From 6da452bc4f5618674e0ac8239fe248456871bfcd Mon Sep 17 00:00:00 2001 From: Filip Gralinski Date: Sat, 11 Jun 2022 08:36:47 +0200 Subject: [PATCH] Fix --- wyk/11_Transformer.org | 29 ++++++++++++++++++----------- 1 file changed, 18 insertions(+), 11 deletions(-) diff --git a/wyk/11_Transformer.org b/wyk/11_Transformer.org index 3a41ea9..bef5f66 100644 --- a/wyk/11_Transformer.org +++ b/wyk/11_Transformer.org @@ -90,25 +90,23 @@ Dokonajmy najpierw tokenizacji: #+BEGIN_SRC python :session mysession :exports both :results raw drawer from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("gpt2") - text = "The World War III will begin in" + text = "The World War III will begin in 2028 in" encoded_input = tokenizer(text, return_tensors='pt') encoded_input #+END_SRC #+RESULTS: :results: -{'input_ids': tensor([[ 464, 2159, 1810, 6711, 481, 2221, 287]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]])} +{'input_ids': tensor([[ 464, 2159, 1810, 6711, 481, 2221, 287, 1160, 2078, 287]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])} :end: -Możemy podejrzeć uzyskane tokeny: - #+BEGIN_SRC python :session mysession :exports both :results raw drawer - [tokenizer.decode(i) for i in encoded_input.input_ids[0]] + [tokenizer.decode(i) for i in encoded_input.input_ids[0]] #+END_SRC #+RESULTS: :results: -['The', ' World', ' War', ' III', ' will', ' begin', ' in'] +['The', ' World', ' War', ' III', ' will', ' begin', ' in', ' 20', '28', ' in'] :end: Zwróćmy uwagę, że w GPT-2 tokeny obejmują spacje! @@ -125,6 +123,15 @@ Teraz uruchommy zasadniczy model: :results: :end: +#+BEGIN_SRC python :session mysession :exports both :results raw drawer + softmax(outputs[0][0][-1]) +#+END_SRC + +#+RESULTS: +:results: +:end: + + Z modelu GPT-2 otrzymamy rozkład prawdopodobieństwa kolejnego wyrazu, najpierw w postaci nieznormalizowanych *logitów*: @@ -140,14 +147,14 @@ tensor([-130.2947, -129.5677, -136.4030, ..., -138.3791, -138.8967, :end: #+BEGIN_SRC python :session mysession :exports both :results raw drawer - from torch import softmax, topk + from torch import softmax, topk - k = 20 + k = 20 - t = topk(softmax(logits, -1), k) + t = topk(softmax(logits, -1), k) - tb = [[tokenizer.decode(t.indices[ix]), t.values[ix].item()] for ix in range(k)] - tb + tb = [[tokenizer.decode(t.indices[ix]), t.values[ix].item()] for ix in range(k)] + tb #+END_SRC #+RESULTS: