Clip loess and switch to gaussian in Calibration
This commit is contained in:
parent
de40851b5a
commit
e5220d71d8
src
@ -1,7 +1,7 @@
|
|||||||
module Data.Statistics.Calibration
|
module Data.Statistics.Calibration
|
||||||
(calibration, softCalibration) where
|
(calibration, softCalibration) where
|
||||||
|
|
||||||
import Data.Statistics.Loess(loess)
|
import Data.Statistics.Loess (clippedLoess)
|
||||||
import Numeric.Integration.TanhSinh
|
import Numeric.Integration.TanhSinh
|
||||||
import Data.List (minimum, maximum)
|
import Data.List (minimum, maximum)
|
||||||
import qualified Data.Vector.Unboxed as DVU
|
import qualified Data.Vector.Unboxed as DVU
|
||||||
@ -34,7 +34,7 @@ softCalibration [] _ = error "too few booleans in calibration"
|
|||||||
softCalibration _ [] = error "too few probabilities in calibration"
|
softCalibration _ [] = error "too few probabilities in calibration"
|
||||||
softCalibration results probs
|
softCalibration results probs
|
||||||
| band probs < minBand = handleNarrowBand results probs
|
| band probs < minBand = handleNarrowBand results probs
|
||||||
| otherwise = 1.0 - (min 1.0 (2.0 * (integrate (lowest, highest) (\x -> abs ((loess (DVU.fromList probs) (DVU.fromList results) x) - x))) / (highest - lowest)))
|
| otherwise = 1.0 - (min 1.0 (2.0 * (integrate (lowest, highest) (\x -> abs ((clippedLoess (DVU.fromList probs) (DVU.fromList results) x) - x))) / (highest - lowest)))
|
||||||
where lowest = (minimum probs) + epsilon -- integrating loess gets crazy at edges
|
where lowest = (minimum probs) + epsilon -- integrating loess gets crazy at edges
|
||||||
highest = (maximum probs) - epsilon
|
highest = (maximum probs) - epsilon
|
||||||
epsilon = 0.0001
|
epsilon = 0.0001
|
||||||
|
@ -1,23 +1,32 @@
|
|||||||
module Data.Statistics.Loess
|
module Data.Statistics.Loess
|
||||||
(loess) where
|
(loess, clippedLoess) where
|
||||||
|
|
||||||
import qualified Statistics.Matrix.Types as SMT
|
import qualified Statistics.Matrix.Types as SMT
|
||||||
import Statistics.Regression (ols)
|
import Statistics.Regression (ols)
|
||||||
import Data.Vector.Unboxed((!), zipWith, length, (++), map)
|
import Data.Vector.Unboxed((!), zipWith, length, (++), map)
|
||||||
import Statistics.Matrix(transpose)
|
import Statistics.Matrix(transpose)
|
||||||
|
|
||||||
|
import Statistics.Distribution.Normal (standard)
|
||||||
|
import Statistics.Distribution (density)
|
||||||
|
|
||||||
lambda :: Double
|
lambda :: Double
|
||||||
lambda = 2.0
|
lambda = 8.0
|
||||||
|
|
||||||
triCube :: Double -> Double
|
triCube :: Double -> Double
|
||||||
triCube d = (1.0 - (abs d) ** 3) ** 3
|
triCube d = (1.0 - (abs d) ** 3) ** 3
|
||||||
|
|
||||||
|
gaussian :: Double -> Double
|
||||||
|
gaussian = density standard
|
||||||
|
|
||||||
|
clippedLoess :: SMT.Vector -> SMT.Vector -> Double -> Double
|
||||||
|
clippedLoess inputs outputs x = min 1.0 $ max 0.0 $ loess inputs outputs x
|
||||||
|
|
||||||
loess :: SMT.Vector -> SMT.Vector -> Double -> Double
|
loess :: SMT.Vector -> SMT.Vector -> Double -> Double
|
||||||
loess inputs outputs x = a * x + b
|
loess inputs outputs x = a * x + b
|
||||||
where a = params ! 1
|
where a = params ! 1
|
||||||
b = params ! 0
|
b = params ! 0
|
||||||
params = ols inputMatrix scaledOutputs
|
params = ols inputMatrix scaledOutputs
|
||||||
weights = Data.Vector.Unboxed.map (\v -> lambda * triCube (lambda * (x - v))) inputs
|
weights = Data.Vector.Unboxed.map (\v -> lambda * gaussian (lambda * (x - v))) inputs
|
||||||
scaledOutputs = Data.Vector.Unboxed.zipWith (*) outputs weights
|
scaledOutputs = Data.Vector.Unboxed.zipWith (*) outputs weights
|
||||||
scaledInputs = Data.Vector.Unboxed.zipWith (*) inputs weights
|
scaledInputs = Data.Vector.Unboxed.zipWith (*) inputs weights
|
||||||
inputMatrix = transpose (SMT.Matrix 2 (Data.Vector.Unboxed.length inputs) 1000 (weights Data.Vector.Unboxed.++ scaledInputs))
|
inputMatrix = transpose (SMT.Matrix 2 (Data.Vector.Unboxed.length inputs) 1000 (weights Data.Vector.Unboxed.++ scaledInputs))
|
||||||
|
@ -103,7 +103,7 @@ import qualified Data.Vector.Unboxed as DVU
|
|||||||
import Statistics.Correlation
|
import Statistics.Correlation
|
||||||
|
|
||||||
import Data.Statistics.Calibration (softCalibration)
|
import Data.Statistics.Calibration (softCalibration)
|
||||||
import Data.Statistics.Loess(loess)
|
import Data.Statistics.Loess (clippedLoess)
|
||||||
|
|
||||||
import Data.Proxy
|
import Data.Proxy
|
||||||
|
|
||||||
@ -755,7 +755,7 @@ gevalCore' (ProbabilisticSoftFMeasure beta) _ = gevalCoreWithoutInput parseAnnot
|
|||||||
probabilisticSoftAgg = CC.foldl probabilisticSoftFolder ([], [], fromInteger 0, 0)
|
probabilisticSoftAgg = CC.foldl probabilisticSoftFolder ([], [], fromInteger 0, 0)
|
||||||
probabilisticSoftFolder (r1, p1, g1, e1) (r2, p2, g2, e2) = (r1 ++ r2, p1 ++ p2, g1 + g2, e1 + e2)
|
probabilisticSoftFolder (r1, p1, g1, e1) (r2, p2, g2, e2) = (r1 ++ r2, p1 ++ p2, g1 + g2, e1 + e2)
|
||||||
loessGraph :: ([Double], [Double], Double, Int) -> Maybe GraphSeries
|
loessGraph :: ([Double], [Double], Double, Int) -> Maybe GraphSeries
|
||||||
loessGraph (results, probs, _, _) = Just $ GraphSeries $ Prelude.map (\x -> (x, loess probs' results' x)) $ Prelude.filter (\p -> p > lowest && p < highest) $ Prelude.map (\d -> 0.01 * (fromIntegral d)) [1..99]
|
loessGraph (results, probs, _, _) = Just $ GraphSeries $ Prelude.map (\x -> (x, clippedLoess probs' results' x)) $ Prelude.filter (\p -> p > lowest && p < highest) $ Prelude.map (\d -> 0.01 * (fromIntegral d)) [1..99]
|
||||||
where results' = DVU.fromList results
|
where results' = DVU.fromList results
|
||||||
probs' = DVU.fromList probs
|
probs' = DVU.fromList probs
|
||||||
lowest = Data.List.minimum probs
|
lowest = Data.List.minimum probs
|
||||||
|
@ -9,8 +9,6 @@ module GEval.OptionsParser
|
|||||||
precisionArgParser
|
precisionArgParser
|
||||||
) where
|
) where
|
||||||
|
|
||||||
import Debug.Trace
|
|
||||||
|
|
||||||
import Paths_geval (version)
|
import Paths_geval (version)
|
||||||
import Data.Version (showVersion)
|
import Data.Version (showVersion)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user