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In most of the existing surface fitting and
smoothing techniques, a rectangular mesh system
is used. If non-4-sided regions are unavoidable in
a design, difficulties will arise when joining them
to the rectilinear systems.

A new type of techniques that overcomes the
n-sided problem is being described here. By an
extension of Chaikin's Algorithm to 3-D, using
linear combinations of the vertices of a polyhedron,
new vertices are defined to form a smoother poly-
hedron which contains a finer grid of faces.
Repetition of this process will eventually produce
a 'smooth' surface within a specified tolerance.

Further investigation has shown that a closed
form can be obtained, and the final surface will
become a 'B-spline like' surface with everywhere
smooth in the tangent plane.

1. INTRODUCTION

In most of the exist patching and smoothing
techniques for surfaces, a rectangular mesh is
used. The parametric values in two directions
{u and v) form continuous smoothness across the
boundaries, and the Cartesian Product form is
taken to form a 3-D surface.

Coon's Patchl has been applied in indusiries
since the mid-sixties in the design of engineering
surfaces. Subsequently, various forms of
computer aided design of space curves and sur-
faces have been developed. Professor Bezier of
Renault has developed a free form curve theory
from the Bernstein polynomial and extended it to
form a Bezier Net bivariate function for surfaces.
Gordon and Riesenfeld's B-spline technique” gives
a very flexible and well behaved method for curves
and surface designs.

These methods are well developed for rect-
angular mesh systems, but in the actual design
process, it is sometimes necessary to include non-
4-sided patches which gives rise to difficulties in
the present rectilinear systems. This n-sided
problem is 2 '"Topological' one since they can all

be resolved into 3-sided patches associated with
4-sided ones. If there were solutions to 3-sided
patches, the corresponding problem canbe solved.

Boolean Sum theory4 has been used to
smoothly interpolate triangles against the sides
and vertices, but no one has yet successfully
incorporated this theory into rectangular mesh
systems.

Traditionally in the industry, 3-sided
patches arising from the design are approximated
by degenerated 4-sided patches with one boundary
diminished to zero. However, when joining such
a surface to another patch, problem will arise in
the doubled corner where the continuity across
the patches lies. In practice, this local flatness
is usually reduced manually.

In a 4-sided parametric patching technique,
it is necessary for the parametrization to be con-
tinuous across the patch boundaries. When a
large curve segment is adjacent to a small curve
segment, the large tangent magnitude may cause
a loop in the small curve segment™. The choice
of regularly spaced boundary data may minimize
this effect, but a patch arranged as in Fig.l may
have a folding effect.

D

-

In this paper, the author has taken & com-
pletely controversal view on surface smoothing
techniques. The resulting approach will not have
the problems in the existing surface defining
techniques as mentioned above,
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2. SMOOTHING A CURVE

In general, a conic section tangential to two
intersecting straight lines can be fitted to smooth
outt the corner formed between them. The final
figure is continuous in both zero and first deri-
vatives. One degree of freedom therefore remains,
and this decides the type of conic section to be fit-
ted, ie. whether an ellipse, a parabola or a hyper-
bola. In special cases a circle can be fitted, or a
degenerated hyperbola may give the two original
straight lines.

There is a common trick long adopted by
carpenters to obtain a smooth corner with the min-
imum of tools. Suppose a corner C is to be
smoothed out from A to B, (Fig. 2} the carpenter
will first divide AC and CB into equal numbers of
portions. By sawing along the straight lines join-
ing the opposite markings, as shown in the figure,
a fairly smooth curve can be obtained. It can be
proved that if the markings are infinitesima iy
small, the resulting curve will be parabolic”. This
is in accordance to the inverse of the theorem that
any two tangents to a parabola will be cut proport-
ionally by another tangent’.

In 1974, G.M. Chaikin derived a high speed
curve generating algorithm for data point pairs™ .
The algorithm is simple but effective. Consider
a curve described by 4 points PPy Pyand Py (Fig.
3) the generated Chaikia's curve is tangential to
the end points P} and P4, and is also tangential to
the line P, P at its mid-point Pg. This figure is
then separated into two triangles P) P, Py and Pjg
P3 Py, each of which can then be subdivided into
halves to form a new quadrilateral; e.g. P] Py Py
Py and Pg Py Pg Py, where Py, Py, Pg and Pg are
the mid-points of the lines Py P;,PpPs5, P3Py
and P3 P4 respectively. Each of these quadrilat-
erals can be subdivided repeatedly in similiar
nsrocess as to form more quadrilaterals until the
desired smoothness is achieved.

This process is similar to the carpenters!'
trick, as it can be seen that each new line segment
generated by Chaikin's method is in effect a port-
jon of the straight line dividing the edges of the
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corner in proportional ratios, and the final Chai-
kin's curve will be made up by parabolic segments,
this final curve is known as the quadratic B-spline’

In Fig. 3,
a point P’ with P}'P, = twice P} P,, and extend
Py to P4’ in the same way, we have an opened
polygon P;'P, P3 P4' and we can restate Chaikin's

if we extend P away from P to

method in a different way: Given a polygon Py’
P, Py P4', the corners and the end points can be

length of the segments from the
The

cut away at the L
vertices, and a new polygon will be formed.
process can then be repeated on the resulting
polygon until, in the limit, the polygon approaches
a parabolic B-spline.

A similar process extended to 3-D-can be

used to smooth down a polyhedron in the same
sense.

3. SMOOTHING A POLYHEDRON

Consider any polyhedron made up of vertices
and faces. On each face of the polyhedron, there
exists a centroid. A new face can be formed by
joining the mid-points of all the lines linking the
centroid to the vertices on each face. By connect-
ing all these new faces accordingly, a new poly-
hedron will be obtained { Fig. 4). This subdivision
process is similar to chaikin's method of joining
the centroids of the segments of the polygon to the
corners, taking their halves as new vertices, and
joining all the adjacent new vertices in order to
form a new polygon.

The new polyhedron now has a larger num-
ber of faces and vertices, but the size of the faces
are smaller and the polyhedron is smoother, as
the segments in sectional views have a smaller




change of direction than the original polyhedron.

Fig.4 Smoothing of a polyhedron. The
thicker lines represent the original figure,
the thinner lines represent the new one,
with their types specified , C is centroid.

In this process, 3 types of new faces can be
formed;

a) Type F: A 5-sided face will give a new and
smaller 5-sided face within itself and bears a

similar shape, this type of new face is termed
Type F (formed by face).

b) Type V: A vertex common to 3 faces, i.e. a
corner where 3 faces joined together having three
common boundaries, will produce a 3-sided face,
this is termed Type V (formed by vertex).

c¢) Type E: On each common boundary of two
adjacent faces, a 4-sided face will be formed, this

is termed Type E (formed by edge).

The new polyhedron will consist of these 3
types of new faces. A n-sided face will provide a
basis for a smaller n-sided F type new face, it
will remain n-sided as the subdivision carries on
and will gradually converge to the centroid and
diminish to an acceptable size. A common edge
will always produce a 4-sided new face, and a m-
spoked vertex will produce a2 m-sided V type face
which will, in turn, become the basis of a smaller
m-sided F type face in the next subdivision process.

These 3 types of faces linked together shar-
ing common edges form a new polyhedron for fur-
ther subdivisions. The process can be used for
any number of sides on a face of the polyhedron,
and the new faces automatically joined up by the
next subdivision.
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4. NEWFACES ANDVERTICES GENERATION

Euler's formula for polyhedron states that:

F+V-E=2 (4.1)

Where F = number of faces,
E = number of edges,
V = number of vertices.

For the original polyhedron,
Fo +Vq - EO =2

After the first subdivision, the total num-
ber of new faces will be the total for ¥, V and E
type faces, i.e.,
Fl :FO+V0+EO (4.2)

Each old boundary will give a 4-sided
polygon with 4 new vertices, however, any two
adjacent edges on a face will generate only one
new vertwx on that face, therefore the number
of new vertices for med will be,
Vi :4E0/2:2E0 (4.3)

And from (4.1), the number of new edges
will be,

Ej=F;j+Vy-2
=Fg +Vg+3Eg-2 (4.4)

For the next cycle, after the 2nd subdivision,

Fp=F1+V1+E;

=2Fg+2Vg+6Ep-2 (4.5)
Vy =2E;

=2¥g+2Vp+6Ep-4 (4.6)
E; =Fp+Vp-2

=4Fg+4Vpo+12Eg-8 {4.7)

Judging from equation (4.6) and (4.7),
ther exists a relationship V=4E ; irrespective of
the number of faces and the number of sides on
each face, which have not been taken into account
in the above derivations. The only scluticn that
is possible for V=4 E in this case is for each
vertex to become common to 4 edges, that is,
after the subdivisions, all the new vertices will
become regular 4-spoked vertices. This is help-
ful since we can be sure that there will not be any
unexpected irregular sided faces being generated




after the first subdivision. i.e., n

n+t Z Pi

The calculation for the number of F, Vand E Pt o= P+ 1 — (5.2)
E after a number of subdivisions can be formulated 2n » Zn
in the following matrix form, AT
= [ 1 l 0 F where P.'is the new vertex formed on the
Sl Y original polygon on the vertex P, and the n P.'s
el =11 3 1 1 £ (4.8) will define the new F type face being generated.
1 0 These P 's joined to those generated by adjacent fa
v 0 2 0 0 0 faces will make up the V type and E type new faces.
1 0 Eqn. (5.2} can be written in the form of a weight
D 0 0 0 1 D distribution function,
h D=-2 £ L d polyhed 5
where D= -2 for closed polyhedrons. ¥
Pl =y Pt izl Ay Py {5.3)
n+l
Ejl = 1 3 1 1 E1 (4.9) where, in this case, O‘r = on
/ t of = A _= e e e = X =
v, o 2 0 0 v and . 5 = -1 crl
1
D 0 0 0 1 D e = =
5 n 2n
i.e 1 1 1 0 Fg
= {1 3 1 1 Ey 6. VARIATIONS ON THE DIVIDING ROUTINE
0 2 0 0 Vo
0 0 0 1
in general,
n
Fu i 1 L 0 Fy !
El = 1 3 i 1 Ey (4.10) o
Ve 0 2 0 0 vy
\D 0 0 9 L D Qrigiaal Sguare Black 15t Sub-division

5, WEIGHT FUNCTIONS

For a n-sided polygon, having vertices P
P, Py ..... Py the centroid P, is,

s
. P.
izl i
P~ = 5.1)
c - (
The mid-point from the centroid to a vertex
P, is
r ’ n
z 2nd Sub-division 3rd Sub-division
. P.
i=1 i
P +
P r n
I 5 Fig. 3 Dividing down from a unit cube with new vertices located at

4 tha distance from the oid vertices to the centroid on zach face .

{Hidden lines removed on the Sub-divisionsi
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The weight distribution may be easily varied
to get different effects as long as the sum of all the
linear combination weights is equal to 1 and that
they are symmetrically distributed. For example,
the new vertex P.' can be taken at the 4 length of
the centroid to the old vertex line instead of %

The effect of the new vertices being nearer to the
old will give a slower conversion at the centre of
2 face, but a sharper change along its edges and
vertices, as illustrated in Fig. 5 and Fig. 6. If
a constant £ is being chosen, the effect is just the
reverse, as in Fig. 7.

Although the new polygon of each face will
eventually converge to the centroid by these sub-
dividing methods, in the case of a highly twisted
original face, the new F type polygon will still be
highly twisted since it takes on a similar shape.
Hence, after several subdivisions, the generated
F type face will have the same degree of 'out-of-
plane' at the vertices. That is, through a magni-
fier, a picture roughly the same as the original
will be observed.

Sometimes it is necessary for the out-of-
plane to diminish faster than the size of the face
in the subdivision algorithm. It is therefore, pro-
bably inadequate to scale just by a factor of 2 on

the distances between the centroid and the vertices.

t 1 T
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| < | !

I1st Sub-division

Griginel Square Block
SIRIEE JGUATE DIOCR

3rd Sub-

2ng Scb-division

Tig. & Dividing down from 2 unit cube  with new vertices located at
half the distance between the centroid and old vertices on each face

{Hidden lines remcved on the Sub-divisions)
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A way of getting over this is to form the new ver-
tices on the average plane of the face concerned,

Criginal Cube ist Sub-division

2né Sub-division

LTSN
\ FHALIRS
S <

Fig. 7 Dividing down from a unit cube with new vertices located

ird Sub-division

at § the distance from the old vertices to the centroid on each face .

{Hidden lines removed on the Sub-divisions)

The original figure of @ U block with 22 faces and

Fig. 8

24 vertices.




the out-of-plane is then eliminated. This subdivi-
sion method is termed Type 2 while the previous
direct § distance method is termed Type 1. The
Type 2 method gives a smooth centre on the mini-
mal limit face, but the fact that the new vertices

Fig. 3 The lst Sub-division of the U block, the polygon (3 sided)

abede is one of the highly twisted V type face.

—\
=

Fig. 10 The 10 sectional views on the 3rd Sub-division by the
Type | method, the secticuns through the highly rwisted faces are still

juite rough.

formed are being 'pulled' down to the average
plane may induce an undesirable twist on the V
type and E type faces. Another method is intro-
duced by forming the new vertices that gradually
converge towards the average plane, but at the

Fig 1l The 10 sectional views on the 3rd Sub-division by the
Type 2 method, the figure is almost the same as Fig. 10 except that it

is smoother on the segments through the highly twisted portion.

Fig. L2 The 10 sectional views oa the 3rd Sub-division by the
Type 3 method., The section lines are much smoother thaa those in Fig. 10
and in Fig. 1l .




same time avoiding too much twist being formed on
V type and E type faces. This method of subdivi-
sion is termed Type 3.

The Type 3 method is proved to be the most
successful, as illustrated in Fig. 10, 11, and 12,
which are the parallel plane sectioning views on the
3rd subdivision to the closed polyhedron in Fig. 8.
The sectioning planes through the un-twisted faces
exibiting almost the same lines in these figures,
but on the highly twisted faces, e.g., abcde in
Fig.9, the Type 3 figure gives a much smoother
shape than the other two.

7. SURFACE FITTING

In a subdivision process, if four 4-sided
faces are formed next to one another shearing one
common vertex, a bi-quadratic surface patch in
two parametric variables can be fitted over the
four centroids of the faces. An ajoining set of 4-
sided faces will provide another bi-quadratic patch
ajoining to this one with both coordinates and para-
metric slopes continuities across their boundary.
Further more, this system of surface patches are
proved to be invariant for further subdivisions by
the type 3 method.

This result is hardly surprising since the
Type 3 method generates each new 4-sided face on
the lofted surface of the old polygon, and the pro-
cess gives a surface in effect is a Cartesian Pro-

The 4 patches fitted over the $ centroids

drawn with 3 intermediate lines betweer the boundaries.

-

Fig. 13

four 4-sided ser and the corresponding ¢ biquadratic suriaces fitted

The § faces resulting from the 1st Subdivision of the

on their centroids.

duct of two Chaikin's curve, which is a bi-quadra-
tic B-spline surface.

As illustrated in Fig. 13 and 14, four bi-
quadratic surface patches fitted to 9 faces which
resulted from the 1st subdivision on the original
four 4-sided faces, being drawn with the right
density, is exactly the same as that obtained by
the 64 biguadratic patches fitted to the 81 faces
resulting from the third subdivision of the original
figure.

The 64 patches fitted over the 81 faces with

the boundaries being drawn only.

Fig. 14

LB 032

The 81 face’s resulting from the

3rd Subdivision and

the corresponding biguacratic patches fitted ontc the m.

This effectively reduces the subdivisions
that is required over any four 4-sided set of faces
and will reduce the memory necessary to store
the information. As the surface patches fitted
stay invariant in further process, it is therefore
only necessary to perform the subdivisions on
those that cannot form a four 4-sided face sets,
namely, those joined by irregular sided faces
which resulted from non-4-sided regions and non-
4-spoked vertices in the original polyhedron.

»

As the subdivision algorithm keep generat
ing mainly 4-sided faces, {Chapter 4) and the size
of the grid becomes smaller in each step, these
non-patchable areas will reduce to isolated singu-
larities or call it 'holes', with a non-4-sided face
at the centre and surrounded by a ring of 4-sided
faces (Fig.15). Each further subdivision will

generate more 4-sided faces around the holes,




and more patches hence can be fitted. The area of
each non-patchable hole is reduced by a factor of

4 in each step and therefore shrink towards the
centroid of the non-4-sided face. By an analogy

of Fourier technique applying to the eigenvector
problem of the subdivision methodl0, it is possible
to prove that the limiting final surface is actually
slope continuous and holds a somewhat constant

curvature over these singularity regions.

4 Subdivision.

The patches be2iag firted after tha2

Fig. 13 The original irregular sided opea polyhadron and the

patches being fitted in the subdivisions.

8. CONCLUSIONS

The subdivision algorithms have no problem
on arbitrary specifice polyhedrons and no difficulty
in rmatching irregularly sided faces together. The
limiting surface converges towards the centroid of
each face and becomes a figure enclosed by the
tangeat planes within the convex hull.

The algorithm will generate a grid approxi-
mately four times finer than the previous step in
although the size of the faces are being
quartered, the corresponding storage required to
hold the information is four times as much. But
because the process is localized, i.e., the gener-
ation of new face is governed by the old one and its
neighbours only, and that the algorithm works

equally well with opened polyhedrons, the figure

every loop,
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can therefore be broken down into smaller parts
in this way a much finer grid
The

for calculations,
may be obtained on 2 limited storage space.
algorithm is particular suitable for greyscale
display purpose, although in the actual manufact-
uring process, one would obtain the tool pathes
from the surface patches rather than the subdivi-
sion itself.

A mathe matical representation of the com-
plete surface is probably not obtainable, because
the final surface is consisting of infinite number
of patches, and the non-patchable area merely
becomes infinitely small, (Fig. 16) nevertheless,
this surface is proved to have the right quadratic
behavior even at these non-patchable regions in
the limit!?.

The patches fitted on to the original figare {fainter

lines) af

42 3th subdivision, the non-parchable ragion is contracting

wowards ths centroid of the aon-d- sided face.

As far as practical application is concern,
only a finite subdivision is required for the area
of the holes to shrink down to a limit which ex-
ceeds the accuracy limit of the manufacturing
The tool path through the surface
patches on the object to be produced can be easily
found by including some existing surface contour-
ing routines, and in most of the cases, the cutting
path may not pass through the holes, therefore,
only a few steps of subdivisions is required for
obtaining a complete tool path for the NC machine.

machine.




9. FURTHER WORK

This subdivision algorithm is guaranteed to
converge within the convex hull, a property lacking
in ‘some other methods of {fitting a surface by solv-
ing non-linear equations.

The boundaries of the complete surface fit-
ted onto an opened polyhedron are governed by the
centroids of the boundary faces, this creats a dif-
ficulty to the designers. Although doubled edges
may tie a boundary down to a quadratic curve, this
still lacks the freedom required as far as arbitra-
rily specified boundaries are concerned.

As multiple vertices produce cusps, and the

possibility of extending Chaikin's algorithm to high-

er order curves by including several adjacent ver-
tices exists; further investigations may review the
possibility of fitting a higher order surface to a
general and arbitrarily defined polyhedron.

REFERENCES,

1) Coons, S.A., '"Surface for Computer Aided
Design of Space Forms', M.I.T. Project
MAC(1967), MAC-TR-41, Mass.,U.S. A.

2) Bezier, P, E., 'Mathematical & Practical
Possibilities of Unisurf', Computer Aided
-Geometric Design, Academic Press (1974),
pp.187-152.

3) Gordon, W. J. and Riesenfeld, R. F., 'B-spline

Curves & Surfaces', Computer Aided Geo-
metric Design, Academic Press (1974),
pp. 95-126.

4) Barnhill, R. E. and Gregory, J. A., 'Polyno-
mial Interpolation to Boundary Data on Tri-
angles', Mathematics of Computation, v.29
no. 131,{1975), pp. 726-735.

5) Forrest, A. R., '"Curves and Surfaces for Com-

puter- Aided Design', Ph.D. thesis (1968),

Joint C.A. D, group, U. of Cambridge, U.K.

6) Pitteway, M. L. V., Private communications,
Dept. of Comp. Sc., Brunel University,
Uxbridge, England.

7) Smith, C. 'Geometrical Conics', Macmillan
and Co. Ltd. (1904), pp. 62-63.

8) Chaikin, G. M., 'An Algorithm for High Speed
Curve Generation', Computer Graphics &
Image Processing, (1974) 3, pp. 346-349.

9) Riesenfeld, R. F., 'On Chaikin's Algorithm’,

Computer Graphics & Image Processing,
(1975) 4, pp. 304-310.

10) Sabin, M. A. and Doo, D. W. H., '"An Analysis
of The Behavior of Recursive Division Sur-
faces Near the Extraordinary Points’,
to be published, Autumn, 1978.

ACKNOWLEDGEMENT,

The author wishes to express his gratitudes
towards M. A. Sabin for his helps and ideas in
making this paper possible.

* * *




