geval/test/Spec.hs

312 lines
15 KiB
Haskell

{-# LANGUAGE OverloadedStrings #-}
import Test.Hspec
import GEval.Core
import GEval.OptionsParser
import GEval.BLEU
import GEval.ClippEU
import GEval.PrecisionRecall
import GEval.ClusteringMetrics
import GEval.BIO
import Data.Attoparsec.Text
import Options.Applicative
import Data.Text
import Text.EditDistance
import qualified Test.HUnit as HU
informationRetrievalBookExample :: [(String, Int)]
informationRetrievalBookExample = [("o", 2), ("o", 2), ("d", 2), ("x", 3), ("d", 3),
("x", 1), ("o", 1), ("x", 1), ( "x", 1), ("x", 1), ("x", 1),
("x", 2), ("o", 2), ("o", 2),
("x", 3), ("d", 3), ("d", 3)]
perfectClustering :: [(Int, Char)]
perfectClustering = [(0, 'a'), (2, 'b'), (3, 'c'), (2, 'b'), (2, 'b'), (1, 'd'), (0, 'a')]
stupidClusteringOneBigCluster :: [(Int, Int)]
stupidClusteringOneBigCluster = [(0, 2), (2, 2), (1, 2), (2, 2), (0, 2), (0, 2), (0, 2), (0, 2), (1, 2), (1, 2)]
stupidClusteringManySmallClusters :: [(Int, Int)]
stupidClusteringManySmallClusters = [(0, 0), (2, 1), (1, 2), (2, 3), (0, 4), (0, 5), (0, 6), (0, 7), (1, 8), (1, 9)]
main :: IO ()
main = hspec $ do
describe "root mean square error" $ do
it "simple test" $ do
geval (defaultGEvalSpecification {gesExpectedDirectory=Just "test/rmse-simple/rmse-simple", gesOutDirectory="test/rmse-simple/rmse-simple-solution"}) `shouldReturnAlmost` 0.64549722436790
describe "mean square error" $ do
it "simple test with arguments" $
runGEvalTest "mse-simple" `shouldReturnAlmost` 0.4166666666666667
describe "BLEU" $ do
it "trivial example from Wikipedia" $
runGEvalTest "bleu-trivial" `shouldReturnAlmost` 0.0
it "complex example" $
runGEvalTest "bleu-complex" `shouldReturnAlmost` 0.6211
it "perfect translation" $
runGEvalTest "bleu-perfect" `shouldReturnAlmost` 1.0000
it "empty translation" $
runGEvalTest "bleu-empty" `shouldReturnAlmost` 0.0000
describe "Accuracy" $ do
it "simple example" $
runGEvalTest "accuracy-simple" `shouldReturnAlmost` 0.6
it "with probs" $
runGEvalTest "accuracy-probs" `shouldReturnAlmost` 0.4
describe "F-measure" $ do
it "simple example" $
runGEvalTest "f-measure-simple" `shouldReturnAlmost` 0.57142857
it "perfect classifier" $
runGEvalTest "f-measure-perfect" `shouldReturnAlmost` 1.0
it "stupid classifier" $
runGEvalTest "f-measure-stupid" `shouldReturnAlmost` 0.0
it "all false" $
runGEvalTest "f-measure-all-false" `shouldReturnAlmost` 1.0
it "F2-measure" $
runGEvalTest "f2-simple" `shouldReturnAlmost` 0.714285714
describe "precision count" $ do
it "simple test" $ do
precisionCount [["Alice", "has", "a", "cat" ]] ["Ala", "has", "cat"] `shouldBe` 2
it "none found" $ do
precisionCount [["Alice", "has", "a", "cat" ]] ["for", "bar", "baz"] `shouldBe` 0
it "multiple values" $ do
precisionCount [["bar", "bar", "bar", "bar", "foo", "xyz", "foo"]] ["foo", "bar", "foo", "baz", "bar", "foo"] `shouldBe` 4
it "multiple refs" $ do
precisionCount [["foo", "baz"], ["bar"], ["baz", "xyz"]] ["foo", "bar", "foo"] `shouldBe` 2
describe "purity (in flat clustering)" $ do
it "the example from Information Retrieval Book" $ do
purity informationRetrievalBookExample `shouldBeAlmost` 0.70588
describe "NMI (in flat clustering)" $ do
it "the example from Information Retrieval Book" $ do
normalizedMutualInformation informationRetrievalBookExample `shouldBeAlmost` 0.36456
it "perfect clustering" $ do
normalizedMutualInformation perfectClustering `shouldBeAlmost` 1.0
it "stupid clustering with one big cluster" $ do
normalizedMutualInformation stupidClusteringOneBigCluster `shouldBeAlmost` 0.0
it "stupid clustering with many small clusters" $ do
normalizedMutualInformation stupidClusteringManySmallClusters `shouldBeAlmost` 0.61799
describe "NMI challenge" $ do
it "complex test" $ do
runGEvalTest "nmi-complex" `shouldReturnAlmost` 0.36456
describe "LogLossHashed challenge" $ do
it "simple example" $ do
runGEvalTest "log-loss-hashed-simple" `shouldReturnAlmost` 2.398479083333333
it "example with unnormalized values" $ do
runGEvalTest "log-loss-hashed-not-normalized" `shouldReturnAlmost` 1.0468455186722887
it "with probs instead of log probs" $ do
runGEvalTest "log-loss-hashed-probs" `shouldReturnAlmost` 4.11631293099392
it "with probs instead of log probs (with normalization)" $ do
runGEvalTest "log-loss-hashed-probs-normalized" `shouldReturnAlmost` 1.55537749098853
it "with log probs whose probs are summing up to less than 1.0" $ do
runGEvalTest "log-loss-hashed-normalization" `shouldReturnAlmost` 5.16395069238851
describe "LikelihoodHashed challenge" $ do
it "example with unnormalized values" $ do
runGEvalTest "likelihood-hashed-not-normalized" `shouldReturnAlmost` 0.351043364110715
describe "reading options" $ do
it "can get the metric" $ do
extractMetric "bleu-complex" `shouldReturn` (Just BLEU)
describe "error handling" $ do
it "too few lines are handled" $ do
runGEvalTest "error-too-few-lines" `shouldThrow` (== TooFewLines)
it "too many lines are handled" $ do
runGEvalTest "error-too-many-lines" `shouldThrow` (== TooManyLines)
it "empty output is handled" $ do
runGEvalTest "empty-output" `shouldThrow` (== EmptyOutput)
it "unexpected data is handled" $
runGEvalTest "unexpected-data" `shouldThrow` (== UnexpectedData 3 "input does not start with a digit")
it "unwanted data is handled" $
runGEvalTest "unwanted-data" `shouldThrow` (== UnexpectedData 2 "number expected")
describe "precision and recall" $ do
it "null test" $ do
precision neverMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.0
recall neverMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.0
f1Measure neverMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.0
it "basic test" $ do
precision testMatchFun ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.3333333333333333
recall testMatchFun ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.66666666666666666
f1Measure testMatchFun ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.444444444444444
it "perfect result" $ do
precision alwaysMatch ['a', 'b', 'c'] [0, 1, 2] `shouldBeAlmost` 1.0
recall alwaysMatch ['a', 'b', 'c'] [0, 1, 2] `shouldBeAlmost` 1.0
f1Measure alwaysMatch ['a', 'b', 'c'] [0, 1, 2] `shouldBeAlmost` 1.0
it "full match" $ do
precision alwaysMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.5
recall alwaysMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 1.0
f1Measure alwaysMatch ['a', 'b', 'c'] [0, 1, 2, 3 , 4, 5] `shouldBeAlmost` 0.66666666666666
describe "ClippEU" $ do
it "parsing rectangles" $ do
let (Right r) = parseOnly (lineClippingsParser <* endOfInput) "2/0,0,2,3 10/20,30,40,50 18/0,1,500,3 "
r `shouldBe` [Clipping (PageNumber 2) (Rectangle (Point 0 0) (Point 2 3)),
Clipping (PageNumber 10) (Rectangle (Point 20 30) (Point 40 50)),
Clipping (PageNumber 18) (Rectangle (Point 0 1) (Point 500 3))]
it "no rectangles" $ do
let (Right r) = parseOnly (lineClippingsParser <* endOfInput) ""
r `shouldBe` []
it "just spaces" $ do
let (Right r) = parseOnly lineClippingsParser " "
r `shouldBe` []
it "parsing specs" $ do
let (Right r) = parseOnly lineClippingSpecsParser " 2/0,0,2,3/5 10/20,30,40,50/10"
r `shouldBe` [ClippingSpec (PageNumber 2) (Rectangle (Point 5 5) (Point 0 0))
(Rectangle (Point 0 0) (Point 7 8)),
ClippingSpec (PageNumber 10) (Rectangle (Point 30 40) (Point 30 40))
(Rectangle (Point 10 20) (Point 50 60))]
it "full test" $ do
runGEvalTest "clippeu-simple" `shouldReturnAlmost` 0.399999999999
describe "evaluation metric specification is parsed" $ do
it "for simple names" $ do
let metrics = [RMSE, MSE, BLEU, Accuracy, ClippEU]
let parsedMetrics = Prelude.map (read . show) metrics
metrics `shouldBe` parsedMetrics
it "for F-Measure" $ do
read "F2" `shouldBe` (FMeasure 2.0)
read "F1" `shouldBe` (FMeasure 1.0)
read "F0.5" `shouldBe` (FMeasure 0.5)
describe "test edit-distance library" $ do
it "for handling UTF8" $ do
levenshteinDistance defaultEditCosts "źdźbło" "źd好bło" `shouldBe` 1
levenshteinDistance defaultEditCosts "źdźbło" "źdźcło" `shouldBe` 1
describe "CharMatch" $ do
it "simple test" $ do
runGEvalTest "charmatch-simple" `shouldReturnAlmost` 0.3571428571428571
it "perfect solution" $ do
runGEvalTest "charmatch-perfect" `shouldReturnAlmost` 1.0
it "more complex test" $ do
runGEvalTest "charmatch-complex" `shouldReturnAlmost` 0.1923076923076923
it "broken test without input" $ do
runGEvalTest "charmatch-no-input" `shouldThrow` (== NoInputFile "test/charmatch-no-input/charmatch-no-input/test-A/in.tsv")
describe "MAP" $ do
it "one result" $ do
(calculateMAPForOneResult ["Berlin", "London", "Warsaw"]
["Warsaw", "Moscow", "Berlin", "Prague"]) `shouldBeAlmost` 0.55555555
it "check whether you cannot cheat with duplicated results" $ do
(calculateMAPForOneResult ["one", "two"]
["one", "one"]) `shouldBeAlmost` 0.5
it "simple test" $ do
runGEvalTest "map-simple" `shouldReturnAlmost` 0.444444444
describe "LogLoss" $ do
it "simple" $ do
runGEvalTest "logloss-simple" `shouldReturnAlmost` 0.31824
it "perfect" $ do
runGEvalTest "logloss-perfect" `shouldReturnAlmost` 0.0
describe "Likelihood" $ do
it "simple" $ do
runGEvalTest "likelihood-simple" `shouldReturnAlmost` 0.72742818469866
describe "evaluating single lines" $ do
it "RMSE" $ do
gevalCoreOnSingleLines RMSE (LineInFile "stub1" 1 "blabla")
(LineInFile "stub2" 1 "3.4")
(LineInFile "stub3" 1 "2.6") `shouldReturnAlmost` 0.8
describe "BIO format" $ do
it "just parse" $ do
let (Right r) = parseOnly (bioSequenceParser <* endOfInput) "O B-city/NEW_YORK I-city B-city/KALISZ I-city O B-name"
r `shouldBe` [Outside,
Beginning "city" (Just "NEW_YORK"),
Inside "city" Nothing,
Beginning "city" (Just "KALISZ"),
Inside "city" Nothing,
Outside,
Beginning "name" Nothing]
it "simplest entity" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-city"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 1) "city" Nothing]
it "multi-word entity" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-date I-date"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 2) "date" Nothing]
it "multi-word entity with normalized text" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-date/FOO I-date/BAR"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 2) "date" (Just "FOO_BAR")]
it "simplest entity with something outside" $ do
let (Right ents) = parseBioSequenceIntoEntities "O B-city"
ents `shouldBe` [TaggedEntity (TaggedSpan 2 2) "city" Nothing]
it "another simple case" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-city B-city"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 1) "city" Nothing,
TaggedEntity (TaggedSpan 2 2) "city" Nothing]
it "just parse into entities" $ do
let (Right ents) = parseBioSequenceIntoEntities "O O B-city/LOS_ANGELES I-city B-city/KLUCZBORK O B-name O B-person/JOHN I-person/VON I-person/NEUMANN"
ents `shouldBe` [TaggedEntity (TaggedSpan 3 4) "city" (Just "LOS_ANGELES"),
TaggedEntity (TaggedSpan 5 5) "city" (Just "KLUCZBORK"),
TaggedEntity (TaggedSpan 7 7) "name" (Nothing),
TaggedEntity (TaggedSpan 9 11) "person" (Just "JOHN_VON_NEUMANN")]
it "another entity parse" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-month/JULY B-month/JULY O O B-foo/bar"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 1) "month" (Just "JULY"),
TaggedEntity (TaggedSpan 2 2) "month" (Just "JULY"),
TaggedEntity (TaggedSpan 5 5) "foo" (Just "bar")]
it "another entity parse" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-city/LOS I-city/ANGELES O B-city/NEW I-city/YORK"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 2) "city" (Just "LOS_ANGELES"),
TaggedEntity (TaggedSpan 4 5) "city" (Just "NEW_YORK")]
it "parse entity" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-surname/BROWN B-surname/SMITH"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 1) "surname" (Just "BROWN"),
TaggedEntity (TaggedSpan 2 2) "surname" (Just "SMITH")]
it "parse entity" $ do
let (Right ents) = parseBioSequenceIntoEntities "O B-surname/SMITH"
ents `shouldBe` [TaggedEntity (TaggedSpan 2 2) "surname" (Just "SMITH")]
it "check counting" $ do
gatherCountsForBIO [TaggedEntity (TaggedSpan 2 2) "surname" (Just "SMITH")] [TaggedEntity (TaggedSpan 1 1) "surname" (Just "BROWN"),
TaggedEntity (TaggedSpan 2 2) "surname" (Just "SMITH")] `shouldBe` (1, 1, 2)
it "check F1 on a more complicated example" $ do
runGEvalTest "bio-f1-complex" `shouldReturnAlmost` 0.625
it "calculate F1" $ do
runGEvalTest "bio-f1-simple" `shouldReturnAlmost` 0.5
it "check perfect score" $ do
runGEvalTest "bio-f1-perfect" `shouldReturnAlmost` 1.0
describe "automatic decompression" $ do
it "more complex test" $ do
runGEvalTest "charmatch-complex-compressed" `shouldReturnAlmost` 0.1923076923076923
neverMatch :: Char -> Int -> Bool
neverMatch _ _ = False
alwaysMatch :: Char -> Int -> Bool
alwaysMatch _ _ = True
testMatchFun :: Char -> Int -> Bool
testMatchFun 'a' 1 = True
testMatchFun 'a' 2 = True
testMatchFun 'a' 3 = True
testMatchFun 'b' 1 = True
testMatchFun 'c' 1 = True
testMatchFun _ _ = False
extractVal :: (Either (ParserResult GEvalOptions) (Maybe MetricValue)) -> IO MetricValue
extractVal (Right (Just val)) = return val
runGEvalTest testName = (runGEval [
"--expected-directory",
"test/" ++ testName ++ "/" ++ testName,
"--out-directory",
"test/" ++ testName ++ "/" ++ testName ++ "-solution"]) >>= extractVal
extractMetric :: String -> IO (Maybe Metric)
extractMetric testName = do
result <- getOptions ["--expected-directory", "test/" ++ testName ++ "/" ++ testName]
return $ case result of
Left _ -> Nothing
Right opts -> Just $ gesMetric $ geoSpec opts
class AEq a where
(=~) :: a -> a -> Bool
instance AEq Double where
x =~ y = abs ( x - y ) < (1.0e-4 :: Double)
(@=~?) :: (Show a, AEq a) => a -> a -> HU.Assertion
(@=~?) actual expected = expected =~ actual HU.@? assertionMsg
where
assertionMsg = "Expected : " ++ show expected ++
"\nActual : " ++ show actual
shouldBeAlmost got expected = got @=~? expected
shouldReturnAlmost :: (AEq a, Show a, Eq a) => IO a -> a -> Expectation
shouldReturnAlmost action expected = action >>= (@=~? expected)