58+ZJks6cOaOsrCzt3r1bs2bN0pEjRzRp0iQ1NDSooKBAktTQ0KDCwkIdPXpUEyZMuKL5dXV1ybIshUIhpaenX/X+b16z60Mf89b6u6/6PAAAGE6u9c/veJAQ7Ql8GK2trQoEAiouLnbGkpOTNXXqVNXX12vJkiVqampSX19fRI3X61Vubq7q6+s1a9Ys7d+/X5ZlOeFPkqZMmSLLslRfX3/FATAWDRUaCYUAAOBicRUAA4GAJMntdkeMu91unThxwqlJSkrSqFGjBtVcOD4QCCgzM3PQ+TMzM52aoYTDYYXDYedxV1fXR2sEAAAgimLuM4BXwuVyRTy2bXvQ2EADa4aqv9x5KioqnJtGLMtSVlbWh5w5AABA9MVVAPR4PJI0aJWuo6PDWRX0eDzq7e1VMBi8ZE17e/ug8589e3bQ6uLF1q5dq1Ao5GynTp36WP0AAABEQ1wFwOzsbHk8HtXW1jpjvb29qqurU1FRkSQpPz9fiYmJETVtbW06fPiwU1NYWKhQKKSDBw86NQcOHFAoFHJqhpKcnKz09PSIDQAAIN7E3GcAz507p9///vfO49bWVjU3NysjI0M33XST/H6/ysvLlZOTo5ycHJWXl2vkyJEqKyuTJFmWpYULF2rFihUaPXq0MjIytHLlSuXl5WnGjBmSpIkTJ2r27NlatGiRtmzZIklavHixSkpK4voGEAAAgCsRcwHw17/+tf72b//WefzYY49JkhYsWKBt27Zp1apV6unp0dKlSxUMBlVQUKA9e/YoLS3NOWbz5s1KSEjQ3Llz1dPTo+nTp2vbtm0aMWKEU7Nz504tX77cuVu4tLT0A797EAAAYDiJ6e8BjHWx+D2AQ+FrYAAA+DO+BzDOPgMIAACAj48ACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhkmI9gRw7d28ZlfE47fW3x2lmQAAgFjACiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGH4l0AMNPBfBpH410EAADAJK4AAAACGIQACAAAYhgAIAABgGAIgAACAYbgJBJIG3xjCTSEAAAxfrAACAAAYhgAIAABgGH4FjCHxXYEAAAxfrAACAAAYhgAIAABgGOMD4A9+8ANlZ2frhhtuUH5+vl599dVoTylm3bxmV8QGAADik9EB8Cc/+Yn8fr8ef/xxvf766/rCF76gOXPm6OTJk9GeGgAAwDXjsm3bjvYkoqWgoEB33nmnnn76aWds4sSJuvfee1VRUXHZ47u6umRZlkKhkNLT06/6/OJxlY0bRQAAse5a//yOB8beBdzb26umpiatWbMmYry4uFj19fVDHhMOhxUOh53HoVBI0vtvpGvhfPjda3Lea+mmf/h/H/qYw0/MugYzAQBgaBd+bhu8BmZuAPzjH/+o/v5+ud3uiHG3261AIDDkMRUVFXriiScGjWdlZV2TOZrCeiraMwAAmKi7u1uWZUV7GlFhbAC8wOVyRTy2bXvQ2AVr167VY4895jw+f/68/u///k+jR4/+wGM+qq6uLmVlZenUqVNGLE/T7/BGv8Mb/Q5vw7Ff27bV3d0tr9cb7alEjbEBcMyYMRoxYsSg1b6Ojo5Bq4IXJCcnKzk5OWLsk5/85LWaoiQpPT192PyFuxL0O7zR7/BGv8PbcOvX1JW/C4y9CzgpKUn5+fmqra2NGK+trVVRUVGUZgUAAHDtGbsCKEmPPfaYfD6fJk+erMLCQj3zzDM6efKkHn744WhPDQAA4JoxOgDOmzdPb7/9tp588km1tbUpNzdXu3fv1vjx46M9NSUnJ+tb3/rWoF85D1f0O7zR7/BGv8Obaf2awujvAQQAADCRsZ8BBAAAMBUBEAAAwDAEQAAAAMMQAAEAAAxDAIxBP/jBD5Sdna0bbrhB+fn5evXVV6M9pQ+toqJCn/3sZ5WWlqbMzEzde++9OnbsWETNgw8+KJfLFbFNmTIloiYcDmvZsmUaM2aMUlNTVVpaqtOnT1/PVq7IunXrBvXi8Xic/bZta926dfJ6vUpJSdG0adPU0tIScY546fWCm2++eVDPLpdLjzzyiKT4v76/+tWvdM8998jr9crlcumll16K2H+1rmkwGJTP55NlWbIsSz6fT52dnde4u8Eu1W9fX59Wr16tvLw8paamyuv16qtf/arOnDkTcY5p06YNuuYPPPBARE089CtdvfdvvPQ71N9ll8ul7373u05NPF1fXB4BMMb85Cc/kd/v1+OPP67XX39dX/jCFzRnzhydPHky2lP7UOrq6vTII4+ooaFBtbW1eu+991RcXKx33nknom727Nlqa2tztt27d0fs9/v9qq6uVlVVlfbt26dz586ppKRE/f3917OdK3LrrbdG9HLo0CFn38aNG7Vp0yZVVlaqsbFRHo9HM2fOVHd3t1MTT71KUmNjY0S/F75U/f7773dq4vn6vvPOO7r99ttVWVk55P6rdU3LysrU3Nysmpoa1dTUqLm5WT6f75r3N9Cl+n333Xf12muv6Zvf/KZee+01vfjii/rd736n0tLSQbWLFi2KuOZbtmyJ2B8P/V5wNd6/8dLvxX22tbXpRz/6kVwul7785S9H1MXL9cUVsBFT/uZv/sZ++OGHI8Y+85nP2GvWrInSjK6Ojo4OW5JdV1fnjC1YsMD+0pe+9IHHdHZ22omJiXZVVZUz9oc//MH+xCc+YdfU1FzL6X5o3/rWt+zbb799yH3nz5+3PR6PvX79emfsT3/6k21Zlv3DH/7Qtu346vWDfOMb37BvueUW+/z587ZtD6/rK8murq52Hl+ta/rGG2/YkuyGhganZv/+/bYk++jRo9e4qw82sN+hHDx40JZknzhxwhmbOnWq/Y1vfOMDj4mnfq/G+zee+h3oS1/6kn3XXXdFjMXr9cXQWAGMIb29vWpqalJxcXHEeHFxserr66M0q6sjFApJkjIyMiLGX3nlFWVmZurTn/60Fi1apI6ODmdfU1OT+vr6Il4Pr9er3NzcmHw9jh8/Lq/Xq+zsbD3wwAN68803JUmtra0KBAIRfSQnJ2vq1KlOH/HW60C9vb16/vnn9dBDD8nlcjnjw+n6XuxqXdP9+/fLsiwVFBQ4NVOmTJFlWTH/GoRCIblcrkH/HvrOnTs1ZswY3XrrrVq5cmXEimi89ftx37/x1u8F7e3t2rVrlxYuXDho33C6vqYz+l8CiTV//OMf1d/fL7fbHTHudrsVCASiNKuPz7ZtPfbYY/r85z+v3NxcZ3zOnDm6//77NX78eLW2tuqb3/ym7rrrLjU1NSk5OVmBQEBJSUkaNWpUxPli8fUoKCjQj3/8Y336059We3u7vv3tb6uoqEgtLS3OXIe6ridOnJCkuOp1KC+99JI6Ozv14IMPOmPD6foOdLWuaSAQUGZm5qDzZ2ZmxvRr8Kc//Ulr1qxRWVmZ0tPTnfH58+crOztbHo9Hhw8f1tq1a/Wb3/zG+XhAPPV7Nd6/8dTvxbZv3660tDTdd999EePD6fqCABiTLl5Bkd4PUAPH4smjjz6q3/72t9q3b1/E+Lx585w/5+bmavLkyRo/frx27do16D88F4vF12POnDnOn/Py8lRYWKhbbrlF27dvdz44/lGuayz2OpStW7dqzpw58nq9zthwur4f5Gpc06HqY/k16Ovr0wMPPKDz58/rBz/4QcS+RYsWOX/Ozc1VTk6OJk+erNdee0133nmnpPjp92q9f+Ol34v96Ec/0vz583XDDTdEjA+n6wtuAokpY8aM0YgRIwb9n1JHR8eglYZ4sWzZMv30pz/Vyy+/rBtvvPGStePGjdP48eN1/PhxSZLH41Fvb6+CwWBEXTy8HqmpqcrLy9Px48edu4EvdV3judcTJ05o7969+trXvnbJuuF0fa/WNfV4PGpvbx90/rNnz8bka9DX16e5c+eqtbVVtbW1Eat/Q7nzzjuVmJgYcc3jqd+LfZT3bzz2++qrr+rYsWOX/fssDa/rayICYAxJSkpSfn6+s5x+QW1trYqKiqI0q4/Gtm09+uijevHFF/XLX/5S2dnZlz3m7bff1qlTpzRu3DhJUn5+vhITEyNej7a2Nh0+fDjmX49wOKwjR45o3Lhxzq9MLu6jt7dXdXV1Th/x3Otzzz2nzMxM3X333ZesG07X92pd08LCQoVCIR08eNCpOXDggEKhUMy9BhfC3/Hjx7V3716NHj36sse0tLSor6/Puebx1O9AH+X9G4/9bt26Vfn5+br99tsvWzucrq+RonHnCT5YVVWVnZiYaG/dutV+4403bL/fb6emptpvvfVWtKf2oXz961+3LcuyX3nlFbutrc3Z3n33Xdu2bbu7u9tesWKFXV9fb7e2ttovv/yyXVhYaP/lX/6l3dXV5Zzn4Ycftm+88UZ779699muvvWbfdddd9u23326/99570WptSCtWrLBfeeUV+80337QbGhrskpISOy0tzblu69evty3Lsl988UX70KFD9le+8hV73Lhxcdnrxfr7++2bbrrJXr16dcT4cLi+3d3d9uuvv26//vrrtiR706ZN9uuvv+7c9Xq1runs2bPt2267zd6/f7+9f/9+Oy8vzy4pKYmpfvv6+uzS0lL7xhtvtJubmyP+TofDYdu2bfv3v/+9/cQTT9iNjY12a2urvWvXLvszn/mMfccdd8Rdv1fz/RsP/V4QCoXskSNH2k8//fSg4+Pt+uLyCIAx6D/+4z/s8ePH20lJSfadd94Z8dUp8ULSkNtzzz1n27Ztv/vuu3ZxcbE9duxYOzEx0b7pppvsBQsW2CdPnow4T09Pj/3oo4/aGRkZdkpKil1SUjKoJhbMmzfPHjdunJ2YmGh7vV77vvvus1taWpz958+ft7/1rW/ZHo/HTk5Otr/4xS/ahw4dijhHvPR6sV/84he2JPvYsWMR48Ph+r788stDvocXLFhg2/bVu6Zvv/22PX/+fDstLc1OS0uz58+fbweDwevU5Z9dqt/W1tYP/Dv98ssv27Zt2ydPnrS/+MUv2hkZGXZSUpJ9yy232MuXL7fffvvtuOv3ar5/46HfC7Zs2WKnpKTYnZ2dg46Pt+uLy3PZtm1f0yVGAAAAxBQ+AwgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhvn/ohxy7uMGfzEAAAAASUVORK5CYII=","text/plain":""},"metadata":{},"output_type":"display_data"}],"source":["def get_genes(triplets):\n gene = []\n for ammino in triplets:\n if ammino == '_':\n yield gene\n gene = []\n else:\n gene.append(ammino)\n\nplt.figure().clear()\nplt.hist([len(g) for g in get_genes(get_triplets(dna))], bins=100)\n\nfname = '03_Ngramy/dna_length.png'\n\nplt.savefig(fname)\n\nfname"]}],"metadata":{"org":null,"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.5.2"}},"nbformat":4,"nbformat_minor":0}
\ No newline at end of file
diff --git a/wyk/03_Ngramy.org b/wyk/03_Ngramy.org
new file mode 100644
index 0000000..158581d
--- /dev/null
+++ b/wyk/03_Ngramy.org
@@ -0,0 +1,225 @@
+* N-gramy
+
+W modelowaniu języka często rozpatruje się n-gramy, czyli podciągi o
+rozmiarze $n$.
+
+Na przykład /digramy/ (/bigramy/) to zbitki dwóch jednostek, np. liter albo wyrazów.
+
+|$n$| $n$-gram| nazwa |
+|---+---------+---------------|
+| 1 | 1-gram | unigram |
+| 2 | 2-gram | digram/bigram |
+| 3 | 3-gram | trigram |
+| 4 | 4-gram | tetragram |
+| 5 | 5-gram | pentagram |
+
+
+*Pytanie:* Jak nazywa się 6-gram?
+
+Jak widać, dla symetrii mówimy czasami o unigramach, jeśli operujemy
+po prostu na jednostkach, nie na ich podciągach.
+
+*** N-gramy z Pana Tadeusza
+
+Statystyki, które policzyliśmy dla pojedynczych liter czy wyrazów, możemy powtórzyć dla n-gramów.
+
+#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
+ def ngrams(iter, size):
+ ngram = []
+ for item in iter:
+ ngram.append(item)
+ if len(ngram) == size:
+ yield tuple(ngram)
+ ngram = ngram[1:]
+
+ list(ngrams("kotek", 3))
+#+END_SRC
+
+#+RESULTS:
+:results:
+[('k', 'o', 't'), ('o', 't', 'e'), ('t', 'e', 'k')]
+:end:
+
+Zauważmy, że policzyliśmy wszystkie n-gramy, również częściowo się pokrywające.
+
+Zawsze powinniśmy się upewnić, czy jest jasne, czy chodzi o n-gramy znakowe czy wyrazowe
+
+*** 3-gramy znakowe
+
+#+BEGIN_SRC ipython :session mysession :results file
+ log_rang_log_freq('pt-3-char-ngrams-log-log', ngrams(get_characters(pan_tadeusz), 3))
+#+END_SRC
+
+#+RESULTS:
+[[file:03_Ngramy/pt-3-char-ngrams-log-log.png]]
+
+*** 2-gramy wyrazowe
+
+#+BEGIN_SRC ipython :session mysession :results file
+ log_rang_log_freq('pt-2-word-ngrams-log-log', ngrams(get_words(pan_tadeusz), 2))
+#+END_SRC
+
+#+RESULTS:
+[[file:03_Ngramy/pt-2-word-ngrams-log-log.png]]
+
+** Tajemniczy język Manuskryptu Wojnicza
+
+[[https://pl.wikipedia.org/wiki/Manuskrypt_Wojnicza][Manuskrypt Wojnicza]] to powstały w XV w. manuskrypt spisany w
+tajemniczym alfabecie, do dzisiaj nieodszyfrowanym. Rękopis stanowi
+jedną z największych zagadek historii (i lingwistyki).
+
+[[./02_Jezyki/voynich135.jpg][Źródło: https://commons.wikimedia.org/wiki/File:Voynich_Manuscript_(135).jpg]]
+
+Sami zbadajmy statystyczne własności tekstu manuskryptu. Użyjmy
+transkrypcji Vnow, gdzie poszczególne znaki tajemniczego alfabetu
+zamienione na litery alfabetu łacińskiego, cyfry i gwiazdkę. Jak
+transkrybować manuskrypt, pozostaje sprawą dyskusyjną, natomiast wybór
+takiego czy innego systemu transkrypcji nie powinien wpływać
+dramatycznie na analizę statystyczną.
+
+#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
+ import requests
+
+ voynich_url = 'http://www.voynich.net/reeds/gillogly/voynich.now'
+ voynich = requests.get(voynich_url).content.decode('utf-8')
+
+ voynich = re.sub(r'\{[^\}]+\}|^<[^>]+>|[-# ]+', '', voynich, flags=re.MULTILINE)
+
+ voynich = voynich.replace('\n\n', '#')
+ voynich = voynich.replace('\n', ' ')
+ voynich = voynich.replace('#', '\n')
+
+ voynich = voynich.replace('.', ' ')
+
+ voynich[100:150]
+#+END_SRC
+
+#+RESULTS:
+:results:
+9 OR 9FAM ZO8 QOAR9 Q*R 8ARAM 29 [O82*]OM OPCC9 OP
+:end:
+
+#+BEGIN_SRC ipython :session mysession :results file
+ rang_freq_with_labels('voy-chars', get_characters(voynich))
+#+END_SRC
+
+#+RESULTS:
+[[file:03_Ngramy/voy-chars.png]]
+
+#+BEGIN_SRC ipython :session mysession :results file
+ log_rang_log_freq('voy-log-log', get_words(voynich))
+#+END_SRC
+
+#+RESULTS:
+[[file:03_Ngramy/voy-log-log.png]]
+
+#+BEGIN_SRC ipython :session mysession :results file
+ rang_freq_with_labels('voy-words-20', get_words(voynich), top=20)
+#+END_SRC
+
+#+RESULTS:
+[[file:03_Ngramy/voy-words-20.png]]
+
+#+BEGIN_SRC ipython :session mysession :results file
+ log_rang_log_freq('voy-words-log-log', get_words(voynich))
+#+END_SRC
+
+#+RESULTS:
+[[file:03_Ngramy/voy-words-log-log.png]]
+
+** Język DNA
+
+Kod genetyczny przejawia własności zaskakująco podobne do języków naturalnych.
+Przede wszystkim ma charakter dyskretny, genotyp to ciąg symboli ze skończonego alfabetu.
+Podstawowe litery są tylko cztery, reprezentują one nukleotydy, z których zbudowana jest nić DNA:
+a, g, c, t.
+
+
+#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
+ import requests
+
+ dna_url = 'https://raw.githubusercontent.com/egreen18/NanO_GEM/master/rawGenome.txt'
+ dna = requests.get(dna_url).content.decode('utf-8')
+
+ dna = ''.join(dna.split('\n')[1:])
+ dna = dna.replace('N', 'A')
+
+ dna[0:100]
+#+END_SRC
+
+#+RESULTS:
+:results:
+TATAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTA
+:end:
+
+#+BEGIN_SRC ipython :session mysession :results file
+ rang_freq_with_labels('dna-chars', get_characters(dna))
+#+END_SRC
+
+#+RESULTS:
+[[file:03_Ngramy/dna-chars.png]]
+
+*** Tryplety — znaczące cząstki genotypu
+
+Nukleotydy rzeczywiście są jak litery, same w sobie nie niosą
+znaczenia. Dopiero ciągi trzech nukleotydów, /tryplety/, kodują jeden
+z dwudziestu aminokwasów.
+
+#+BEGIN_SRC ipython :session mysession :results file
+ genetic_code = {
+ 'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M',
+ 'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T',
+ 'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K',
+ 'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R',
+ 'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L',
+ 'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P',
+ 'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q',
+ 'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R',
+ 'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V',
+ 'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A',
+ 'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E',
+ 'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G',
+ 'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S',
+ 'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L',
+ 'TAC':'Y', 'TAT':'Y', 'TAA':'_', 'TAG':'_',
+ 'TGC':'C', 'TGT':'C', 'TGA':'_', 'TGG':'W',
+ }
+
+ def get_triplets(t):
+ for triplet in re.finditer(r'.{3}', t):
+ yield genetic_code[triplet.group(0)]
+
+ rang_freq_with_labels('dna-aminos', get_triplets(dna))
+#+END_SRC
+
+#+RESULTS:
+[[file:03_Ngramy/dna-aminos.png]]
+
+*** „Zdania” w języku DNA
+
+Z aminokwasów zakodowanych przez tryplet budowane są białka.
+Maszyneria budująca białka czyta sekwencję aż do napotkania
+trypletu STOP (_ powyżej). Taka sekwencja to /gen/.
+
+#+BEGIN_SRC ipython :session mysession :results file
+ def get_genes(triplets):
+ gene = []
+ for ammino in triplets:
+ if ammino == '_':
+ yield gene
+ gene = []
+ else:
+ gene.append(ammino)
+
+ plt.figure().clear()
+ plt.hist([len(g) for g in get_genes(get_triplets(dna))], bins=100)
+
+ fname = '03_Ngramy/dna_length.png'
+
+ plt.savefig(fname)
+
+ fname
+#+END_SRC
+
+#+RESULTS:
+[[file:03_Ngramy/dna_length.png]]
diff --git a/wyk/02_Jezyki/dna-aminos.png b/wyk/03_Ngramy/dna-aminos.png
similarity index 100%
rename from wyk/02_Jezyki/dna-aminos.png
rename to wyk/03_Ngramy/dna-aminos.png
diff --git a/wyk/02_Jezyki/dna-chars.png b/wyk/03_Ngramy/dna-chars.png
similarity index 100%
rename from wyk/02_Jezyki/dna-chars.png
rename to wyk/03_Ngramy/dna-chars.png
diff --git a/wyk/02_Jezyki/dna_length.png b/wyk/03_Ngramy/dna_length.png
similarity index 100%
rename from wyk/02_Jezyki/dna_length.png
rename to wyk/03_Ngramy/dna_length.png
diff --git a/wyk/02_Jezyki/pt-2-word-ngrams-log-log.png b/wyk/03_Ngramy/pt-2-word-ngrams-log-log.png
similarity index 100%
rename from wyk/02_Jezyki/pt-2-word-ngrams-log-log.png
rename to wyk/03_Ngramy/pt-2-word-ngrams-log-log.png
diff --git a/wyk/02_Jezyki/pt-3-char-ngrams-log-log.png b/wyk/03_Ngramy/pt-3-char-ngrams-log-log.png
similarity index 100%
rename from wyk/02_Jezyki/pt-3-char-ngrams-log-log.png
rename to wyk/03_Ngramy/pt-3-char-ngrams-log-log.png
diff --git a/wyk/02_Jezyki/voy-chars.png b/wyk/03_Ngramy/voy-chars.png
similarity index 100%
rename from wyk/02_Jezyki/voy-chars.png
rename to wyk/03_Ngramy/voy-chars.png
diff --git a/wyk/02_Jezyki/voy-log-log.png b/wyk/03_Ngramy/voy-log-log.png
similarity index 100%
rename from wyk/02_Jezyki/voy-log-log.png
rename to wyk/03_Ngramy/voy-log-log.png
diff --git a/wyk/02_Jezyki/voy-words-20.png b/wyk/03_Ngramy/voy-words-20.png
similarity index 100%
rename from wyk/02_Jezyki/voy-words-20.png
rename to wyk/03_Ngramy/voy-words-20.png
diff --git a/wyk/02_Jezyki/voy-words-log-log.png b/wyk/03_Ngramy/voy-words-log-log.png
similarity index 100%
rename from wyk/02_Jezyki/voy-words-log-log.png
rename to wyk/03_Ngramy/voy-words-log-log.png
diff --git a/wyk/02_Jezyki/voynich135.jpg b/wyk/03_Ngramy/voynich135.jpg
similarity index 100%
rename from wyk/02_Jezyki/voynich135.jpg
rename to wyk/03_Ngramy/voynich135.jpg