How to subdivide the mesh?

Refinement:

» Subdivide each triangle into 4 triangles by splitting each edge and connecting new vertices

How to subdivide the mesh:

Refinement Smoothing:

» Existing Vertices: Choose new location as weighted average of original vertex and its neighbors

Existing vertex being moved from one level to the next

General rule for moving existing interior vertices:

What about vertices that have more Or less than 6 neighboring faces?

New_position = $(1 - k\beta)$ original_position + sum $(\beta * each_original_vertex)$

General rule for moving existing interior vertices:

What about vertices that have more Or less than 6 neighboring faces?

New $0 \le \beta \le 1/k$:

• As β increases, the contribution from adjacent vertices plays a more important role.

hroeder PH 99 Jotes

Where do existing vertices move?

- How to choose β?
 - Analyze properties of limit surface
 - Interested in continuity of surface and smoothness
 - Involves calculating eigenvalues of matrices
 - » Original Loop

$$\beta = \frac{1}{k} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{k} \right)^2 \right)$$

» Warren

$$\beta = \begin{cases} \frac{3}{8k} n > 3 \\ \frac{3}{16} n = 3 \end{cases}$$

How to subdivide the mesh:

Refinement Smoothing:

» <u>Inserted Vertices</u>: Choose location as weighted average of *original* vertices in local neighborhood

Boundary Cases?

- What about extraordinary vertices and boundary edges?:
 - Existing vertex adjacent to a missing triangle
 - New vertex bordered by only one triangle

Boundary Cases?

Rules for extraordinary vertices and boundaries:

