geval/test/Spec.hs

782 lines
40 KiB
Haskell

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE FlexibleContexts #-}
import Test.Hspec
import GEval.Metric
import GEval.MetricsMeta (listOfAvailableEvaluationSchemes, isEvaluationSchemeDescribed, expectedScore, outContents)
import GEval.Core
import GEval.Common
import GEval.EvaluationScheme
import GEval.OptionsParser
import GEval.BLEU
import GEval.Clippings
import GEval.PrecisionRecall
import GEval.ClusteringMetrics
import GEval.BIO
import GEval.LineByLine
import GEval.ParseParams
import GEval.Submit
import Text.Tokenizer
import Text.WordShape
import Data.Attoparsec.Text
import Options.Applicative
import Data.Text
import Text.EditDistance
import GEval.Annotation
import GEval.BlackBoxDebugging
import GEval.FeatureExtractor
import GEval.Selector
import GEval.CreateChallenge
import GEval.Validation
import Data.Map.Strict
import Data.Conduit.List (consume)
import System.FilePath
import System.Directory
import System.Process
import System.Exit
import System.IO
import System.IO.Temp
import System.IO.Silently
import Data.List (sort)
import qualified Test.HUnit as HU
import qualified Data.IntSet as IS
import qualified Data.Vector as V
import Data.Conduit.SmartSource
import Data.Conduit.Rank
import qualified Data.Conduit.Text as CT
import Data.Conduit
import Control.Monad.Trans.Resource
import qualified Data.Conduit.List as CL
import qualified Data.Conduit.Combinators as CC
import Statistics.Distribution (cumulative)
import Statistics.Distribution.Normal (normalDistr)
import Data.Statistics.Kendall (kendall, kendallZ)
import qualified Data.Vector.Unboxed as DVU
import qualified Statistics.Matrix.Types as SMT
import Data.Statistics.Loess (loess)
import Data.Statistics.Calibration (calibration)
import Data.CartesianStrings (parseCartesianString)
import Data.SplitIntoCrossTabs (splitIntoCrossTabs, CrossTab(..), TextFrag(..))
informationRetrievalBookExample :: [(String, Int)]
informationRetrievalBookExample = [("o", 2), ("o", 2), ("d", 2), ("x", 3), ("d", 3),
("x", 1), ("o", 1), ("x", 1), ( "x", 1), ("x", 1), ("x", 1),
("x", 2), ("o", 2), ("o", 2),
("x", 3), ("d", 3), ("d", 3)]
perfectClustering :: [(Int, Char)]
perfectClustering = [(0, 'a'), (2, 'b'), (3, 'c'), (2, 'b'), (2, 'b'), (1, 'd'), (0, 'a')]
stupidClusteringOneBigCluster :: [(Int, Int)]
stupidClusteringOneBigCluster = [(0, 2), (2, 2), (1, 2), (2, 2), (0, 2), (0, 2), (0, 2), (0, 2), (1, 2), (1, 2)]
stupidClusteringManySmallClusters :: [(Int, Int)]
stupidClusteringManySmallClusters = [(0, 0), (2, 1), (1, 2), (2, 3), (0, 4), (0, 5), (0, 6), (0, 7), (1, 8), (1, 9)]
main :: IO ()
main = hspec $ do
describe "root mean square error" $ do
it "simple test" $ do
[(_, ((MetricOutput val _):_))] <- geval $ defaultGEvalSpecification {gesExpectedDirectory=Just "test/rmse-simple/rmse-simple", gesOutDirectory="test/rmse-simple/rmse-simple-solution"}
val `shouldBeAlmost` 0.64549722436790
describe "mean square error" $ do
it "simple test with arguments" $
runGEvalTest "mse-simple" `shouldReturnAlmost` 0.4166666666666667
describe "mean absolute error" $ do
it "simple test with arguments" $
runGEvalTest "mae-simple" `shouldReturnAlmost` 1.5
describe "SMAPE" $ do
it "simple test" $
runGEvalTest "smape-simple" `shouldReturnAlmost` 45.1851851851852
describe "Spearman's rank correlation coefficient" $ do
it "simple test" $ do
runGEvalTest "spearman-simple" `shouldReturnAlmost` (- 0.5735)
describe "BLEU" $ do
it "trivial example from Wikipedia" $
runGEvalTest "bleu-trivial" `shouldReturnAlmost` 0.0
it "complex example" $
runGEvalTest "bleu-complex" `shouldReturnAlmost` 0.6211
it "perfect translation" $
runGEvalTest "bleu-perfect" `shouldReturnAlmost` 1.0000
it "empty translation" $
runGEvalTest "bleu-empty" `shouldReturnAlmost` 0.0000
it "with tokenization" $
runGEvalTest "bleu-with-tokenization" `shouldReturnAlmost` 0.6501914150070065
describe "GLEU" $ do
it "simple example" $
runGEvalTest "gleu-simple" `shouldReturnAlmost` 0.462962962962963
it "empty translation" $
runGEvalTest "gleu-empty" `shouldReturnAlmost` 0.0
it "perfect translation" $
runGEvalTest "gleu-perfect" `shouldReturnAlmost` 1.0
describe "WER" $ do
it "simple example" $
runGEvalTest "wer-simple" `shouldReturnAlmost` 0.5555555555
describe "Accuracy" $ do
it "simple example" $
runGEvalTest "accuracy-simple" `shouldReturnAlmost` 0.6
it "with probs" $
runGEvalTest "accuracy-probs" `shouldReturnAlmost` 0.4
it "sorted" $
runGEvalTest "accuracy-on-sorted" `shouldReturnAlmost` 0.75
describe "F-measure" $ do
it "simple example" $
runGEvalTest "f-measure-simple" `shouldReturnAlmost` 0.57142857
it "perfect classifier" $
runGEvalTest "f-measure-perfect" `shouldReturnAlmost` 1.0
it "stupid classifier" $
runGEvalTest "f-measure-stupid" `shouldReturnAlmost` 0.0
it "all false" $
runGEvalTest "f-measure-all-false" `shouldReturnAlmost` 1.0
it "F2-measure" $
runGEvalTest "f2-simple" `shouldReturnAlmost` 0.714285714
describe "Macro-F-measure" $ do
it "simple example" $
runGEvalTest "macro-f1-simple" `shouldReturnAlmost` 0.266666
it "perfect soltion" $
runGEvalTest "macro-f-measure-perfect" `shouldReturnAlmost` 1.00000
describe "TokenAccuracy" $ do
it "simple example" $ do
runGEvalTest "token-accuracy-simple" `shouldReturnAlmost` 0.5
describe "SegmentAccuracy" $ do
it "simple test" $ do
runGEvalTest "segment-accuracy-simple" `shouldReturnAlmost` 0.4444444
describe "precision count" $ do
it "simple test" $ do
precisionCount [["Alice", "has", "a", "cat" ]] ["Ala", "has", "cat"] `shouldBe` 2
it "none found" $ do
precisionCount [["Alice", "has", "a", "cat" ]] ["for", "bar", "baz"] `shouldBe` 0
it "multiple values" $ do
precisionCount [["bar", "bar", "bar", "bar", "foo", "xyz", "foo"]] ["foo", "bar", "foo", "baz", "bar", "foo"] `shouldBe` 4
it "multiple refs" $ do
precisionCount [["foo", "baz"], ["bar"], ["baz", "xyz"]] ["foo", "bar", "foo"] `shouldBe` 2
describe "purity (in flat clustering)" $ do
it "the example from Information Retrieval Book" $ do
purity informationRetrievalBookExample `shouldBeAlmost` 0.70588
describe "NMI (in flat clustering)" $ do
it "the example from Information Retrieval Book" $ do
normalizedMutualInformation informationRetrievalBookExample `shouldBeAlmost` 0.36456
it "perfect clustering" $ do
normalizedMutualInformation perfectClustering `shouldBeAlmost` 1.0
it "stupid clustering with one big cluster" $ do
normalizedMutualInformation stupidClusteringOneBigCluster `shouldBeAlmost` 0.0
it "stupid clustering with many small clusters" $ do
normalizedMutualInformation stupidClusteringManySmallClusters `shouldBeAlmost` 0.61799
describe "NMI challenge" $ do
it "complex test" $ do
runGEvalTest "nmi-complex" `shouldReturnAlmost` 0.36456
describe "LogLossHashed challenge" $ do
it "simple example" $ do
runGEvalTest "log-loss-hashed-simple" `shouldReturnAlmost` 2.398479083333333
it "example with unnormalized values" $ do
runGEvalTest "log-loss-hashed-not-normalized" `shouldReturnAlmost` 1.0468455186722887
it "with probs instead of log probs" $ do
runGEvalTest "log-loss-hashed-probs" `shouldReturnAlmost` 4.11631293099392
it "with probs instead of log probs (with normalization)" $ do
runGEvalTest "log-loss-hashed-probs-normalized" `shouldReturnAlmost` 1.55537749098853
it "with log probs whose probs are summing up to less than 1.0" $ do
runGEvalTest "log-loss-hashed-normalization" `shouldReturnAlmost` 5.16395069238851
describe "LikelihoodHashed challenge" $ do
it "example with unnormalized values" $ do
runGEvalTest "likelihood-hashed-not-normalized" `shouldReturnAlmost` 0.351043364110715
describe "reading options" $ do
it "can get the metric" $ do
extractMetric "bleu-complex" `shouldReturn` (Just BLEU)
describe "error handling" $ do
it "too few lines are handled" $ do
runGEvalTest "error-too-few-lines" `shouldThrow` (== TooFewLines)
it "too many lines are handled" $ do
runGEvalTest "error-too-many-lines" `shouldThrow` (== TooManyLines)
it "empty output is handled" $ do
runGEvalTest "empty-output" `shouldThrow` (== EmptyOutput)
it "unexpected data is handled" $
runGEvalTest "unexpected-data" `shouldThrow` (== UnexpectedData 3 "input does not start with a digit")
it "unwanted data is handled" $
runGEvalTest "unwanted-data" `shouldThrow` (== UnexpectedData 2 "number expected")
describe "precision and recall" $ do
it "null test" $ do
precision neverMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.0
recall neverMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.0
f1Measure neverMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.0
it "basic test" $ do
precision testMatchFun ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.3333333333333333
recall testMatchFun ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.66666666666666666
f1Measure testMatchFun ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.444444444444444
it "perfect result" $ do
precision alwaysMatch ['a', 'b', 'c'] [0, 1, 2] `shouldBeAlmost` 1.0
recall alwaysMatch ['a', 'b', 'c'] [0, 1, 2] `shouldBeAlmost` 1.0
f1Measure alwaysMatch ['a', 'b', 'c'] [0, 1, 2] `shouldBeAlmost` 1.0
it "full match" $ do
precision alwaysMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 0.5
recall alwaysMatch ['a', 'b', 'c'] [0, 1, 2, 3, 4, 5] `shouldBeAlmost` 1.0
f1Measure alwaysMatch ['a', 'b', 'c'] [0, 1, 2, 3 , 4, 5] `shouldBeAlmost` 0.66666666666666
describe "max match" $ do
it "simple" $ do
maxMatch (==) [1,2,2] [3,2] `shouldBe` 1
maxMatch (==) [3,2] [1,2,2] `shouldBe` 1
describe "ClippEU" $ do
it "parsing rectangles" $ do
let (Right r) = parseOnly (lineClippingsParser <* endOfInput) "2/0,0,2,3 10/20,30,40,50 18/0,1,500,3 "
r `shouldBe` [Clipping (PageNumber 2) (Rectangle (Point 0 0) (Point 2 3)),
Clipping (PageNumber 10) (Rectangle (Point 20 30) (Point 40 50)),
Clipping (PageNumber 18) (Rectangle (Point 0 1) (Point 500 3))]
it "parsing labeled rectangles" $ do
let (Right r) = parseOnly (lineLabeledClippingsParser <* endOfInput) "2/0,0,2,3 foo:5/10,10,20,20 "
r `shouldBe` [LabeledClipping Nothing $ Clipping (PageNumber 2) (Rectangle (Point 0 0) (Point 2 3)),
LabeledClipping (Just "foo") $ Clipping (PageNumber 5) (Rectangle (Point 10 10) (Point 20 20))]
it "check partition" $ do
partitionClippings (LabeledClipping Nothing (Clipping (PageNumber 5) $ Rectangle (Point 0 0) (Point 100 50)))
(LabeledClipping Nothing (Clipping (PageNumber 5) $ Rectangle (Point 10 20) (Point 200 300)))
`shouldBe` Just (Rectangle (Point 10 20) (Point 100 50),
[LabeledClipping Nothing (Clipping (PageNumber 5) $ Rectangle (Point 10 0) (Point 100 19)),
LabeledClipping Nothing (Clipping (PageNumber 5) $ Rectangle (Point 0 0) (Point 9 50))],
[LabeledClipping Nothing (Clipping (PageNumber 5) $ Rectangle (Point 10 51) (Point 100 300)),
LabeledClipping Nothing (Clipping (PageNumber 5) $ Rectangle (Point 101 20) (Point 200 300))])
partitionClippings (LabeledClipping (Just "bar") (Clipping (PageNumber 10) (Rectangle (Point 100 100) (Point 200 149))))
(LabeledClipping (Just "bar") (Clipping (PageNumber 10) (Rectangle (Point 100 201) (Point 200 300))))
`shouldBe` Nothing
it "no rectangles" $ do
let (Right r) = parseOnly (lineClippingsParser <* endOfInput) ""
r `shouldBe` []
it "just spaces" $ do
let (Right r) = parseOnly lineClippingsParser " "
r `shouldBe` []
it "parsing specs" $ do
let (Right r) = parseOnly lineClippingSpecsParser " 2/0,0,2,3/5 10/20,30,40,50/10"
r `shouldBe` [ClippingSpec (PageNumber 2) (Rectangle (Point 5 5) (Point 0 0))
(Rectangle (Point 0 0) (Point 7 8)),
ClippingSpec (PageNumber 10) (Rectangle (Point 30 40) (Point 30 40))
(Rectangle (Point 10 20) (Point 50 60))]
it "full test" $ do
runGEvalTest "clippeu-simple" `shouldReturnAlmost` 0.399999999999
describe "evaluation metric specification is parsed" $ do
it "for simple names" $ do
let metrics = [RMSE, MSE, BLEU, Accuracy, ClippEU]
let parsedMetrics = Prelude.map (read . show) metrics
metrics `shouldBe` parsedMetrics
it "for F-Measure" $ do
read "F2" `shouldBe` (FMeasure 2.0)
read "F1" `shouldBe` (FMeasure 1.0)
read "F0.5" `shouldBe` (FMeasure 0.5)
describe "Probabilistic-F1" $ do
it "simple test" $ do
runGEvalTest "probabilistic-f1-simple" `shouldReturnAlmost` 0.5
it "with probs" $ do
runGEvalTest "probabilistic-f1-probs" `shouldReturnAlmost` 0.5451223333805993
describe "Soft-F1" $ do
it "simple test" $ do
runGEvalTest "soft-f1-simple" `shouldReturnAlmost` 0.33333333333333
it "perfect test" $ do
runGEvalTest "soft-f1-perfect" `shouldReturnAlmost` 1.0
describe "Probabilistic-Soft-F1" $ do
it "simple test" $ do
runGEvalTest "probabilistic-soft-f1-simple" `shouldReturnAlmost` 0.33333333333333
it "simple test with perfect calibration" $ do
runGEvalTest "probabilistic-soft-f1-calibrated" `shouldReturnAlmost` 0.88888888888
describe "Soft2D-F1" $ do
it "simple test" $ do
runGEvalTest "soft2d-f1-simple" `shouldReturnAlmost` 0.22053934201995676
it "very narrow rectangles" $ do
runGEvalTest "soft2d-f1-one-pixel" `shouldReturnAlmost` 0.281992045358382
describe "test edit-distance library" $ do
it "for handling UTF8" $ do
levenshteinDistance defaultEditCosts "źdźbło" "źd好bło" `shouldBe` 1
levenshteinDistance defaultEditCosts "źdźbło" "źdźcło" `shouldBe` 1
describe "CharMatch" $ do
it "simple test" $ do
runGEvalTest "charmatch-simple" `shouldReturnAlmost` 0.3571428571428571
it "perfect solution" $ do
runGEvalTest "charmatch-perfect" `shouldReturnAlmost` 1.0
it "more complex test" $ do
runGEvalTest "charmatch-complex" `shouldReturnAlmost` 0.1923076923076923
it "broken test without input" $ do
runGEvalTest "charmatch-no-input" `shouldThrow` (== NoInputFile "test/charmatch-no-input/charmatch-no-input/test-A/in.tsv")
describe "MAP" $ do
it "one result" $ do
(calculateMAPForOneResult ["Berlin", "London", "Warsaw"]
["Warsaw", "Moscow", "Berlin", "Prague"]) `shouldBeAlmost` 0.55555555
it "check whether you cannot cheat with duplicated results" $ do
(calculateMAPForOneResult ["one", "two"]
["one", "one"]) `shouldBeAlmost` 0.5
it "simple test" $ do
runGEvalTest "map-simple" `shouldReturnAlmost` 0.444444444
describe "LogLoss" $ do
it "simple" $ do
runGEvalTest "logloss-simple" `shouldReturnAlmost` 0.31824
it "perfect" $ do
runGEvalTest "logloss-perfect" `shouldReturnAlmost` 0.0
describe "Likelihood" $ do
it "simple" $ do
runGEvalTest "likelihood-simple" `shouldReturnAlmost` 0.72742818469866
describe "MultiLabel-F" $ do
it "simple" $ do
runGEvalTest "multilabel-f1-simple" `shouldReturnAlmost` 0.66666666666
it "simple F2" $ do
runGEvalTest "multilabel-f2-simple" `shouldReturnAlmost` 0.441176470588235
it "labels given with probs" $ do
runGEvalTest "multilabel-f1-with-probs" `shouldReturnAlmost` 0.615384615384615
it "labels given with probs and numbers" $ do
runGEvalTest "multilabel-f1-with-probs-and-numbers" `shouldReturnAlmost` 0.6666666666666
describe "Mean/MultiLabel-F" $ do
it "simple" $ do
runGEvalTest "mean-multilabel-f1-simple" `shouldReturnAlmost` 0.5
describe "MultiLabel-Likelihood" $ do
it "simple" $ do
runGEvalTest "multilabel-likelihood-simple" `shouldReturnAlmost` 0.115829218528827
describe "Preprocessing operations" $ do
it "F1 with preprocessing" $ do
runGEvalTest "f1-with-preprocessing" `shouldReturnAlmost` 0.57142857142857
it "Regexp substition" $ do
runGEvalTest "accuracy-with-flags" `shouldReturnAlmost` 0.8
describe "evaluating single lines" $ do
it "RMSE" $ do
(MetricOutput v _) <- gevalCoreOnSingleLines RMSE id RawItemTarget
(LineInFile (FilePathSpec "stub1") 1 "blabla")
RawItemTarget
(LineInFile (FilePathSpec "stub2") 1 "3.4")
RawItemTarget
(LineInFile (FilePathSpec "stub3") 1 "2.6")
v `shouldBeAlmost` 0.8
describe "Annotation format" $ do
it "just parse" $ do
parseAnnotations "foo:3,7-10 baz:4-6" `shouldBe` Right [Annotation "foo" (IS.fromList [3,7,8,9,10]),
Annotation "baz" (IS.fromList [4,5,6])]
it "just parse wit colons" $ do
parseSegmentAnnotations "foo:x:3,7-10 baz:4-6" `shouldBe` Right [Annotation "foo:x" (IS.fromList [3,7,8,9,10]),
Annotation "baz" (IS.fromList [4,5,6])]
it "just parse wit colons" $ do
parseSegmentAnnotations "foo:x:3,7-10 baz:2-6" `shouldBe` Left "Overlapping segments"
it "just parse 2" $ do
parseAnnotations "inwords:1-3 indigits:5" `shouldBe` Right [Annotation "inwords" (IS.fromList [1,2,3]),
Annotation "indigits" (IS.fromList [5])]
it "empty" $ do
parseAnnotations "" `shouldBe` Right []
it "empty (just spaces)" $ do
parseAnnotations " " `shouldBe` Right []
it "match score" $ do
matchScore (Annotation "x" (IS.fromList [3..6])) (ObtainedAnnotation (Annotation "y" (IS.fromList [3..6])) 1.0) `shouldBeAlmost` 0.0
matchScore (Annotation "x" (IS.fromList [3..6])) (ObtainedAnnotation (Annotation "x" (IS.fromList [3..6])) 1.0) `shouldBeAlmost` 1.0
matchScore (Annotation "x" (IS.fromList [123..140])) (ObtainedAnnotation (Annotation "x" (IS.fromList [125..130])) 1.0) `shouldBeAlmost` 0.33333
matchScore (Annotation "x" (IS.fromList [3..4])) (ObtainedAnnotation (Annotation "x" (IS.fromList [2..13])) 1.0) `shouldBeAlmost` 0.1666666
describe "BIO format" $ do
it "just parse" $ do
let (Right r) = parseOnly (bioSequenceParser <* endOfInput) "O B-city/NEW_YORK I-city B-city/KALISZ I-city O B-name"
r `shouldBe` [Outside,
Beginning "city" (Just "NEW_YORK"),
Inside "city" Nothing,
Beginning "city" (Just "KALISZ"),
Inside "city" Nothing,
Outside,
Beginning "name" Nothing]
it "simplest entity" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-city"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 1) "city" Nothing]
it "multi-word entity" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-date I-date"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 2) "date" Nothing]
it "multi-word entity with normalized text" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-date/FOO I-date/BAR"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 2) "date" (Just "FOO_BAR")]
it "simplest entity with something outside" $ do
let (Right ents) = parseBioSequenceIntoEntities "O B-city"
ents `shouldBe` [TaggedEntity (TaggedSpan 2 2) "city" Nothing]
it "another simple case" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-city B-city"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 1) "city" Nothing,
TaggedEntity (TaggedSpan 2 2) "city" Nothing]
it "just parse into entities" $ do
let (Right ents) = parseBioSequenceIntoEntities "O O B-city/LOS_ANGELES I-city B-city/KLUCZBORK O B-name O B-person/JOHN I-person/VON I-person/NEUMANN"
ents `shouldBe` [TaggedEntity (TaggedSpan 3 4) "city" (Just "LOS_ANGELES"),
TaggedEntity (TaggedSpan 5 5) "city" (Just "KLUCZBORK"),
TaggedEntity (TaggedSpan 7 7) "name" (Nothing),
TaggedEntity (TaggedSpan 9 11) "person" (Just "JOHN_VON_NEUMANN")]
it "another entity parse" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-month/JULY B-month/JULY O O B-foo/bar"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 1) "month" (Just "JULY"),
TaggedEntity (TaggedSpan 2 2) "month" (Just "JULY"),
TaggedEntity (TaggedSpan 5 5) "foo" (Just "bar")]
it "another entity parse" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-city/LOS I-city/ANGELES O B-city/NEW I-city/YORK"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 2) "city" (Just "LOS_ANGELES"),
TaggedEntity (TaggedSpan 4 5) "city" (Just "NEW_YORK")]
it "parse entity" $ do
let (Right ents) = parseBioSequenceIntoEntities "B-surname/BROWN B-surname/SMITH"
ents `shouldBe` [TaggedEntity (TaggedSpan 1 1) "surname" (Just "BROWN"),
TaggedEntity (TaggedSpan 2 2) "surname" (Just "SMITH")]
it "parse entity" $ do
let (Right ents) = parseBioSequenceIntoEntities "O B-surname/SMITH"
ents `shouldBe` [TaggedEntity (TaggedSpan 2 2) "surname" (Just "SMITH")]
it "check counting" $ do
gatherCountsForBIO [TaggedEntity (TaggedSpan 2 2) "surname" (Just "SMITH")] [TaggedEntity (TaggedSpan 1 1) "surname" (Just "BROWN"),
TaggedEntity (TaggedSpan 2 2) "surname" (Just "SMITH")] `shouldBe` (1, 1, 2)
it "check F1 on a more complicated example" $ do
runGEvalTest "bio-f1-complex" `shouldReturnAlmost` 0.625
it "check F1 on labels only" $ do
runGEvalTest "bio-f1-complex-labels" `shouldReturnAlmost` 0.6666666666
it "calculate F1" $ do
runGEvalTest "bio-f1-simple" `shouldReturnAlmost` 0.5
it "calculate F1 with underscores rather than minus signs" $ do
runGEvalTest "bio-f1-simple-underscores" `shouldReturnAlmost` 0.5
it "check perfect score" $ do
runGEvalTest "bio-f1-perfect" `shouldReturnAlmost` 1.0
it "check inconsistent input" $ do
runGEvalTest "bio-f1-error" `shouldThrow` (== UnexpectedData 2 "inconsistent label sequence `B-NAME/JOHN I-FOO/SMITH I-FOO/X`")
describe "automatic decompression" $ do
it "more complex test" $ do
runGEvalTest "charmatch-complex-compressed" `shouldReturnAlmost` 0.1923076923076923
describe "handling jsonl format" $ do
it "simple test" $
runGEvalTestExtraOptions ["-e", "expected.jsonl" ] "jsonl-simple" `shouldReturnAlmost` 0.571428571428
describe "line by line mode" $ do
let sampleChallenge =
GEvalSpecification
{ gesOutDirectory = "test/likelihood-simple/likelihood-simple-solution",
gesExpectedDirectory = Just "test/likelihood-simple/likelihood-simple",
gesTestName = "test-A",
gesSelector = Nothing,
gesOutFile = "out.tsv",
gesAltOutFiles = Nothing,
gesExpectedFile = "expected.tsv",
gesInputFile = "in.tsv",
gesMetrics = [EvaluationScheme Likelihood []],
gesPrecision = Nothing,
gesTokenizer = Nothing,
gesGonitoHost = Nothing,
gesToken = Nothing,
gesGonitoGitAnnexRemote = Nothing,
gesReferences = Nothing }
it "simple test" $ do
results <- runLineByLineGeneralized KeepTheOriginalOrder sampleChallenge (const Data.Conduit.List.consume)
Prelude.map (\(LineRecord inp _ _ _ _) -> inp) results `shouldBe` ["foo",
"bar",
"baz",
"baq"]
it "test sorting" $ do
results <- runLineByLineGeneralized FirstTheWorst sampleChallenge (const Data.Conduit.List.consume)
Prelude.head (Prelude.map (\(LineRecord inp _ _ _ _) -> inp) results) `shouldBe` "baq"
describe "handle --alt-metric option" $ do
it "accuracy instead of likelihood" $ do
runGEvalTestExtraOptions ["--alt-metric", "Accuracy"] "likelihood-simple" `shouldReturnAlmost` 0.75
it "accuracy instead of log loss" $ do
runGEvalTestExtraOptions ["--alt-metric", "Accuracy"] "log-loss-hashed-probs" `shouldReturnAlmost` 0.4
describe "smart sources" $ do
it "smart specs are obtained" $ do
getSmartSourceSpec "foo" "" "" `shouldReturn` Left NoSpecGiven
getSmartSourceSpec "foo" "out.tsv" "-" `shouldReturn` Right Stdin
getSmartSourceSpec "foo" "out.sv" "http://gonito.net/foo" `shouldReturn` (Right $ Http "http://gonito.net/foo")
getSmartSourceSpec "foo" "in.tsv" "https://gonito.net" `shouldReturn` (Right $ Https "https://gonito.net")
it "sources are accessed" $ do
readFromSmartSource "baz" "out.tsv" "test/files/foo.txt" `shouldReturn` ["foo\n"]
readFromSmartSource "" "" "https://httpbin.org/robots.txt" `shouldReturn`
["User-agent: *\nDisallow: /deny\n"]
describe "parse model params from filenames" $ do
it "no params 1" $ do
parseParamsFromFilePath "out.tsv" `shouldBe` OutputFileParsed "out" Data.Map.Strict.empty
it "no params 2" $ do
parseParamsFromFilePath "out.tsv.xz" `shouldBe` OutputFileParsed "out" Data.Map.Strict.empty
it "no params 3" $ do
parseParamsFromFilePath "out-test-foo_bar.tsv" `shouldBe` OutputFileParsed "out-test-foo_bar" Data.Map.Strict.empty
it "one parameter" $ do
parseParamsFromFilePath "out-nb_epochs=123.tsv" `shouldBe`
OutputFileParsed "out" (Data.Map.Strict.fromList [("nb_epochs", "123")])
it "complex" $ do
parseParamsFromFilePath "out-nb_epochs = 12,foo=off, bar-baz =10.tsv" `shouldBe`
OutputFileParsed "out" (Data.Map.Strict.fromList [("nb_epochs", "12"),
("foo", "off"),
("bar-baz", "10")])
it "empty val" $ do
parseParamsFromFilePath "out-nb_epochs=1,foo=,bar-baz=8.tsv" `shouldBe`
OutputFileParsed "out" (Data.Map.Strict.fromList [("nb_epochs", "1"),
("foo", ""),
("bar-baz", "8")])
describe "ranking" $ do
it "simple case" $ do
checkConduitPure (rank (\(a,_) (b,_) -> a < b)) [(3.0::Double, "foo"::String),
(10.0, "bar"),
(12.0, "baz")]
[(1.0, (3.0::Double, "foo"::String)),
(2.0, (10.0, "bar")),
(3.0, (12.0, "baz"))]
it "one item" $ do
checkConduitPure (rank (\(a,_) (b,_) -> a < b)) [(5.0::Double, "foo"::String)]
[(1.0, (5.0::Double, "foo"::String))]
it "take between" $ do
checkConduitPure (rank (<)) [3.0::Double, 5.0, 5.0, 10.0]
[(1.0::Double, 3.0),
(2.5, 5.0),
(2.5, 5.0),
(4.0, 10.0)]
it "two sequences" $ do
checkConduitPure (rank (<)) [4.5::Double, 4.5, 4.5, 6.1, 6.1]
[(2.0::Double, 4.4),
(2.0, 4.5),
(2.0, 4.5),
(4.5, 6.1),
(4.5, 6.1)]
it "series at the beginning" $ do
checkConduitPure (rank (<)) [10.0::Double, 10.0, 13.0, 14.0]
[(1.5::Double, 10.0),
(1.5, 10.0),
(3.0, 13.0),
(4.0, 14.0)]
it "inverted" $ do
checkConduitPure (rank (>)) [3.0::Double, 3.0, 2.0, 1.0]
[(1.5::Double, 3.0),
(1.5, 3.0),
(3.0, 2.0),
(4.0, 1.0)]
describe "tokenizer" $ do
it "simple utterance with '13a' tokenizer" $ do
tokenize (Just V13a) "To be or not to be, that's the question." `shouldBe`
["To", "be", "or", "not", "to", "be",
",", "that's", "the", "question", "."]
it "simple utterance with 'character-by-character' tokenizer" $ do
tokenize (Just CharacterByCharacter) "To be or not to be." `shouldBe`
["T", "o", "_", "b", "e", "_", "o", "r", "_", "n", "o", "t", "_", "t", "o", "_", "b", "e", "."]
describe "shapify" $ do
it "simple tests" $ do
shapify "Poznań" `shouldBe` (WordShape "Aa+")
shapify "2019" `shouldBe` (WordShape "9999")
shapify "Ala ma (czarnego) kota?" `shouldBe` (WordShape "Aa+ a+ (a+( a+.")
shapify "" `shouldBe` (WordShape "")
shapify "PCMCIA" `shouldBe` (WordShape "A+")
shapify "a" `shouldBe` (WordShape "a")
shapify "B5" `shouldBe` (WordShape "A9")
describe "create challenges and validate them" $ do
(flip mapM_) listOfAvailableEvaluationSchemes $ \scheme -> do
it (show scheme) $ do
withSystemTempDirectory "geval-validation-test" $ \tempDir -> do
let spec = defaultGEvalSpecification {
gesExpectedDirectory = Just tempDir,
gesMetrics = [scheme],
gesPrecision = Just 4 }
createChallenge True tempDir spec
validationChallenge tempDir spec
describe "test sample outputs" $ do
(flip mapM_ ) (Prelude.filter isEvaluationSchemeDescribed listOfAvailableEvaluationSchemes) $ \scheme@(EvaluationScheme metric _) -> do
it (show scheme) $ do
withSystemTempDirectory "geval-sample-output-test" $ \tempDir -> do
let spec = defaultGEvalSpecification {
gesExpectedDirectory = Just tempDir,
gesMetrics = [scheme] }
createChallenge True tempDir spec
let outFile = tempDir </> "test-A" </> "out.tsv"
writeFile outFile (outContents metric)
obtainedScore <- (runGEval ["--expected-directory", tempDir, "--out-directory", tempDir]) >>= extractVal
obtainedScore `shouldBeAlmost` (expectedScore scheme)
describe "submit" $ do
it "current branch" $ do
runGitTest "branch-test" (\_ -> getCurrentBranch) `shouldReturn` "develop"
it "challengeId" $ do
runGitTest "challengeId-test" (
\_ -> do
path <- makeAbsolute "challenge01"
setCurrentDirectory path
getChallengeId) `shouldReturn` "challenge01"
it "everything committed - positive" $ do
runGitTest "everythingCommitted-test-pos" (\_ -> checkEverythingCommitted) `shouldReturn` ()
it "everything committed - negative" $ do
hSilence [stderr] $ runGitTest "everythingCommitted-test-neg" (\_ -> checkEverythingCommitted) `shouldThrow` (== ExitFailure 1)
it "remote synced - positive" $ do
runGitTest "remoteSynced-test-pos" (\_ -> checkRemoteSynced) `shouldReturn` ()
it "remote synced - negative" $ do
hSilence [stderr] $ runGitTest "remoteSynced-test-neg" (\_ -> checkRemoteSynced) `shouldThrow` (== ExitFailure 1)
it "remote url" $ do
runGitTest "remoteUrl-test" (\_ -> getRemoteUrl "origin") `shouldReturn` "git@git.example.com:example/example.git"
it "repo root" $ do
runGitTest "repoRoot-test" (
\path -> do
subpath <- makeAbsolute "A/B"
setCurrentDirectory subpath
root <- getRepoRoot
return $ root == path
) `shouldReturn` True
it "no token" $ do
runGitTest "token-test-no" (\_ -> readToken) `shouldReturn` Nothing
it "read token" $ do
runGitTest "token-test-yes" (\_ -> readToken) `shouldReturn` (Just "AAAA")
it "write-read token" $ do
runGitTest "token-test-no" (
\_ -> do
writeToken "BBBB"
token <- readToken
return $ token == (Just "BBBB")
) `shouldReturn` True
describe "extracting features" $ do
it "extract factors" $ do
let bbdo = BlackBoxDebuggingOptions {
bbdoMinFrequency = 1,
bbdoWordShapes = False,
bbdoBigrams = True,
bbdoCartesian = False,
bbdoMinCartesianFrequency = Nothing,
bbdoConsiderNumericalFeatures = True }
(sort $ extractFactorsFromTabbed Nothing bbdo Nothing "in" "I like this\t34.3\ttests") `shouldBe` [
PeggedFactor (FeatureTabbedNamespace "in" 1)
(SimpleExistentialFactor (SimpleAtomicFactor (TextFactor "I"))),
PeggedFactor (FeatureTabbedNamespace "in" 1)
(SimpleExistentialFactor (SimpleAtomicFactor (TextFactor "like"))),
PeggedFactor (FeatureTabbedNamespace "in" 1)
(SimpleExistentialFactor (SimpleAtomicFactor (TextFactor "this"))),
PeggedFactor (FeatureTabbedNamespace "in" 1)
(SimpleExistentialFactor (BigramFactor (TextFactor "I") (TextFactor "like"))),
PeggedFactor (FeatureTabbedNamespace "in" 1)
(SimpleExistentialFactor (BigramFactor (TextFactor "like") (TextFactor "this"))),
PeggedFactor (FeatureTabbedNamespace "in" 1)
(NumericalFactor Nothing 11),
PeggedFactor (FeatureTabbedNamespace "in" 2)
(SimpleExistentialFactor (SimpleAtomicFactor (TextFactor "34.3"))),
PeggedFactor (FeatureTabbedNamespace "in" 2)
(NumericalFactor (Just 34.3) 4),
PeggedFactor (FeatureTabbedNamespace "in" 3)
(SimpleExistentialFactor (SimpleAtomicFactor (TextFactor "tests"))),
PeggedFactor (FeatureTabbedNamespace "in" 3)
(NumericalFactor Nothing 5) ]
describe "Kendall's tau" $ do
it "tau" $ do
kendall (V.fromList $ Prelude.zip [12, 2, 1, 12, 2] [1, 4, 7, 1, 0]) `shouldBeAlmost` (-0.47140452079103173)
it "z" $ do
kendallZ (V.fromList $ Prelude.zip [12, 2, 1, 12, 2] [1, 4, 7, 1, 0]) `shouldBeAlmost` (-1.0742)
it "p-value" $ do
(2 * (cumulative (normalDistr 0.0 1.0) $ kendallZ (V.fromList $ Prelude.zip [12, 2, 1, 12, 2] [1, 4, 7, 1, 0]))) `shouldBeAlmost` 0.2827
describe "Loess" $ do
it "simple" $ do
loess (DVU.fromList [0.2, 0.6, 1.0])
(DVU.fromList [-0.6, 0.2, 1.0])
0.4 `shouldBeAlmost` (-0.2)
describe "Calibration" $ do
it "empty list" $ do
calibration [] [] `shouldBeAlmost` 1.0
it "one element" $ do
calibration [True] [1.0] `shouldBeAlmost` 1.0
calibration [False] [0.0] `shouldBeAlmost` 1.0
calibration [True] [0.0] `shouldBeAlmost` 0.0
calibration [False] [1.0] `shouldBeAlmost` 0.0
calibration [True] [0.7] `shouldBeAlmost` 0.7
calibration [True] [0.3] `shouldBeAlmost` 0.3
calibration [False] [0.7] `shouldBeAlmost` 0.3
calibration [False] [0.3] `shouldBeAlmost` 0.7
it "perfect calibration" $ do
calibration [True, True, False] [0.5, 1.0, 0.5] `shouldBeAlmost` 1.0
it "totally wrong" $ do
calibration [True, False] [0.0, 1.0] `shouldBeAlmost` 0.0
calibration [True, False, False, True, False] [0.0, 1.0, 1.0, 0.5, 0.5] `shouldBeAlmost` 0.0
calibration [False, True, True, True, True, False, False, True, False] [0.25, 0.25, 0.0, 0.25, 0.25, 1.0, 1.0, 0.5, 0.5] `shouldBeAlmost` 0.0
describe "Cartesian strings" $ do
it "singleton" $ do
(parseCartesianString "foo") `shouldBe` ["foo"]
it "simple" $ do
parseCartesianString "a-{foo,bar,baz}-b" `shouldBe` ["a-foo-b", "a-bar-b", "a-baz-b"]
it "3x2" $ do
parseCartesianString "a-{foo,bar,baz}-{b,c}" `shouldBe` ["a-foo-b", "a-foo-c", "a-bar-b",
"a-bar-c", "a-baz-b", "a-baz-c" ]
it "3x2x3" $ do
parseCartesianString "{foo,bar,ba}-{b,c}-{0,1,2}x" `shouldBe` ["foo-b-0x", "foo-b-1x", "foo-b-2x",
"foo-c-0x", "foo-c-1x", "foo-c-2x",
"bar-b-0x", "bar-b-1x", "bar-b-2x",
"bar-c-0x", "bar-c-1x", "bar-c-2x",
"ba-b-0x", "ba-b-1x", "ba-b-2x",
"ba-c-0x", "ba-c-1x", "ba-c-2x" ]
describe "cross-tabs" $ do
it "singleton" $ do
splitIntoCrossTabs ["abababab"] `shouldBe` [SingleItem "abababab"]
it "too small" $ do
splitIntoCrossTabs ["aabb", "aacc"] `shouldBe` [SingleItem "aabb", SingleItem "aacc"]
it "two tables" $ do
splitIntoCrossTabs ["yABC", "xx00", "yABD", "ZC", "xx11", "yy00", "yy11", "ZD"] `shouldBe` [
CrossTab [Prefix "yAB", Prefix "Z"] [Suffix "C", Suffix "D"],
CrossTab [Prefix "xx", Prefix "yy"] [Suffix "00", Suffix "11"]]
it "simple" $ do
splitIntoCrossTabs ["aabsolutely",
"aaafoo",
"other",
"aaabaz",
"aaabaq",
"bbbfoo",
"bbbbaz",
"bbbbaq"] `shouldBe` [SingleItem "aabsolutely",
CrossTab [Suffix "foo", Suffix "baz", Suffix "baq"] [Prefix "aaa", Prefix "bbb"],
SingleItem "other"]
checkConduitPure conduit inList expList = do
let outList = runConduitPure $ CC.yieldMany inList .| conduit .| CC.sinkList
mapM_ (\(o,e) -> (fst o) `shouldBeAlmost` (fst e)) $ Prelude.zip outList expList
readFromSmartSource :: FilePath -> FilePath -> String -> IO [String]
readFromSmartSource defaultDir defaultFile specS = do
(Right spec) <- getSmartSourceSpec defaultDir defaultFile specS
let source = smartSource spec
contents <- runResourceT $ runConduit (source .| CT.decodeUtf8Lenient .| CL.consume)
return $ Prelude.map unpack contents
neverMatch :: Char -> Int -> Bool
neverMatch _ _ = False
alwaysMatch :: Char -> Int -> Bool
alwaysMatch _ _ = True
testMatchFun :: Char -> Int -> Bool
testMatchFun 'a' 1 = True
testMatchFun 'a' 2 = True
testMatchFun 'a' 3 = True
testMatchFun 'b' 1 = True
testMatchFun 'c' 1 = True
testMatchFun _ _ = False
extractVal :: (Either (ParserResult GEvalOptions) (Maybe [(SourceSpec, [MetricValue])])) -> IO MetricValue
extractVal (Right (Just ([(_, val:_)]))) = return val
extractVal (Right Nothing) = return $ error "no metrics???"
extractVal (Right (Just [])) = return $ error "emtpy metric list???"
extractVal (Left result) = do
handleParseResult result
return $ error "something wrong"
runGEvalTest = runGEvalTestExtraOptions []
runGEvalTestExtraOptions extraOptions testName = (runGEval ([
"--expected-directory",
"test/" ++ testName ++ "/" ++ testName,
"--out-directory",
"test/" ++ testName ++ "/" ++ testName ++ "-solution"] ++ extraOptions)) >>= extractVal
extractMetric :: String -> IO (Maybe Metric)
extractMetric testName = do
result <- getOptions ["--expected-directory", "test/" ++ testName ++ "/" ++ testName]
return $ case result of
Left _ -> Nothing
Right opts -> Just $ gesMainMetric $ geoSpec opts
(@=~?) :: (Show a, AEq a) => a -> a -> HU.Assertion
(@=~?) actual expected = expected =~ actual HU.@? assertionMsg
where
assertionMsg = "Expected : " ++ show expected ++
"\nActual : " ++ show actual
shouldBeAlmost got expected = got @=~? expected
shouldReturnAlmost :: (AEq a, Show a, Eq a) => IO a -> a -> Expectation
shouldReturnAlmost action expected = action >>= (@=~? expected)
runGitTest :: String -> (FilePath -> IO a) -> IO a
runGitTest name callback = do
withSystemTempDirectory "geval-submit-test" $ \temp -> do
copyFile ("test/_submit-tests/" ++ name ++ ".tar") (temp ++ "/" ++ name ++ ".tar")
withCurrentDirectory temp $ do
callCommand $ "tar xf " ++ name ++ ".tar"
let testRoot = temp ++ "/" ++ name
withCurrentDirectory testRoot $ do
callback testRoot