gonito/Handler/Graph.hs

82 lines
2.8 KiB
Haskell

module Handler.Graph where
import Import
import Handler.Tables
import Data.Maybe
import Data.List ((!!))
getChallengeGraphDataR :: Text -> Handler Value
getChallengeGraphDataR challengeName = submissionsToJSON (\_ -> True) challengeName
--getChallengeGraphDataR _ = return $ object [ "nodes" .= [node,node']]
submissionsToJSON :: ((Entity Submission) -> Bool) -> Text -> Handler Value
submissionsToJSON condition challengeName = do
challengeEnt@(Entity challengeId challenge) <- runDB $ getBy404 $ UniqueName challengeName
(evaluationMaps, tests) <- getChallengeSubmissionInfos condition challengeId
let mainTestEnt = getMainTest tests
let (Entity mainTestId mainTest) = mainTestEnt
let auxSubmissions = getAuxSubmissions mainTestId evaluationMaps
let naturalRange = getNaturalRange auxSubmissions
return $ object [ "nodes" .= (Data.Maybe.catMaybes $ map (auxSubmissionToNode naturalRange) $ zip [0..] auxSubmissions)]
getNaturalRange auxSubmissions = (2.0 * (interQuantile $ Data.Maybe.catMaybes $ map getScore auxSubmissions))
getScore (_, (_, [])) = Nothing
getScore (_, (_, [(_, evaluation)])) = evaluationScore evaluation
auxSubmissionToNode :: Double -> (Int, (Key User, (User, [(Submission, Evaluation)]))) -> Maybe Value
auxSubmissionToNode _ (_, (_, (_, []))) = Nothing
auxSubmissionToNode naturalRange (n, (_, (_, [(submission, evaluation)]))) = case evaluationScore evaluation of
Just score -> Just $ object [
"id" .= ("n" ++ (show n)),
"x" .= (stampToX $ submissionStamp submission),
"y" .= (- ((score / naturalRange) * 100.0)),
"size" .= (3 :: Int),
"label" .= submissionDescription submission ]
Nothing -> Nothing
stampToX :: UTCTime -> Integer
stampToX = toModifiedJulianDay . utctDay
node :: Value
node = object [
"id" .= ("n0" :: String),
"x" .= (0 :: Int),
"y" .= (0 :: Int),
"size" .= (3 :: Int),
"label" .= ("test" :: String)
]
node' :: Value
node' = object [
"id" .= ("n1" :: String),
"x" .= (5 :: Int),
"y" .= (3 :: Int),
"size" .= (1 :: Int)
]
-- taken from Math.Statistics
interQuantile :: (Fractional b, Ord b) => [b] -> b
interQuantile [] = 10.0
interQuantile xs = (q' - q)
where q = quantile 0.25 xs
q' = quantile 0.75 xs
quantile :: (Fractional b, Ord b) => Double -> [b] -> b
quantile q = quantileAsc q . sort
quantileAsc :: (Fractional b, Ord b) => Double -> [b] -> b
quantileAsc _ [] = error "x"
quantileAsc q xs
| q < 0 || q > 1 = error "quantile out of range"
| otherwise = xs !! (quantIndex (length xs) q)
where quantIndex :: Int -> Double -> Int
quantIndex len q = case round $ q * (fromIntegral len - 1) of
idx | idx < 0 -> error "Quantile index too small"
| idx >= len -> error "Quantile index too large"
| otherwise -> idx