A dead-end when working on fuzzy matching

This commit is contained in:
Filip Gralinski 2020-07-01 18:24:45 +02:00
parent 32bf424e6c
commit 4e3ff20e2c
11 changed files with 129 additions and 52 deletions

View File

@ -57,6 +57,7 @@ library
, GEval.DataSource , GEval.DataSource
, GEval.Model , GEval.Model
, GEval.ModelTraining , GEval.ModelTraining
, GEval.MatchingSpecification
, Paths_geval , Paths_geval
build-depends: base >= 4.7 && < 5 build-depends: base >= 4.7 && < 5
, cond , cond

View File

@ -6,7 +6,6 @@
{-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE PackageImports #-} {-# LANGUAGE PackageImports #-}
module GEval.Core module GEval.Core
( geval, ( geval,
gevalCore, gevalCore,
@ -113,6 +112,7 @@ import GEval.Annotation
import GEval.BlackBoxDebugging import GEval.BlackBoxDebugging
import Data.Conduit.Bootstrap import Data.Conduit.Bootstrap
import GEval.DataSource import GEval.DataSource
import GEval.MatchingSpecification
import qualified Data.HashMap.Strict as M import qualified Data.HashMap.Strict as M
import qualified Data.Vector as V import qualified Data.Vector as V
@ -522,7 +522,7 @@ singleLineAsLineSource (LineInFile sourceSpec lineNo line) itemDecoder preproces
-- some metrics are handled by Bootstrap due to legacy issues, -- some metrics are handled by Bootstrap due to legacy issues,
-- fix on the way -- fix on the way
handleBootstrap :: Metric -> Bool handleBootstrap :: Metric -> Bool
handleBootstrap (Mean (MultiLabelFMeasure _)) = True handleBootstrap (Mean (MultiLabelFMeasure _ _)) = True
handleBootstrap (Mean _) = False handleBootstrap (Mean _) = False
handleBootstrap CharMatch = False handleBootstrap CharMatch = False
handleBootstrap (LogLossHashed _) = False handleBootstrap (LogLossHashed _) = False
@ -567,15 +567,18 @@ gevalBootstrapOnSources :: (MonadIO m, MonadThrow m, MonadUnliftIO m) =>
-> m (MetricOutput) -- ^ metric values for the output against the expected output -> m (MetricOutput) -- ^ metric values for the output against the expected output
-- for the time being hardcoded -- for the time being hardcoded
gevalBootstrapOnSources numberOfSamples (Mean (MultiLabelFMeasure beta)) lsSpec = do gevalBootstrapOnSources numberOfSamples (Mean (MultiLabelFMeasure beta matchingSpec)) lsSpec = do
gevalRunPipeline parserSpec (trans step) finalPipeline context gevalRunPipeline parserSpec (trans step) finalPipeline context
where parserSpec = (ParserSpecWithoutInput (liftOp expParser) (liftOp outParser)) where parserSpec = (ParserSpecWithoutInput (liftOp expParser) (liftOp outParser))
context = fromSpecificationToWithoutInput lsSpec context = fromSpecificationToWithoutInput lsSpec
step = itemStep SAMultiLabelFMeasure step = case toSing matchingSpec of
expParser = expectedParser SAMultiLabelFMeasure SomeSing s -> itemStep (SAMultiLabelFMeasure s)
outParser = outputParser SAMultiLabelFMeasure expParser = case toSing matchingSpec of
SomeSing s -> expectedParser (SAMultiLabelFMeasure s)
outParser = case toSing matchingSpec of
SomeSing s -> outputParser (SAMultiLabelFMeasure s)
finalPipeline = fixer ( finalPipeline = fixer (
CL.map (fMeasureOnCounts beta) CL.map (fMeasureOnCounts' beta)
.| (bootstrapC numberOfSamples .| (bootstrapC numberOfSamples
$ continueGEvalCalculations SAMSE MSE)) $ continueGEvalCalculations SAMSE MSE))
trans :: ((a, b) -> c) -> ParsedRecord (WithoutInput m a b) -> c trans :: ((a, b) -> c) -> ParsedRecord (WithoutInput m a b) -> c
@ -630,7 +633,7 @@ gevalCoreOnSources (LogLossHashed nbOfBits) = helperLogLossHashed nbOfBits id
gevalCoreOnSources (LikelihoodHashed nbOfBits) = helperLogLossHashed nbOfBits logLossToLikehood gevalCoreOnSources (LikelihoodHashed nbOfBits) = helperLogLossHashed nbOfBits logLossToLikehood
gevalCoreOnSources (Mean (MultiLabelFMeasure beta)) gevalCoreOnSources (Mean (MultiLabelFMeasure beta matchingSpec))
= gevalCoreWithoutInputOnItemTargets (Right . intoWords) = gevalCoreWithoutInputOnItemTargets (Right . intoWords)
(Right . getWords) (Right . getWords)
((fMeasureOnCounts beta) . (getCounts (==))) ((fMeasureOnCounts beta) . (getCounts (==)))
@ -661,7 +664,8 @@ gevalCoreOnSources (Mean WER)
gevalCoreOnSources (Mean _) = error $ "Mean/ meta-metric defined only for MultiLabel-F1 and WER for the time being" gevalCoreOnSources (Mean _) = error $ "Mean/ meta-metric defined only for MultiLabel-F1 and WER for the time being"
-- only MultiLabel-F1 handled for JSONs for the time being... -- only MultiLabel-F1 handled for JSONs for the time being...
gevalCoreOnSources (MultiLabelFMeasure beta) = gevalCoreWithoutInputOnItemTargets (Right . intoWords) gevalCoreOnSources (MultiLabelFMeasure beta matchingSpec) =
gevalCoreWithoutInputOnItemTargets (Right . intoWords)
(Right . getWords) (Right . getWords)
(getCounts (==)) (getCounts (==))
countAgg countAgg
@ -846,14 +850,13 @@ gevalRunPipeline' parserSpec itemStep finalPipeline context = do
<$> ZipSource (CL.sourceList [(getFirstLineNo (Proxy :: Proxy m) context)..]) <$> ZipSource (CL.sourceList [(getFirstLineNo (Proxy :: Proxy m) context)..])
<*> (ZipSource $ recordSource context parserSpec)) .| CL.map (checkStep (Proxy :: Proxy m) itemStep)) .| CL.catMaybes .| finalPipeline) <*> (ZipSource $ recordSource context parserSpec)) .| CL.map (checkStep (Proxy :: Proxy m) itemStep)) .| CL.catMaybes .| finalPipeline)
continueGEvalCalculations :: forall m t . (MonadIO m) =>
continueGEvalCalculations :: (MonadIO m) =>
SAMetric t SAMetric t
-> Metric -> Metric
-> ConduitT (ItemIntermediateRepresentationType t) Void (ResourceT m) MetricOutput -> ConduitT (ItemIntermediateRepresentationType t) Void (ResourceT m) MetricOutput
continueGEvalCalculations SAMultiLabelFMeasure (MultiLabelFMeasure beta) = defineContinuation countAgg (fMeasureOnCounts beta) noGraph continueGEvalCalculations (SAMultiLabelFMeasure matchingSpec) (MultiLabelFMeasure beta matchingSpec')
= defineContinuation countAgg (fMeasureOnCounts beta) noGraph
continueGEvalCalculations SALikelihood Likelihood = defineContinuation averageC logLossToLikehood noGraph continueGEvalCalculations SALikelihood Likelihood = defineContinuation averageC logLossToLikehood noGraph

View File

@ -10,6 +10,7 @@ import GEval.EvaluationScheme
import GEval.Common (GEvalException(..)) import GEval.Common (GEvalException(..))
import GEval.Core (GEvalSpecification(..), configFileName, gesMainMetric, defaultTestName) import GEval.Core (GEvalSpecification(..), configFileName, gesMainMetric, defaultTestName)
import GEval.Submit (tokenFileName) import GEval.Submit (tokenFileName)
import GEval.MatchingSpecification (MatchingSpecification(ExactMatch))
import qualified System.Directory as D import qualified System.Directory as D
import Control.Conditional (whenM) import Control.Conditional (whenM)
@ -331,8 +332,8 @@ character (inclusively).
|] ++ (commonReadmeMDContents testName) |] ++ (commonReadmeMDContents testName)
readmeMDContents (ProbabilisticMultiLabelFMeasure beta) testName = readmeMDContents (MultiLabelFMeasure beta) testName readmeMDContents (ProbabilisticMultiLabelFMeasure beta) testName = readmeMDContents (MultiLabelFMeasure beta ExactMatch) testName
readmeMDContents (MultiLabelFMeasure beta) testName = [i| readmeMDContents (MultiLabelFMeasure beta _) testName = [i|
Tag names and their component Tag names and their component
============================= =============================
@ -533,8 +534,8 @@ trainContents TokenAccuracy = [hereLit|* V N I like cats
trainContents SegmentAccuracy = [hereLit|Art:1-3 N:5-11 V:12-13 A:15-19 The student's smart trainContents SegmentAccuracy = [hereLit|Art:1-3 N:5-11 V:12-13 A:15-19 The student's smart
N:1-6 N:8-10 V:12-13 A:15-18 Mary's dog is nice N:1-6 N:8-10 V:12-13 A:15-18 Mary's dog is nice
|] |]
trainContents (ProbabilisticMultiLabelFMeasure beta) = trainContents (MultiLabelFMeasure beta) trainContents (ProbabilisticMultiLabelFMeasure beta) = trainContents (MultiLabelFMeasure beta ExactMatch)
trainContents (MultiLabelFMeasure _) = [hereLit|I know Mr John Smith person/3,4,5 first-name/4 surname/5 trainContents (MultiLabelFMeasure _ _) = [hereLit|I know Mr John Smith person/3,4,5 first-name/4 surname/5
Steven bloody Brown person/1,3 first-name/1 surname/3 Steven bloody Brown person/1,3 first-name/1 surname/3
James and James first-name/1 firstname/3 James and James first-name/1 firstname/3
|] |]
@ -606,8 +607,8 @@ Ala has a cat
devInContents SegmentAccuracy = [hereLit|John is smart devInContents SegmentAccuracy = [hereLit|John is smart
Mary's intelligent Mary's intelligent
|] |]
devInContents (ProbabilisticMultiLabelFMeasure beta) = devInContents (MultiLabelFMeasure beta) devInContents (ProbabilisticMultiLabelFMeasure beta) = devInContents (MultiLabelFMeasure beta ExactMatch)
devInContents (MultiLabelFMeasure _) = [hereLit|Jan Kowalski is here devInContents (MultiLabelFMeasure _ _) = [hereLit|Jan Kowalski is here
I see him I see him
Barbara Barbara
|] |]
@ -674,8 +675,8 @@ N V * N
devExpectedContents SegmentAccuracy = [hereLit|N:1-4 V:6-7 A:9-13 devExpectedContents SegmentAccuracy = [hereLit|N:1-4 V:6-7 A:9-13
N:1-4 V:6-7 A:9-19 N:1-4 V:6-7 A:9-19
|] |]
devExpectedContents (ProbabilisticMultiLabelFMeasure beta) = devExpectedContents (MultiLabelFMeasure beta) devExpectedContents (ProbabilisticMultiLabelFMeasure beta) = devExpectedContents (MultiLabelFMeasure beta ExactMatch)
devExpectedContents (MultiLabelFMeasure _) = [hereLit|person/1,2 first-name/1 surname/2 devExpectedContents (MultiLabelFMeasure _ _) = [hereLit|person/1,2 first-name/1 surname/2
first-name/1 first-name/1
|] |]
@ -747,8 +748,8 @@ I know
testInContents SegmentAccuracy = [hereLit|Mary's cat is old testInContents SegmentAccuracy = [hereLit|Mary's cat is old
John is young John is young
|] |]
testInContents (ProbabilisticMultiLabelFMeasure beta) = testInContents (MultiLabelFMeasure beta) testInContents (ProbabilisticMultiLabelFMeasure beta) = testInContents (MultiLabelFMeasure beta ExactMatch)
testInContents (MultiLabelFMeasure _) = [hereLit|John bloody Smith testInContents (MultiLabelFMeasure _ _) = [hereLit|John bloody Smith
Nobody is there Nobody is there
I saw Marketa I saw Marketa
|] |]
@ -816,8 +817,8 @@ testExpectedContents TokenAccuracy = [hereLit|* V N
testExpectedContents SegmentAccuracy = [hereLit|N:1-6 N:8-10 V:12-13 A:15-17 testExpectedContents SegmentAccuracy = [hereLit|N:1-6 N:8-10 V:12-13 A:15-17
N:1-4 V:6-7 A:9-13 N:1-4 V:6-7 A:9-13
|] |]
testExpectedContents (ProbabilisticMultiLabelFMeasure beta) = testExpectedContents (MultiLabelFMeasure beta) testExpectedContents (ProbabilisticMultiLabelFMeasure beta) = testExpectedContents (MultiLabelFMeasure beta ExactMatch)
testExpectedContents (MultiLabelFMeasure _) = [hereLit|person/1,3 first-name/1 surname/3 testExpectedContents (MultiLabelFMeasure _ _) = [hereLit|person/1,3 first-name/1 surname/3
first-name/3 first-name/3
|] |]
@ -875,8 +876,8 @@ inHeaderContents BIOF1Labels = inHeaderContents BIOF1
inHeaderContents BIOF1 = Just ["Text"] inHeaderContents BIOF1 = Just ["Text"]
inHeaderContents TokenAccuracy = Just ["TokenizedText"] inHeaderContents TokenAccuracy = Just ["TokenizedText"]
inHeaderContents SegmentAccuracy = Just ["Segment"] inHeaderContents SegmentAccuracy = Just ["Segment"]
inHeaderContents (ProbabilisticMultiLabelFMeasure beta) = inHeaderContents (MultiLabelFMeasure beta) inHeaderContents (ProbabilisticMultiLabelFMeasure beta) = inHeaderContents (MultiLabelFMeasure beta ExactMatch)
inHeaderContents (MultiLabelFMeasure _) = Just ["Text"] inHeaderContents (MultiLabelFMeasure _ _) = Just ["Text"]
inHeaderContents MultiLabelLikelihood = inHeaderContents MultiLabelLogLoss inHeaderContents MultiLabelLikelihood = inHeaderContents MultiLabelLogLoss
inHeaderContents MultiLabelLogLoss = Just ["Utterance"] inHeaderContents MultiLabelLogLoss = Just ["Utterance"]
inHeaderContents (Soft2DFMeasure _) = inHeaderContents ClippEU inHeaderContents (Soft2DFMeasure _) = inHeaderContents ClippEU
@ -903,8 +904,8 @@ outHeaderContents BIOF1Labels = outHeaderContents BIOF1
outHeaderContents BIOF1 = Just ["BIOOutput"] outHeaderContents BIOF1 = Just ["BIOOutput"]
outHeaderContents TokenAccuracy = Just ["PartsOfSpeech"] outHeaderContents TokenAccuracy = Just ["PartsOfSpeech"]
outHeaderContents SegmentAccuracy = Just ["PartsOfSpeech"] outHeaderContents SegmentAccuracy = Just ["PartsOfSpeech"]
outHeaderContents (ProbabilisticMultiLabelFMeasure beta) = outHeaderContents (MultiLabelFMeasure beta) outHeaderContents (ProbabilisticMultiLabelFMeasure beta) = outHeaderContents (MultiLabelFMeasure beta ExactMatch)
outHeaderContents (MultiLabelFMeasure _) = Just ["Entities"] outHeaderContents (MultiLabelFMeasure _ _) = Just ["Entities"]
outHeaderContents MultiLabelLikelihood = outHeaderContents MultiLabelLogLoss outHeaderContents MultiLabelLikelihood = outHeaderContents MultiLabelLogLoss
outHeaderContents MultiLabelLogLoss = Just ["Emotion"] outHeaderContents MultiLabelLogLoss = Just ["Emotion"]
outHeaderContents (Soft2DFMeasure _) = Just ["Rectangle"] outHeaderContents (Soft2DFMeasure _) = Just ["Rectangle"]

View File

@ -0,0 +1,32 @@
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
-- | This module is for defining possible "matching specifications",
-- i.e. the way tokens are matched against one another in metrics such as MultiLabel-F1.
--
-- Not all metrics could be affected by matching specifications (e.g. they would
-- not make sense for metrics comparing numbers, such as MSE or MAE).
module GEval.MatchingSpecification
where
import Data.Singletons.TH
import Data.Text
-- | The data type for storing a matching specification
singletons [d|data MatchingSpecification = ExactMatch -- ^ exact match, i.e. identity is required
| FuzzyMatch -- ^ fuzzy match by Levenshtein distance
| CutLabel MatchingSpecification -- ^ require that the label (part before up to `=`)
-- is matched and then proceed with some matching spec.
deriving (Eq)
|]
getMatchingFunction :: MatchingSpecification -> Text -> Text -> Double
getMatchingFunction ExactMatch = (\a b -> 1.0)
getMatchingFunction FuzzyMatch = (\a b -> 1.0)
getMatchingFunction (CutLabel smatchSpec)= getMatchingFunction smatchSpec

View File

@ -18,6 +18,7 @@ import Data.Monoid ((<>))
import GEval.Common import GEval.Common
import GEval.Clippings import GEval.Clippings
import GEval.MatchingSpecification
import Data.Attoparsec.Text (parseOnly) import Data.Attoparsec.Text (parseOnly)
-- here metrics and their basic properties are listed, -- here metrics and their basic properties are listed,
@ -27,7 +28,8 @@ import Data.Attoparsec.Text (parseOnly)
data Metric = RMSE | MSE | Pearson | Spearman | BLEU | GLEU | WER | Accuracy | ClippEU data Metric = RMSE | MSE | Pearson | Spearman | BLEU | GLEU | WER | Accuracy | ClippEU
| FMeasure Double | MacroFMeasure Double | NMI | FMeasure Double | MacroFMeasure Double | NMI
| LogLossHashed Word32 | CharMatch | MAP | LogLoss | Likelihood | LogLossHashed Word32 | CharMatch | MAP | LogLoss | Likelihood
| BIOF1 | BIOF1Labels | TokenAccuracy | SegmentAccuracy | LikelihoodHashed Word32 | MAE | SMAPE | MultiLabelFMeasure Double | BIOF1 | BIOF1Labels | TokenAccuracy | SegmentAccuracy | LikelihoodHashed Word32 | MAE | SMAPE
| MultiLabelFMeasure Double MatchingSpecification
| MultiLabelLogLoss | MultiLabelLikelihood | MultiLabelLogLoss | MultiLabelLikelihood
| SoftFMeasure Double | ProbabilisticMultiLabelFMeasure Double | SoftFMeasure Double | ProbabilisticMultiLabelFMeasure Double
| ProbabilisticSoftFMeasure Double | Soft2DFMeasure Double | ProbabilisticSoftFMeasure Double | Soft2DFMeasure Double
@ -78,15 +80,30 @@ instance Show Metric where
show SegmentAccuracy = "SegmentAccuracy" show SegmentAccuracy = "SegmentAccuracy"
show MAE = "MAE" show MAE = "MAE"
show SMAPE = "SMAPE" show SMAPE = "SMAPE"
show (MultiLabelFMeasure beta) = "MultiLabel-F" ++ (show beta) show (MultiLabelFMeasure beta ExactMatch) = "MultiLabel-F" ++ (show beta)
show (MultiLabelFMeasure beta FuzzyMatch) = "Fuzzy/" ++ (show $ MultiLabelFMeasure beta ExactMatch)
show (MultiLabelFMeasure beta (CutLabel matchSpec)) = "CutLabel/" ++ (show $ MultiLabelFMeasure beta matchSpec)
show MultiLabelLogLoss = "MultiLabel-Logloss" show MultiLabelLogLoss = "MultiLabel-Logloss"
show MultiLabelLikelihood = "MultiLabel-Likelihood" show MultiLabelLikelihood = "MultiLabel-Likelihood"
show (Mean metric) = "Mean/" ++ (show metric) show (Mean metric) = "Mean/" ++ (show metric)
applyMatchingSpecification :: (MatchingSpecification -> MatchingSpecification)
-> Metric
-> Metric
applyMatchingSpecification fun (MultiLabelFMeasure beta matchSpec)
= MultiLabelFMeasure beta (fun matchSpec)
applyMatchingSpecification _ metric = error $ "Matching specification cannot be applied to the " ++ (show metric) ++ " metric"
instance Read Metric where instance Read Metric where
readsPrec p ('M':'e':'a':'n':'/':theRest) = case readsPrec p theRest of readsPrec p ('M':'e':'a':'n':'/':theRest) = case readsPrec p theRest of
[(metric, theRest)] -> [(Mean metric, theRest)] [(metric, theRest)] -> [(Mean metric, theRest)]
_ -> [] _ -> []
readsPrec p ('F':'u':'z':'z':'y':'/':theRest) = case readsPrec p theRest of
[(metric, theRest)] -> [(applyMatchingSpecification (const FuzzyMatch) metric, theRest)]
_ -> []
readsPrec p ('C':'u':'t':'L':'a':'b':'e':'l':'/':theRest) = case readsPrec p theRest of
[(metric, theRest)] -> [(applyMatchingSpecification CutLabel metric, theRest)]
_ -> []
readsPrec _ ('R':'M':'S':'E':theRest) = [(RMSE, theRest)] readsPrec _ ('R':'M':'S':'E':theRest) = [(RMSE, theRest)]
readsPrec _ ('M':'S':'E':theRest) = [(MSE, theRest)] readsPrec _ ('M':'S':'E':theRest) = [(MSE, theRest)]
readsPrec _ ('P':'e':'a':'r':'s':'o':'n':theRest) = [(Pearson, theRest)] readsPrec _ ('P':'e':'a':'r':'s':'o':'n':theRest) = [(Pearson, theRest)]
@ -107,7 +124,7 @@ instance Read Metric where
[(beta, theRest)] -> [(MacroFMeasure beta, theRest)] [(beta, theRest)] -> [(MacroFMeasure beta, theRest)]
_ -> [] _ -> []
readsPrec p ('M':'u':'l':'t':'i':'L':'a':'b':'e':'l':'-':'F':theRest) = case readsPrec p theRest of readsPrec p ('M':'u':'l':'t':'i':'L':'a':'b':'e':'l':'-':'F':theRest) = case readsPrec p theRest of
[(beta, theRest)] -> [(MultiLabelFMeasure beta, theRest)] [(beta, theRest)] -> [(MultiLabelFMeasure beta ExactMatch, theRest)]
_ -> [] _ -> []
readsPrec p ('S':'o':'f':'t':'2':'D':'-':'F':theRest) = case readsPrec p theRest of readsPrec p ('S':'o':'f':'t':'2':'D':'-':'F':theRest) = case readsPrec p theRest of
[(beta, theRest)] -> [(Soft2DFMeasure beta, theRest)] [(beta, theRest)] -> [(Soft2DFMeasure beta, theRest)]
@ -175,7 +192,7 @@ getMetricOrdering TokenAccuracy = TheHigherTheBetter
getMetricOrdering SegmentAccuracy = TheHigherTheBetter getMetricOrdering SegmentAccuracy = TheHigherTheBetter
getMetricOrdering MAE = TheLowerTheBetter getMetricOrdering MAE = TheLowerTheBetter
getMetricOrdering SMAPE = TheLowerTheBetter getMetricOrdering SMAPE = TheLowerTheBetter
getMetricOrdering (MultiLabelFMeasure _) = TheHigherTheBetter getMetricOrdering (MultiLabelFMeasure _ _) = TheHigherTheBetter
getMetricOrdering MultiLabelLogLoss = TheLowerTheBetter getMetricOrdering MultiLabelLogLoss = TheLowerTheBetter
getMetricOrdering MultiLabelLikelihood = TheHigherTheBetter getMetricOrdering MultiLabelLikelihood = TheHigherTheBetter
getMetricOrdering (Mean metric) = getMetricOrdering metric getMetricOrdering (Mean metric) = getMetricOrdering metric

View File

@ -5,6 +5,8 @@
{-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE EmptyCase #-} {-# LANGUAGE EmptyCase #-}
{-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
module GEval.MetricsMechanics module GEval.MetricsMechanics
where where
@ -40,6 +42,7 @@ import GEval.Clippings (Clipping, ClippingSpec, LabeledClipping, lineClippingsPa
import GEval.BIO (TaggedEntity, parseBioSequenceIntoEntities, parseBioSequenceIntoEntitiesWithoutNormalization) import GEval.BIO (TaggedEntity, parseBioSequenceIntoEntities, parseBioSequenceIntoEntitiesWithoutNormalization)
import GEval.LogLossHashed (parseWordSpecs, wordSpecToPair) import GEval.LogLossHashed (parseWordSpecs, wordSpecToPair)
import GEval.ProbList (ProbList(..), parseIntoProbList, WordWithProb(..), countLogLossOnProbList) import GEval.ProbList (ProbList(..), parseIntoProbList, WordWithProb(..), countLogLossOnProbList)
import GEval.MatchingSpecification
-- | Helper type so that singleton can be used. -- | Helper type so that singleton can be used.
-- | (The problem is that some metrics are parametrized by Double -- | (The problem is that some metrics are parametrized by Double
@ -47,7 +50,7 @@ import GEval.ProbList (ProbList(..), parseIntoProbList, WordWithProb(..), countL
singletons [d|data AMetric = ARMSE | AMSE | APearson | ASpearman | ABLEU | AGLEU | AWER | AAccuracy | AClippEU singletons [d|data AMetric = ARMSE | AMSE | APearson | ASpearman | ABLEU | AGLEU | AWER | AAccuracy | AClippEU
| AFMeasure | AMacroFMeasure | ANMI | AFMeasure | AMacroFMeasure | ANMI
| ALogLossHashed | ACharMatch | AMAP | ALogLoss | ALikelihood | ALogLossHashed | ACharMatch | AMAP | ALogLoss | ALikelihood
| ABIOF1 | ABIOF1Labels | ATokenAccuracy | ASegmentAccuracy | ALikelihoodHashed | AMAE | ASMAPE | AMultiLabelFMeasure | ABIOF1 | ABIOF1Labels | ATokenAccuracy | ASegmentAccuracy | ALikelihoodHashed | AMAE | ASMAPE | AMultiLabelFMeasure MatchingSpecification
| AMultiLabelLogLoss | AMultiLabelLikelihood | AMultiLabelLogLoss | AMultiLabelLikelihood
| ASoftFMeasure | AProbabilisticMultiLabelFMeasure | AProbabilisticSoftFMeasure | ASoft2DFMeasure | ASoftFMeasure | AProbabilisticMultiLabelFMeasure | AProbabilisticSoftFMeasure | ASoft2DFMeasure
| AFLCFMeasure | AFLCFMeasure
@ -80,7 +83,7 @@ toHelper SegmentAccuracy = ASegmentAccuracy
toHelper (LikelihoodHashed _) = ALikelihoodHashed toHelper (LikelihoodHashed _) = ALikelihoodHashed
toHelper MAE = AMAE toHelper MAE = AMAE
toHelper SMAPE = ASMAPE toHelper SMAPE = ASMAPE
toHelper (MultiLabelFMeasure _) = AMultiLabelFMeasure toHelper (MultiLabelFMeasure _ matchingSpec) = AMultiLabelFMeasure matchingSpec
toHelper MultiLabelLogLoss = AMultiLabelLogLoss toHelper MultiLabelLogLoss = AMultiLabelLogLoss
toHelper MultiLabelLikelihood = AMultiLabelLikelihood toHelper MultiLabelLikelihood = AMultiLabelLikelihood
toHelper (SoftFMeasure _) = ASoftFMeasure toHelper (SoftFMeasure _) = ASoftFMeasure
@ -123,7 +126,7 @@ type family ParsedExpectedType (t :: AMetric) :: * where
ParsedExpectedType ASegmentAccuracy = [Annotation] ParsedExpectedType ASegmentAccuracy = [Annotation]
ParsedExpectedType AMAE = Double ParsedExpectedType AMAE = Double
ParsedExpectedType ASMAPE = Double ParsedExpectedType ASMAPE = Double
ParsedExpectedType AMultiLabelFMeasure = [Text] ParsedExpectedType (AMultiLabelFMeasure _) = [Text]
ParsedExpectedType AMultiLabelLogLoss = [Text] ParsedExpectedType AMultiLabelLogLoss = [Text]
ParsedExpectedType AMultiLabelLikelihood = [Text] ParsedExpectedType AMultiLabelLikelihood = [Text]
@ -157,7 +160,7 @@ expectedParser SATokenAccuracy = intoWords
expectedParser SASegmentAccuracy = parseSegmentAnnotations expectedParser SASegmentAccuracy = parseSegmentAnnotations
expectedParser SAMAE = doubleParser expectedParser SAMAE = doubleParser
expectedParser SASMAPE = doubleParser expectedParser SASMAPE = doubleParser
expectedParser SAMultiLabelFMeasure = intoWords expectedParser (SAMultiLabelFMeasure _) = intoWords
expectedParser SAMultiLabelLogLoss = intoWords expectedParser SAMultiLabelLogLoss = intoWords
expectedParser SAMultiLabelLikelihood = intoWords expectedParser SAMultiLabelLikelihood = intoWords
@ -204,7 +207,7 @@ outputParser SATokenAccuracy = intoWords
outputParser SASegmentAccuracy = parseSegmentAnnotations outputParser SASegmentAccuracy = parseSegmentAnnotations
outputParser SAMAE = doubleParser outputParser SAMAE = doubleParser
outputParser SASMAPE = doubleParser outputParser SASMAPE = doubleParser
outputParser SAMultiLabelFMeasure = intoWords outputParser (SAMultiLabelFMeasure _) = intoWords
outputParser SAMultiLabelLogLoss = Right . parseIntoProbList outputParser SAMultiLabelLogLoss = Right . parseIntoProbList
outputParser SAMultiLabelLikelihood = Right . parseIntoProbList outputParser SAMultiLabelLikelihood = Right . parseIntoProbList
@ -225,13 +228,17 @@ type family ItemIntermediateRepresentationType (t :: AMetric) :: * where
ItemIntermediateRepresentationType AProbabilisticSoftFMeasure = ([Double], [Double], Double, Int) ItemIntermediateRepresentationType AProbabilisticSoftFMeasure = ([Double], [Double], Double, Int)
ItemIntermediateRepresentationType APearson = (Double, Double) ItemIntermediateRepresentationType APearson = (Double, Double)
ItemIntermediateRepresentationType ASpearman = (Double, Double) ItemIntermediateRepresentationType ASpearman = (Double, Double)
ItemIntermediateRepresentationType AMultiLabelFMeasure = (Int, Int, Int) ItemIntermediateRepresentationType (AMultiLabelFMeasure ms) = (MatchingCount ms, Int, Int)
ItemIntermediateRepresentationType ALogLossHashed = (Text, Text) ItemIntermediateRepresentationType ALogLossHashed = (Text, Text)
ItemIntermediateRepresentationType ALikelihoodHashed = (Text, Text) ItemIntermediateRepresentationType ALikelihoodHashed = (Text, Text)
ItemIntermediateRepresentationType ACharMatch = (Text, Text) ItemIntermediateRepresentationType ACharMatch = (Text, Text)
ItemIntermediateRepresentationType AWER = (Int, Int) ItemIntermediateRepresentationType AWER = (Int, Int)
ItemIntermediateRepresentationType t = Double ItemIntermediateRepresentationType t = Double
type family MatchingCount (t :: MatchingSpecification) where
MatchingCount ExactMatch = Int
MatchingCount _ = Double
itemStep :: SAMetric t -> (ParsedExpectedType t, ParsedOutputType t) -> ItemIntermediateRepresentationType t itemStep :: SAMetric t -> (ParsedExpectedType t, ParsedOutputType t) -> ItemIntermediateRepresentationType t
itemStep SARMSE = itemSquaredError itemStep SARMSE = itemSquaredError
itemStep SAMSE = itemSquaredError itemStep SAMSE = itemSquaredError
@ -262,7 +269,10 @@ itemStep SATokenAccuracy = countHitsAndTotals
itemStep SASegmentAccuracy = uncurry segmentAccuracy itemStep SASegmentAccuracy = uncurry segmentAccuracy
itemStep SAMAE = itemAbsoluteError itemStep SAMAE = itemAbsoluteError
itemStep SASMAPE = smape itemStep SASMAPE = smape
itemStep SAMultiLabelFMeasure = getCounts (==) itemStep (SAMultiLabelFMeasure SExactMatch) = getCounts (==)
itemStep (SAMultiLabelFMeasure SFuzzyMatch) = getWeightedCounts (getMatchingFunction $ fromSing SFuzzyMatch)
itemStep (SAMultiLabelFMeasure smatchSpec@(SCutLabel _))
= getWeightedCounts (getMatchingFunction $ fromSing smatchSpec)
itemStep SAMultiLabelLogLoss = uncurry countLogLossOnProbList itemStep SAMultiLabelLogLoss = uncurry countLogLossOnProbList
itemStep SAMultiLabelLikelihood = uncurry countLogLossOnProbList itemStep SAMultiLabelLikelihood = uncurry countLogLossOnProbList
@ -354,10 +364,13 @@ getClassesInvolved (Just a, Just b) = if a == b
then (Just a, Just a, Just a) then (Just a, Just a, Just a)
else (Nothing, Just a, Just b) else (Nothing, Just a, Just b)
getSoftCounts (expected, got) = (weightedMaxMatch matchScore expected got, getWeightedCounts :: (a -> b -> Double) -> ([a], [b]) -> (Double, Int, Int)
getWeightedCounts matchFun (expected, got) = (weightedMaxMatch matchFun expected got,
Prelude.length expected, Prelude.length expected,
Prelude.length got) Prelude.length got)
getSoftCounts args = getWeightedCounts matchScore args
getSoft2DCounts (expected, got) = (tpArea, expArea, gotArea) getSoft2DCounts (expected, got) = (tpArea, expArea, gotArea)
where tpArea = coveredBy expected got where tpArea = coveredBy expected got
expArea = totalArea expected expArea = totalArea expected

View File

@ -18,6 +18,7 @@ import GEval.Metric
import GEval.EvaluationScheme import GEval.EvaluationScheme
import GEval.CreateChallenge (testExpectedContents) import GEval.CreateChallenge (testExpectedContents)
import GEval.PrecisionRecall (weightedHarmonicMean) import GEval.PrecisionRecall (weightedHarmonicMean)
import GEval.MatchingSpecification (MatchingSpecification(ExactMatch))
import Text.Regex.PCRE.Heavy import Text.Regex.PCRE.Heavy
import Data.Either (fromRight) import Data.Either (fromRight)
@ -45,10 +46,10 @@ listOfAvailableMetrics = [RMSE,
MacroFMeasure 1.0, MacroFMeasure 1.0,
MacroFMeasure 2.0, MacroFMeasure 2.0,
MacroFMeasure 0.25, MacroFMeasure 0.25,
MultiLabelFMeasure 1.0, MultiLabelFMeasure 1.0 ExactMatch,
MultiLabelFMeasure 2.0, MultiLabelFMeasure 2.0 ExactMatch,
MultiLabelFMeasure 0.25, MultiLabelFMeasure 0.25 ExactMatch,
Mean (MultiLabelFMeasure 1.0), Mean (MultiLabelFMeasure 1.0 ExactMatch),
ProbabilisticMultiLabelFMeasure 1.0, ProbabilisticMultiLabelFMeasure 1.0,
ProbabilisticMultiLabelFMeasure 2.0, ProbabilisticMultiLabelFMeasure 2.0,
ProbabilisticMultiLabelFMeasure 0.25, ProbabilisticMultiLabelFMeasure 0.25,

View File

@ -347,6 +347,8 @@ main = hspec $ do
runGEvalTest "multilabel-f1-ie" `shouldReturnAlmost` 0.1111111111 runGEvalTest "multilabel-f1-ie" `shouldReturnAlmost` 0.1111111111
it "information extraction with flags" $ do it "information extraction with flags" $ do
runGEvalTest "multilabel-f1-ie-flags" `shouldReturnAlmost` 0.444444444444 runGEvalTest "multilabel-f1-ie-flags" `shouldReturnAlmost` 0.444444444444
it "information extraction with fuzzy matching" $ do
runGEvalTest "multilabel-f1-ie-fuzzy" `shouldReturnAlmost` 0.6928
describe "Mean/MultiLabel-F" $ do describe "Mean/MultiLabel-F" $ do
it "simple" $ do it "simple" $ do
runGEvalTest "mean-multilabel-f1-simple" `shouldReturnAlmost` 0.5 runGEvalTest "mean-multilabel-f1-simple" `shouldReturnAlmost` 0.5

View File

@ -0,0 +1,3 @@
important-person=JOHN_BROWN important-person=JOHN_SMITH company-name=Axaxaxaxas_Mlo profit=12031
company-name=Foo_Bar profit=1220
company-name=Whatever important-person=PIERRE_MENARD
1 important-person=JOHN_BROWN important-person=JOHN_SMITH company-name=Axaxaxaxas_Mlo profit=12031
2 company-name=Foo_Bar profit=1220
3 company-name=Whatever important-person=PIERRE_MENARD

View File

@ -0,0 +1 @@
--metric CutLabel/Fuzzy/MultiLabel-F1:ls<_(inc|ltd)\.?(\s|$)><\2>

View File

@ -0,0 +1,3 @@
company-name=Axaxaxas_Mlö profit=12031 important-person=John_Smith important-person=James_Brown
company-name=Orbis_Tertius profit=1020 important-person=Anna_Smith
company-name=Whatever_Inc profit=5600 important-person=Pierre_Menard
1 company-name=Axaxaxas_Mlö profit=12031 important-person=John_Smith important-person=James_Brown
2 company-name=Orbis_Tertius profit=1020 important-person=Anna_Smith
3 company-name=Whatever_Inc profit=5600 important-person=Pierre_Menard