geval/test/Spec.hs

195 lines
8.7 KiB
Haskell

{-# LANGUAGE OverloadedStrings #-}
import Test.Hspec
import GEval.Core
import GEval.OptionsParser
import GEval.BLEU
import GEval.ClippEU
import GEval.PrecisionRecall
import GEval.ClusteringMetrics
import Data.Attoparsec.Text
import Options.Applicative
import Data.Text
import qualified Test.HUnit as HU
informationRetrievalBookExample :: [(String, Int)]
informationRetrievalBookExample = [("o", 2), ("o", 2), ("d", 2), ("x", 3), ("d", 3),
("x", 1), ("o", 1), ("x", 1), ( "x", 1), ("x", 1), ("x", 1),
("x", 2), ("o", 2), ("o", 2),
("x", 3), ("d", 3), ("d", 3)]
perfectClustering :: [(Int, Char)]
perfectClustering = [(0, 'a'), (2, 'b'), (3, 'c'), (2, 'b'), (2, 'b'), (1, 'd'), (0, 'a')]
stupidClusteringOneBigCluster :: [(Int, Int)]
stupidClusteringOneBigCluster = [(0, 2), (2, 2), (1, 2), (2, 2), (0, 2), (0, 2), (0, 2), (0, 2), (1, 2), (1, 2)]
stupidClusteringManySmallClusters :: [(Int, Int)]
stupidClusteringManySmallClusters = [(0, 0), (2, 1), (1, 2), (2, 3), (0, 4), (0, 5), (0, 6), (0, 7), (1, 8), (1, 9)]
main :: IO ()
main = hspec $ do
describe "root mean square error" $ do
it "simple test" $ do
geval (defaultGEvalSpecification {gesExpectedDirectory=Just "test/rmse-simple/rmse-simple", gesOutDirectory="test/rmse-simple/rmse-simple-solution"}) `shouldReturnAlmost` 0.64549722436790
describe "mean square error" $ do
it "simple test with arguments" $
runGEvalTest "mse-simple" `shouldReturnAlmost` 0.4166666666666667
describe "BLEU" $ do
it "trivial example from Wikipedia" $
runGEvalTest "bleu-trivial" `shouldReturnAlmost` 0.0
it "complex example" $
runGEvalTest "bleu-complex" `shouldReturnAlmost` 0.6211
it "perfect translation" $
runGEvalTest "bleu-perfect" `shouldReturnAlmost` 1.0000
describe "Accuracy" $ do
it "simple example" $
runGEvalTest "accuracy-simple" `shouldReturnAlmost` 0.6
describe "F-measure" $ do
it "simple example" $
runGEvalTest "f-measure-simple" `shouldReturnAlmost` 0.57142857
it "perfect classifier" $
runGEvalTest "f-measure-perfect" `shouldReturnAlmost` 1.0
it "stupid classifier" $
runGEvalTest "f-measure-stupid" `shouldReturnAlmost` 0.0
it "all false" $
runGEvalTest "f-measure-all-false" `shouldReturnAlmost` 1.0
it "F2-measure" $
runGEvalTest "f2-simple" `shouldReturnAlmost` 0.714285714
describe "precision count" $ do
it "simple test" $ do
precisionCount [["Alice", "has", "a", "cat" ]] ["Ala", "has", "cat"] `shouldBe` 2
it "none found" $ do
precisionCount [["Alice", "has", "a", "cat" ]] ["for", "bar", "baz"] `shouldBe` 0
it "multiple values" $ do
precisionCount [["bar", "bar", "bar", "bar", "foo", "xyz", "foo"]] ["foo", "bar", "foo", "baz", "bar", "foo"] `shouldBe` 4
it "multiple refs" $ do
precisionCount [["foo", "baz"], ["bar"], ["baz", "xyz"]] ["foo", "bar", "foo"] `shouldBe` 2
describe "purity (in flat clustering)" $ do
it "the example from Information Retrieval Book" $ do
purity informationRetrievalBookExample `shouldBeAlmost` 0.70588
describe "NMI (in flat clustering)" $ do
it "the example from Information Retrieval Book" $ do
normalizedMutualInformation informationRetrievalBookExample `shouldBeAlmost` 0.36456
it "perfect clustering" $ do
normalizedMutualInformation perfectClustering `shouldBeAlmost` 1.0
it "stupid clustering with one big cluster" $ do
normalizedMutualInformation stupidClusteringOneBigCluster `shouldBeAlmost` 0.0
it "stupid clustering with many small clusters" $ do
normalizedMutualInformation stupidClusteringManySmallClusters `shouldBeAlmost` 0.61799
describe "NMI challenge" $ do
it "complex test" $ do
runGEvalTest "nmi-complex" `shouldReturnAlmost` 0.36456
describe "reading options" $ do
it "can get the metric" $ do
extractMetric "bleu-complex" `shouldReturn` (Just BLEU)
describe "error handling" $ do
it "too few lines are handled" $ do
runGEvalTest "error-too-few-lines" `shouldThrow` (== TooFewLines)
it "too many lines are handled" $ do
runGEvalTest "error-too-many-lines" `shouldThrow` (== TooManyLines)
it "empty output is handled" $ do
runGEvalTest "empty-output" `shouldThrow` (== EmptyOutput)
it "unexpected data is handled" $
runGEvalTest "unexpected-data" `shouldThrow` (== UnexpectedData "input does not start with a digit")
it "unwanted data is handled" $
runGEvalTest "unwanted-data" `shouldThrow` (== UnexpectedData "number expected")
describe "precision and recall" $ do
it "null test" $ do
precision neverMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.0
recall neverMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.0
f1Measure neverMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.0
it "basic test" $ do
precision testMatchFun ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.3333333333333333
recall testMatchFun ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.66666666666666666
f1Measure testMatchFun ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.444444444444444
it "perfect result" $ do
precision alwaysMatch ['a', 'b', 'c'] [0, 1, 2] `shouldBeAlmost` 1.0
recall alwaysMatch ['a', 'b', 'c'] [0, 1, 2] `shouldBeAlmost` 1.0
f1Measure alwaysMatch ['a', 'b', 'c'] [0, 1, 2] `shouldBeAlmost` 1.0
it "full match" $ do
precision alwaysMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.5
recall alwaysMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 1.0
f1Measure alwaysMatch ['a', 'b', 'c'] [0, 1, 2, 3 , 4, 5] `shouldBeAlmost` 0.66666666666666
describe "ClippEU" $ do
it "parsing rectangles" $ do
let (Right r) = parseOnly (lineClippingsParser <* endOfInput) "2/0,0,2,3 10/20,30,40,50 18/0,1,500,3 "
r `shouldBe` [Clipping (PageNumber 2) (Rectangle (Point 0 0) (Point 2 3)),
Clipping (PageNumber 10) (Rectangle (Point 20 30) (Point 40 50)),
Clipping (PageNumber 18) (Rectangle (Point 0 1) (Point 500 3))]
it "no rectangles" $ do
let (Right r) = parseOnly (lineClippingsParser <* endOfInput) ""
r `shouldBe` []
it "just spaces" $ do
let (Right r) = parseOnly lineClippingsParser " "
r `shouldBe` []
it "parsing specs" $ do
let (Right r) = parseOnly lineClippingSpecsParser " 2/0,0,2,3/5 10/20,30,40,50/10"
r `shouldBe` [ClippingSpec (PageNumber 2) (Rectangle (Point 5 5) (Point 0 0))
(Rectangle (Point 0 0) (Point 7 8)),
ClippingSpec (PageNumber 10) (Rectangle (Point 30 40) (Point 30 40))
(Rectangle (Point 10 20) (Point 50 60))]
it "full test" $ do
runGEvalTest "clippeu-simple" `shouldReturnAlmost` 0.399999999999
describe "evaluation metric specification is parsed" $ do
it "for simple names" $ do
let metrics = [RMSE, MSE, BLEU, Accuracy, ClippEU]
let parsedMetrics = Prelude.map (read . show) metrics
metrics `shouldBe` parsedMetrics
it "for F-Measure" $ do
read "F2" `shouldBe` (FMeasure 2.0)
read "F1" `shouldBe` (FMeasure 1.0)
read "F0.5" `shouldBe` (FMeasure 0.5)
neverMatch :: Char -> Int -> Bool
neverMatch _ _ = False
alwaysMatch :: Char -> Int -> Bool
alwaysMatch _ _ = True
testMatchFun :: Char -> Int -> Bool
testMatchFun 'a' 1 = True
testMatchFun 'a' 2 = True
testMatchFun 'a' 3 = True
testMatchFun 'b' 1 = True
testMatchFun 'c' 1 = True
testMatchFun _ _ = False
extractVal :: (Either (ParserResult GEvalOptions) (Maybe MetricValue)) -> IO MetricValue
extractVal (Right (Just val)) = return val
runGEvalTest testName = (runGEval [
"--expected-directory",
"test/" ++ testName ++ "/" ++ testName,
"--out-directory",
"test/" ++ testName ++ "/" ++ testName ++ "-solution"]) >>= extractVal
extractMetric :: String -> IO (Maybe Metric)
extractMetric testName = do
result <- getOptions ["--expected-directory", "test/" ++ testName ++ "/" ++ testName]
return $ case result of
Left _ -> Nothing
Right opts -> Just $ gesMetric $ geoSpec opts
class AEq a where
(=~) :: a -> a -> Bool
instance AEq Double where
x =~ y = abs ( x - y ) < (1.0e-4 :: Double)
(@=~?) :: (Show a, AEq a) => a -> a -> HU.Assertion
(@=~?) actual expected = expected =~ actual HU.@? assertionMsg
where
assertionMsg = "Expected : " ++ show expected ++
"\nActual : " ++ show actual
shouldBeAlmost got expected = got @=~? expected
shouldReturnAlmost :: (AEq a, Show a, Eq a) => IO a -> a -> Expectation
shouldReturnAlmost action expected = action >>= (@=~? expected)