diff --git a/src/GEval/CreateChallenge.hs b/src/GEval/CreateChallenge.hs index 85430eb..8b501a3 100644 --- a/src/GEval/CreateChallenge.hs +++ b/src/GEval/CreateChallenge.hs @@ -624,7 +624,8 @@ devExpectedContents _ = [hereLit|0.82 |] testInContents :: Metric -> String -testInContents GLEU = testInContents BLEU +testInContents GLEU = [hereLit|Alice has a black +|] testInContents BLEU = [hereLit|ja jumala kutsui valkeuden päiväksi , ja pimeyden hän kutsui yöksi ja tuli ehtoo , ja tuli aamu , ensimmäinen päivä |] @@ -690,7 +691,6 @@ testInContents _ = [hereLit|0.72 0 0.007 |] testExpectedContents :: Metric -> String -testExpectedContents GLEU = testExpectedContents BLEU testExpectedContents BLEU = [hereLit|na ka huaina e te atua te marama ko te awatea , a ko te pouri i huaina e ia ko te po a ko te ahiahi , ko te ata , he ra kotahi |] @@ -753,10 +753,13 @@ bar:1/50,50,1000,1000 testExpectedContents ClippEU = [hereLit|3/0,0,100,100/10 1/10,10,1000,1000/10 |] +testExpectedContents GLEU = [hereLit|Alice has a black cat +|] testExpectedContents _ = [hereLit|0.11 17.2 |] + gitignoreContents :: String gitignoreContents = [hereLit| *~ diff --git a/src/GEval/MetricsMeta.hs b/src/GEval/MetricsMeta.hs index 2158ba9..8747bd9 100644 --- a/src/GEval/MetricsMeta.hs +++ b/src/GEval/MetricsMeta.hs @@ -93,6 +93,7 @@ isMetricDescribed :: Metric -> Bool isMetricDescribed (SoftFMeasure _) = True isMetricDescribed (Soft2DFMeasure _) = True isMetricDescribed (ProbabilisticMultiLabelFMeasure _) = True +isMetricDescribed GLEU = True isMetricDescribed _ = False getEvaluationSchemeDescription :: EvaluationScheme -> String @@ -118,7 +119,21 @@ where calibration measures the quality of probabilities (how well they are calib if we have 10 items with probability 0.5 and 5 of them are correct, then the calibration is perfect. |] - +getMetricDescription GLEU = + [i|For the GLEU score, we record all sub-sequences of +1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then +compute a recall, which is the ratio of the number of matching n-grams +to the number of total n-grams in the target (ground truth) sequence, +and a precision, which is the ratio of the number of matching n-grams +to the number of total n-grams in the generated output sequence. Then +GLEU score is simply the minimum of recall and precision. This GLEU +score's range is always between 0 (no matches) and 1 (all match) and +it is symmetrical when switching output and target. According to +the article, GLEU score correlates quite well with the BLEU +metric on a corpus level but does not have its drawbacks for our per +sentence reward objective. +see: https://arxiv.org/pdf/1609.08144.pdf +|] outContents :: Metric -> String @@ -132,6 +147,8 @@ outContents (ProbabilisticMultiLabelFMeasure _) = [hereLit|first-name/1:0.8 surn surname/1:0.4 first-name/3:0.9 |] +outContents GLEU = [hereLit|Alice has a black +|] expectedScore :: EvaluationScheme -> MetricValue expectedScore (EvaluationScheme (SoftFMeasure beta) []) @@ -146,6 +163,8 @@ expectedScore (EvaluationScheme (ProbabilisticMultiLabelFMeasure beta) []) = let precision = 0.6569596940847289 recall = 0.675 in weightedHarmonicMean beta precision recall +expectedScore (EvaluationScheme GLEU []) + = 0.7142857142857143 helpMetricParameterMetricsList :: String helpMetricParameterMetricsList = intercalate ", " $ map (\s -> (show s) ++ (case extraInfo s of @@ -194,7 +213,8 @@ the form LABEL:PAGE/X0,Y0,X1,Y1 where LABEL is any label, page is the page numbe formatDescription (ProbabilisticMultiLabelFMeasure _) = [hereLit|In each line a number of labels (entities) can be given. A label probability can be provided with a colon (e.g. "foo:0.7"). By default, 1.0 is assumed. |] - +formatDescription GLEU = [hereLit|In each line a there is a space sparated sentence of words. +|] scoreExplanation :: EvaluationScheme -> Maybe String scoreExplanation (EvaluationScheme (SoftFMeasure _) []) @@ -206,6 +226,14 @@ As far as the second item is concerned, the total area that covered by the outpu Hence, recall is 247500/902500=0.274 and precision - 247500/(20000+912000+240000)=0.211. Therefore, the F-score for the second item is 0.238 and the F-score for the whole set is (0 + 0.238)/2 = 0.119.|] scoreExplanation (EvaluationScheme (ProbabilisticMultiLabelFMeasure _) []) = Nothing +scoreExplanation (EvaluationScheme GLEU []) + = Just [hereLit|To find out GLEU score we first count number of tp (true positives) fp(false positives) and fn(false negatives). + We have 4 matching unigrams ("Alice", "has", "a", "black") , 3 bigrams ("Alice has", "has a", "a black"), 2 trigrams ("Alice has a", "has a black") and 1 tetragram ("Alice has a black"), +so tp=10. We have no fp, therefore fp=0. There are 4 fn - ("cat", "black cat", "a black cat", "has a black cat"). +Now we have to calculate precision and recall: + Precision is tp / (tp+fp) = 10/(10+0) = 1, + recall is tp / (tp+fn) = 10 / (10+4) = 10/14 =~ 0.71428... + The GLEU score is min(precision,recall)=0.71428 |] pasteLines :: String -> String -> String pasteLines a b = printf "%-35s %s\n" a b