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Nothing to do with sea or anything else.
Over and over it vanishes with the wave.

— Shinkichi Takahashi
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N : Preamble

1 Prolegomenon

These are the notes for the Course #26, Wavelets and their Applicationsin Computer Graphicsgiven at
the Siggraph ' 95 Conference. They are an longer and we hope improved version of the notes for asimilar
course given at Siggraph ' 94 (in Orlando). The lecturers and authors of the notes are (in a phabetical order)
Michael Cohen, Tony DeRose, Alain Fournier, Michael Lounsbery, Leena-Maija Reissell, Peter Schroder
and Wim Sweldens.

Michael Cohen is on the research staff at Microsoft Research in Redmond, Washington. Until recently,
he was on the faculty at Princeton University. He is one of the originators of the radiosity method for
image synthesis. More recently, he has been developing wavelet methodsto create efficient algorithms for
geometric design and hierarchical spacetime control for linked figure animation.

Tony DeRoseis Associate Professor at the Department of Computer Science at the University of Washington.
His main research interests are computer aided design of curves and surfaces, and he has applied wavel et
techniquesin particular to multiresolution representation of surfaces.

Alain Fournier isaProfessor in the Department of Computer Science at the University of British Columbia.
His research interests include modelling of natura phenomena, filtering and illumination models. His
interest in wavel ets derived from their use to represent light flux and to computelocal illuminationwithin a
global illumination algorithm he is currently developing.

Michael Lounsbery is currently at Alias Research in Seattle (or the company formerly known as such). He
obtained his PhD from the University of Washington with a thesis on multi-resolution anaysiswith wavel et
bases.

Leena Reissell is a Research Associate in Computer Science at UBC. She has devel oped wavel et methods
for curves and surfaces, aswell aswavel et based motion planning agorithms. Her current research interests
include wavelet applications in geometric modeling, robotics, and motion extraction.

Peter Schroder received his PhD in Computer Science from Princeton University where hisresearch focused
on wavelet methods for illumination computations. He continued hiswork with wavelets as a Postdoctoral
Fellow at the University of South Carolinawhere he has pursued generalizations of wavelet constructions.
Other research activities of hishaveincluded dynamic modelling for computer animation, massively parallel
graphics agorithms, and scientific visualization.

Wim Sweldens is a Research Assistant of the Belgian National Science Foundation at the Department of
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Computer Science of the Katholieke Universiteit Leuven, and a Research Fellow at the Department of
Mathematics of the University of South Carolina. Hejust joined the applied mathematicsgroup at ATT Bell
Laboratories. Hisresearch interestsincludethe construction of non-algebraic wavel etsand their applications
in numerical analysisand image processing. He is one of the most regular editors of the Wavelet Digest.

In the past few years wavelets have been developed both as a new analytic tool in mathematics and as a
powerful source of practical tools for many applications from differential equations to image processing.
Wavel etsand wavel et transforms areimportant to researchers and practitionersin computer graphicsbecause
they are anatural step from classic Fourier techniquesin image processing, filtering and reconstruction, but
also because they hold promisesin shape and light modelling as well. It is clear that wavel ets and wavel et
transforms can become asimportant and ubiquitousin computer graphics as spline-based technique are now.

This coursg, in its second instantiation, is intented to give the necessary mathematical background on
wavelets, and expl ore the main applications, both current and potential, to computer graphics. The emphasis
is put on the connection between wavel ets and the tool sand concepts which should be familiar to any skilled
computer graphics person: Fourier techniques, pyramidal schemes, spline representations. We also tried to
give arepresentative sample of recent research results, most of them presented by their authors.

The main objective of the course (through the lectures and through these notes) is to provide enough
background on wavelets so that a researcher or skilled practitioner in computer graphics can understand
the nature and properties of wavelets, and assess their suitability to solve specific problems in computer
graphics. Our godl isthat after the course and/or the study of these notes one should be able to access the
basic mathematical literature on wavelets, understand and review critically the current computer graphics
literature using them, and have some intuition about the pluses and minuses of wavelets and wavelet
transform for a specific application.

We have tried to make these notes quite uniform in presentation and level, and give them a common list of
references, pagination and style. At the same time we hope you still hear distinct voices. We have not tried
to eradicate redundancy, because we believethat it ispart and parcel of human communication and learning.
We tried to keep the notation consistent as well but we |eft variations representative of what is normally
found in the literature. 1t should be noted that the references are by no mean exhaustive. The literature of
waveletsis by now huge. The entries are amost exclusively references made in the text, but see Chapter
VIII for more pointersto the literature.

The CD-ROM version includes an animation (720 frames) made by compressing (see Chapter 1V) and
reconstructing 6 different images (the portraits of the lecturers) with six different wavelet bases. The text
includes at the beginning of the first 6 chapters four frames (at 256x 256 resolution originally) of each
sequence. This gives an idea (of course limited by the resolution and quality of the display you see them
on) of the characteristics and artefacts associated with the various transforms. In order of appearance,
the sequences are Alain Fournier with Adelson bases, Leena-Maija Reissell with pseudo-coiflets, Michael
L ounsbery with Daubechies 4, Wim Sweldens with Daubechies 8, Tony DeRose with Battle-Lemarié, Peter
Schroder with Haar and Michagl Cohen with coiflets 4. All of these (with the exception of Adelson) are
described in the text. Michael Lounsbery version does not appear inthe CD-ROM due to lack of time.

Besides the authorg/lecturers, many people have helped put these notes together. Research collaborators
are identified in the relevant sections, some of them as co-authors. The latex/postscript version of these
notes have been produced at the Department of Computer Science at the University of British Columbia.
Last year Chris Romanzin has been instrumental in bringing them into existence. Without him they would

Siggraph '95 Course Notes: #26 Wavelets



PREAMBLE 3

be a disparate collection of individual sections, and Alain Fournier’s notes would be in troff. This year
Christian Vinther picked up the torch, and thanks to Latex amazing memory, problems we had licked
last year reappeared immediately. That gave him a few fun nights removing most of them. Bob Lewis,
also at UBC, has contributed greatly to the content of the first section, mostly through code and genera
understanding of the issues. The images heading the chapters, and the animation found on the CD-ROM
were al computed with his code (al so to befound on the disc -see Chapter V1I1). Parag Jain implemented an
interactive program which was useful to explore various wavelet image compressions. Finally we want to
thank Stephan R. Keith (even more so than last year) the production editor of the CD-ROM, who was most
helpful, patient and efficient as he had to deal with dozens of helpless, impatient and scattered note writers.

Alain Fournier

Siggraph '95 Course Notes: #26 Wavelets
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| Introduction

Alain FOURNIER
University of British Columbia

1 Scale

1.1 Imagepyramids

Anayzing, manipulating and generating data at various scales should be a familiar concept to anybody
involved in Computer Graphics. We will start with “image” pyramidst.

In pyramids such as a MIP map used for filtering, successive averages are built from the initial signal.
Figure I.1 shows a schematic representation of the operations and the results.

O Ssum
(O Difference
QO Storedvaue

__ - Addition

___= Subtraction

Figurel.1: Mean pyramid

It isclear that it can be seen as the result of applying box filters scaled and translated over the signal. For »
initial valueswe havelog,(n) stages, and 2n — 1 termsin theresult. Moreover because of the order we have

we will usethe word “image” even though our examplesin this section arefor 1D signals.
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chosen for the operationswe only had to compute » — 1 additions (and shiftsif means are stored instead of
sums).

Thisis not a good scheme for reconstruction, since al we need is the last row of values to reconstruct the
signal (of course they are sufficient since they are the initial values, but they are also hecessary since only
asum of adjacent valuesis available from the levels above). We can observe, though, that there is some
redundancy in thedata. Calling s; ; the jth element of level i (O being the top of the pyramid, & = log,(n)
being the bottom level) we have:

(Si+1.2) + Sit1,2j+1)

2
We can instead store s o as before, but at the level below we store:

Sij =

o (s1,0— s11)
1,0 — 2

It is clear that by adding s o and 5’170 we retrieve s1,0 and by subtracting sg 0 and 5’170 we retrieve sq 1.
We therefore have the same information with one less element. The same modification applied recursively
through the pyramid resultsin n — 1 values being stored in £ — 1 levels. Since we need the top value as
well (so,0), and the sums asintermediary results, the computational scheme becomes asshownin Figurel.2.
The price we have to pay is that now to effect areconstruction we have to start at the top of the pyramid and
stop at the level desired. The computational scheme for the reconstruction is given in Figure 1.3.

O sum
(O Difference
QO Storedvaue

— Addition

___= Subtraction

Figurel.2: Building the pyramid with differences

O sum
() Difference
QO Storedvalue

— Addition

___= Subtraction

Figurel.3: Reconstructing the signal from difference pyramid

Siggraph '95 Course Notes: #26 Wavelets



INTRODUCTION 7

If we look at the operations as applying a filter to the signal, we can see easily that the successive filters
in the difference pyramid are (1/2, 1/2) and (1/2, -1/2), their scaes and translates. We will see that they
are characteristics of the Haar transform. Notice also that this scheme computes the pyramid in O(n)
operations.

2 Frequency

The standard Fourier transform isespecialy useful for stationary signals, that isfor signal swhose properties
do not change much (stationarity can be defined more precisely for stochastic processes, but avague concept
is sufficient here) with time (or through space for images). For signals such as images with sharp edges
and other discontinuities, however, one problem with Fourier transform and Fourier synthesis is that in
order to accommaodate a discontinuity high frequency terms appear and they are not localized, but are added
everywhere. Inthefollowing exampleswewill usefor simplicity and clarity piece-wise constant signalsand
pi ece-wi se constant basis functionsto show the characteristics of several transforms and encoding schemes.
Two sample 1-D signals will be used, one with a single step, the other with a (small) range of scalesin
constant spans. The signals are shown in Figure |.4 and Figure |.5.

10 — T T T T T T
8 .
6 .
4 + _
2 .
op, [ L L [ [ T 1
0 5 10 15 20 25 30
Figurel.4: Piece-wise constant 1-D signal (signal 1)
12 — T T T T T T
10 .
8 | .
6 .
4 + .
2 .
Opyp [ [ [ [ [ N

Figurel.5: Piece-wise constant 1-D signal (signdl 2)

Siggraph '95 Course Notes: #26 Wavelets



8 A. FOURNIER

3 TheWalsh transform

A transform similar in properties to the Fourier transform, but with piece-wise constant bases is the Walsh
transform. Thefirst 8 basis functions of the Walsh transform W;(¢) are as shown in Figure |.6. The Walsh

I I I I I I I
VAL S O oo =
L L] T e =
VAL SN 2 =
L L] T B e e =
VAL SN 4 o =
L LS I T e e =
VAL SN B oo =
L L] T o e e R =

] ] ] ] ] ] ]

0 2 4 6 8 10 12 14 16

Figurel.6: First 8 Walsh bases

functions are normally defined for — % <t< % and are always 0 outside of thisinterval (so what is plotted
in the preceding figure is actually Wi(%5 - %)). They have various ordering for their index ¢, so always
make sure you know which ordering is used when dealing with W;(¢). The most common, used here, is
where ¢ is equa to the number of zero crossings of the function (the so-called sequency order). They are
various definitionsfor them (see[14]). A simplerecursive oneis:

Wajealt) = (—5F < [, (204 5) + (-1)549 05 20— 5)]

with Wo(t) = 1. Where j rangesfrom0to oo and ¢ = Oor 1. The Walsh transform isaseries of coefficients
given by:

NI=

wi = /_ FOO Wit) dt

NI

Siggraph '95 Course Notes: #26 Wavelets



INTRODUCTION 9

and the function can be reconstructed as:
Ft)y =" w Wi(t)
i=0

Figures|1.7 and 1.8 show the coefficients of the Walsh basisfor both of the above signals.

R O FRP N W, O
I
]

WNRFRPORPNWAOIO
I
]

Figure.8: Walsh coefficients for signal 2.

Note that since the original signals have discontinuities only at integral values, the signas are exactly
represented by the first 32 Walsh bases at most. But we should also note that in this example, as well as
would bethe case for aFourier transform, the presence of asingle discontinuity at 21 for signal 1 introduces
the highest “frequency” basis, and it has to be added globally for all ¢. In general cases the coefficients for
each basis function decrease rapidly as the order increases, and that usually alows for a simplification (or
compression) of the representation of the original signal by dropping the basis functions whose coefficients
are small (obviously with loss of information if the coefficients are not 0).

Siggraph '95 Course Notes: #26 Wavelets



10 A. FOURNIER

4 Windowed Fourier transforms

One way to localize the high frequencies while preserving the linearity of the operator isto use awindowed
Fourier transform (WFT ) aso known as a short-time Fourier transform (STFT ). Given awindow function
w(t) (werequire that the function has a finite integral and is non-zero over afinite interval) we define the
windowed Fourier transform of thesignal f(¢) as:

o0

Fiw(r, f) = / F(E) w(t — 7) e 270t g

— 00

In words, the transform is the Fourier transform of the signal with the filter applied. Of course we got a
two-variable function as an answer, with 7, the position at which the filter is applied, being the additiona
variable. Thiswasfirst presented by Gabor [87]. Itisclear that thefilter function w(t) allowsusawindow on
the frequency spectrum of f(¢) around 7. An alternate view isto see the filter impul se response modul ated
to the frequency being applied to the Fourier transform of the signal f(¢) “for all times’ (thisis knownin
signal processing as a modulated filter bank).

We have acquired the ability to localize the frequencies, but we have also acquired some new problems.
One, inherent to the technique, isthe fact we have one more variable. Another isthat it isnot possibleto get
high accuracy in both the position (in time) and frequency of a contributing discontinuity. The bandwidth,
or spread in frequency, of the window w(?), with W( f) its Fourier transform, can be defined as:

) [ RIW(HR df
A= T s

The spread in timeisgiven by:

[Pl dr
e AT

By Parseval’s theorem both denominators are equal, and equal to the energy of w(¢). In both cases these
values represent the root mean square average (other kinds of averages could be considered).

Exercise 1: Compute Af and At for the box filter as afunction of A and Tp. O

If we have asigna consisting of two é pulsesin time, they cannot be discriminated by aWFT using thisw(t)
if they are At apart or less. Similarly two pure sinewaves (6 pulsesin frequency) cannot be discriminated if
they are Af apart or less. We can improve the frequency discrimination by choosing a w(t) with a smaller
Af, and similarly for time, but unfortunately they are not independent. In fact there is an equality, the

Siggraph '95 Course Notes: #26 Wavelets



INTRODUCTION 11

Heisenberg inequality that bounds their product:
1
>
At x Af > =

Thelower bound isachieved by the Gaussian [87]. The other aspect of this problem isthat once the window
is chosen, the resolution limit is the same over al times and frequencies. This means that there is no
adaptability of the analysis, and if we want good time resolution of the short bursts, we have to sacrifice
good frequency description of the long smooth sections.

To illustrate with a piece-wise constant transform, we can use the Walsh transform again, and use a box as
thewindow. The box isdefined as:

w(t) = 1 if-2<t<2
~ ] 0 otherwise

Thisbox has awidth of 4. It isimportant to note thethe Af for thiswindow isinfinite in the measure given
above. We will position the windows 1 unit apart. Thiswill result in redundancy in the results, since the
windows overlap considerably, but we will address thisissue later. Figure 1.9 and 1.10 show the result for
the two signals. In these figures the 32 rows correspond to the 32 positions of the window, while the 32
columns correspond to the coefficients of the Walsh transform. The area of the circlesis proportional to the
magnitude of the coefficients, and they are filled in black for a positivevalue and lighter grey for a negative
value.
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Figurel.9: Signal 1 analysed with windowed Walsh transform
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12 A. FOURNIER

5 Relative Frequency Analysis

One obvious “fix” to this problem is to let the window, and therefore the Af vary as a function of the
frequency. A smplerelationisto require % = ¢, ¢ being aconstant. This approach is been used in signal
processing, where it is known as constant-Q analysis. Figure 1.11 illustrates the difference in frequency
space between a constant bandwidth window and a constant rel ative bandwidth window (there ¢ = 2).

Thegoad istoincreasetheresolutionin time (space) for sharp discontinuitieswhile keeping agood frequency
resolution at high frequencies. Of courseif the signal is composed of high frequencies of long duration (as
in avery noisy signal), this strategy does not pay off, but if the signal iscomposed of relatively long smooth
areas separated by well-locaized sharp discontinuities (asin many real or computer-generated images and
scenes) then this approach will be effective.

6 Continuous Wavelet Transform

We can choose any set of windows to achieve the constant rel ative bandwidth, but asimple versionisif all
the windows are scaled version of each other. To simplify notation, let us define A(¢) as:

h(t) = w(t) e~ 2ot

and scaled versions of h(t):

Ly

la] a

ha(t) =

where a is the scale factor (that is f = ), and the constant —— is for energy normalization. The WFT

Val

T o

Thisis known as a wavelet transform, and £(¢) is the basic wavelet. It is clear from the above formula
that the basic wavelet is scaled, translated and convolved with the signal to compute the transform. The
translation corresponds to moving the window over the time signal, and the scaling, which is often called
dilation in the context of wavelets, corresponds to the filter frequency bandwidth scaling.

now becomes:

WF(t,a) = ) dt

We have used the particular form of h(t) related to the window w(t), but the transform WF() can be
defined with any function h(t) satisfying the requirements for a bandpass function, that isit is sufficiently
regular (see [162] for a definition of regular) its square integral is finite (in the L? sense) and its integral
[ h(t)dt =0.

We can rewrite the basic wavel et as:
1 t—7
haﬂ':_h
o= )

to emphasize that we use a set of “basis’ functions. The transform is then written as:

WF(r,a) = / F(E) hE (1) dt
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We can reconstruct the signal as:

da dt

a?

£(t) = ¢ / WE(r, a) har (1)

where ¢ is a constant depending on A(t). The reconstruction looks like a sum of coefficients of orthogonal
bases, but the %, ,(t) arein fact highly redundant, since they are defined for every point in the «, T space.
Nevertheless the formulaaboveis correct if [ h%(t) dt isfiniteand [ A (t) dt = O (well, dmost).

7 From Continuous to Discrete and Back

Since there is a lot of redundancy in the continuous application of the basic wavelet, a natural question
if whether we can discretize « and 7 in such away that we obtain a true orthonorma basis. Following
Daubechies [49] one can notice that if we consider two scales ag < a1, the coefficients at scale a1 can be
sampled at alower rate than for aq since they correspond to alower frequency. In fact the sasmpling rate can
be proportional to Z—(l’ Generdly, if:

a=ay T=] a6 T
(¢ and j integers, T' a period) the wavelets are:

hist) = g hiag't — JT)
and the discretized wavelets coefficients are:
i = [ 1@ b0 di
We hope that with a suitable choice of (), ag and 1" we can then reconstruct f(¢) as:

f(t) ~ CZZCZ']‘ hij(t)

Itisclear that for ao closeto 1 and 7" small, we are close to the continuous case, and the conditionson A(t)
will be mild, but as aq increases only very specia h(t) will work.

7.1 Haar Transform

We can try again the example of the windowed Walsh transform with the box window. Choosing ag = 2
for the dilation factor, the widths of the boxes will be 32, 16, 8, 4 and 2. We will limit the spacings so that
there is no overlap between the windows of the same width?. In this case this means spacings of 1 x 32,
2x16,4x 8,8x 4and 16 x 2, for atotal of 31 transforms. The coefficients and reconstructed signal are
givenin Figurel.12 in “circle” form and in Figure .13 in bar graph form.

It is clear that there is alot of redundancy in the transforms, as seen by the many coefficients of equal
magnitude. We can see the windows as applying to the signal or equivaently as applying to the basis
functions. If we consider the Walsh functions and apply the box window properly scaled and translated,
we can observe that we get alot of duplicatesin the new “basis’ functions, and if we remove them we get

2If there are gaps between the windows, obviously some of the samples will be missed altogether. If there are overlaps, the
“children” of the boxeswill overlap too, and parts of the signal will be over-represented (infinitely so at the limit).
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14 A. FOURNIER

anew set of basis functions (of courseit remainsto be proved that they are redlly basis functions). These
happen to be the Haar functions, defined by Haar [99] and well known today as the bases for piece-wise
constant wavelets (see Figure 1.14).

Figures 1.15 and 1.16 show the coefficients of the Haar basis for both of our exemplar signals. Figure
1.17 shows the Haar coefficients for signal 2 with circles for easier comparisons with the windowed Walsh
transform.

One can prove that the same information is contained in these 32 values that was in the 31 x 32 values of
the windowed Walsh transforms. It isaso clear from the plots that there are many zero coefficients, and in
particular for signal 1 the magnitude of the Haar coefficients localize the discontinuitiesin the signal.

7.2 Image Pyramids Revisited

We can now generalize the concept of image pyramids to what is known in filtering as a subband coding
scheme. We have applied recursively two operators to the signa to subsampleit by 2. The first oneis
the box, and is a smoothing, or a low-pass filter, and the other is the basic Haar wavelet, or a detail or a
high-pass filter. In our specific example the detail filter picks out exactly what is necessary to reconstruct
thesignal later. In generd, if we have alow-passfilter h(n), ahigh-passfilter g(n), and asigna f(n) 3, we
can compute the subsampled smooth version:

alk) =37 F(i) (=i + 2k)
and the subsampled detail version:
A(k) =37 £(i) g(~i+ 2k)
If the smoothingfilter is orthogona to its translates, then the two filters are related as:

g(L—1—14)=(=1)"h(i)

(where L isthe length of thefilter, which is assumed finite and even). The reconstruction isthen exact, and
computed as:

F00) = S Lalk) h(~i + 2k) + d(k) g(~i + 2k)]
k

We can apply this scheme recursively to the new smoothed signal «( ), whichishalf thesizeof f(), until we
have two vectors «() and d( ) of length 1 after log,(n) applications. It isclear that asin the Haar transform
this scheme has only O(n) cost. The computational scheme is shown in Figure 1.18. The computational
scheme for the reconstruction is given in Figure 1.19. H isthe application (sum over 7) of the smoothing
filter, ¢ the application of the detail filter, and H* and G* denote the sum over k of the smoothing and detail
filters, respectively.

31t would be better to call 7() the low passfilter and /() the high passfilter, and some do, but we will use here the usual symbols.
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7.3 Dyadic Wavelet Transforms

We have sort of “stumbled” upon the Haar wavelet, from two different directions (from the windowed Wal sh
transform and from the difference pyramid). We need better methods than that to construct new wavelets
and express their basic properties. Thisis exactly what most of the recent work on waveletsis about [50].

We reproduce the following development from Mallat & Zhong [133]. Consider awavelet function P(t).
All weask isthat itsaverage [ 1(t) dt = 0. Let uswrite;(t) itsdilation by afactor of 2':

1 t
bi = 5 (5
Thewavelet transform of f(¢) at scale 2' is given by:

WE@) = fro) = [ fr)ete-r)dr
The dyadic wavelet transform is the sequence of functions
WF[f()] = [WE(t)] i € Z

We want to see how well WF represents f(¢) and how to reconstruct it from its transform. Looking at the
Fourier transform (we use F'( f) or F[f(t)] as notation for the Fourier transform of f(t)):

FWF(1)] = F(f)W(2'[) (1)

If weimpose that there exists two strictly positive constants A and B such that:
VA< Y W2NP<B (2)
we guarantee that everywhere on the frequency axis the sum of the dilations of () have a finite norm.

If this is true, then F'(f), and therefore f(¢) can be recovered from its dyadic wavelet transform. The
reconstructing wavelet x(t) isany function such that its Fourier transform X ( f) satisfies:

S W) X(2)) = 1 3

1=—00

Aninfinity of x() satisfies (3) if (2) isvalid. We can then reconstruct f(¢) using:

Ay = Y0 WE) () @

1=—00
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16 A. FOURNIER

Exercise 2: Prove equation (4) by taking its Fourier transform, and inserting (1) and (3). O

Using Parseval’s theorem and equations (2) and (4), we can deduce a relation between the norms of f(¢)
and of itswavelet transform:

Al FOI? < Z IWE@) (12 < BITOI? (5)

This proves that the wavelet transform is also stable, and can be made close in the L2 norm by having %
closeto 1.

It is important to note that the wavelet transform may be redundant, in the sense that the some of the
information in W; can be contained in others 1W; subspaces. For amore precise statement see [133]

7.4 Discrete Waveet Transform

To obtain a discrete transform, we have to realize that the scales have alower limit for adiscretesignal. Let
us say that « = 0 correspond to the limit. We introduce a new smoothing function ¢( ) such that its Fourier
transformiis:

ZW 2'f 2'f) (6)

From (3) one can prove that [ ¢(t) dt = 1, and therefore is really a smoothing function (afilter). We can
now define the operator:
- /f(r) it — ) dr

with ¢;(t) = % qﬁ(%). So SF;(t) isasmoothing of f(t) at scale 2. From equation (6) we can write:

J
| () = [D(2) 2= W2 [) X(2))
=1
Thisshowsthat the highfrequenciesof f() removed by the smoothing operation at scale 2/ can berecovered
by the dyadic wavelet transform WE;(¢),1 < 7 < j.
Now we can handle adiscrete signal f,, by assuming that there exists afunction f(¢) such that:
SFl(n) = fa

This function is not necessarily unique. We can then apply the dyadic wavelet transforms of f(¢) at the
larger scales, which need only the values of f(n + w), where w are integer shiftsdepending on «() and the
scale. Then the sequence of SF;(n) and WF;(n) is the discrete dyadic wavelet transform of f,,. Thisis of
course the same scheme used in the generalized multiresolution pyramid. Thisagain tells us that thereisa
O(n) scheme to compute thistransform.
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7.5 Multiresolution Analysis

A theoretical framework for wavelet decomposition [130] can be summarized as follows. Given functions
in L2 (this applies aswell to vectors) assume a sequence of nested subspaces V; such that:

e VoCcViCcVocC Vi CVy---

If afunction f(t) € V; then all translates by multiples of 2~ also belongs (f(t — 27 k) € V;). We aso
want that f(2t) € Vi41. If wecal W; the orthogonal complement of V; with respect to V; 1. We writeit:

Vier = Wi aV;
In words, W; has the details missing from V; to go to V;;.1. By iteration, any space can be reached by:

Vi=W, & Wit @ Wip @ Wiz --- (7)

Therefore every function in L2 can be expressed as the sum of the spaces W;. If Vi admits an orthonormal
basis ¢;(t — j) and itsinteger trandlates (2° = 1), then V; has ¢;; = ¢;4(2' — j) as bases. There will exist
awavelet ¥o( ) which spans the space Wy with its trandates, and its dilations v;; () will span ;. Because
of (7), therefore, every function in 1.2 can be expressed as asum of v;;( ), awavelet basis. We then see that
afunction can be expressed as a sum of wavelets, each representing details of the function at finer and finer
scales.

A simple example of afunction ¢ is abox of width 1. If we take as V{ the space of al functions constant
within each integer interval [ 7, j + 1), itisclear that theinteger translates of the box spans that space.

Exercise 3:  Show that boxes of width 2 span the spaces V;. Should there be a scaling factor when
going from width 2! to 2:—. Show that the Haar wavelets are the basis for W; corresponding to the box for
V;. O

7.6 Constructing Wavelets

7.6.1 Smoothing Functions

To develop new dyadic wavelets, we need to find smoothing functions ¢() which obey the basic dilation
equation:

o) = 3 e 6(2t — k)
k
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18 A. FOURNIER

Thisway, each ¢, can be expressed as alinear combination of its scaled version, and if it cover the subspace
Vo withits translates, its dyadic scales will cover the other V; subspace. Recalling that [ ¢(t) dt = 1, and
integrating both sides of the above equation, we get:

/¢(t) dt = Zk: ck/qb(Zt—k) dt

and since d(2t — k) = 2dt, then 3", ¢z = 2. One can see that when ¢o = ¢ = 1, for instance, we obtain
the box function, which is the Haar smoothing function.

Three construction methods have been used to produce new ¢(t) (see Strang [177] for details).

1. Iterate the recursive relation starting with the box function and some ¢ values. This will give the
splines family (box, hat , quadratic, cubic, etc..) with theinitial values [1,1], [3,1,2], [£,2,3 1],
12,224, One of Daubechies wavelets, noted D, is obtained by this method with
[1-|2/§7 3-|2/§7 3—(;/57 1—(;/5]_

2. Work fromthe Fourier transform of ¢( ) (equation (6)). Imposing particular formsonit and the Fourier
transform of () and x() can lead to a choice of suitable functions. See for instance in Mallat &
Zhong [133] how they obtain awavelet which isthe derivative of acubic splinefilter function.

3. Work directly with the recursion. If ¢() is known at the integers, applying the recursion gives the
valuesat dl points of values ;.

7.6.2 Approximation and Orthogonality

The basic properties for approximation accuracy and orthogonality are given, for instance, in Strang [177].
The essential statement isthat a number p characterize the smoothing function ¢() such that:

— polynomiasof degree p — 1 are linear combinationsof ¢( ) and itstrandates
— smooth functions are approximated with error O(h?) a scaleh = 277
— thefirst p momentsof () are O:

/tn¢(t)dt2 0, n=0,...,p—1
Those are known as the vanishing moments. For Haar, p = 1, for Dy p = 2.

Thefunction () is defined as ¢( ), but using the differences:
$(1) = (1) eap o2t — k)
The function so defined is orthogonal to ¢() and itstranslates. If the coefficients ¢; are such that
chck—Zm = 200,

and ¢o( ) isorthogonal to itstranslates, then so are al the ¢;( ) at any scale, and the ;( ) at any scale. If they
are constructed from the box function as in method 1, then the orthogondity is achieved.
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7.7 Matrix Notation

A compact and easy to manipulate notation to compute the transformations is using matrices (infinite in
principle). Assumingthat ¢;,¢ = 0...L — 1 are the coefficients of the dilation equation then the matrix
[H]isdefined suchthat H;; = 3 cp;_;. Thematrix [G] isdefined by G;; = 3 (=1)7+1 ¢;41_5;. Thefactor
% could be replaced by % for energy normalization (note that sometimesthis factor is already folded into
the ¢;, be sure you take thisinto account for coding). The matrix [ H ] isthe smoothing filter (the restriction
operator in multigrid language), and [] the detail filter (the interpolation operator).

The low-pass filtering operation is now applying the [ H | matrix to the vector of values f. The size of the
submatrix applied is 5 x n if n isthe origina size of the vector 27 = n. Thelength of the result is half
the length of the original vector. For the high pass filter the matrix [] is applied similarly. The processis
repeated J timesuntil only one value each of ¢ and d is obtained.

The reconstruction matrices in the orthogonal cases are merely the transpose of [/*] = [H]" and [G*] =
[G]T (with factor of 1if 3 is used, % otherwise). The reconstruction operation is then:

@ = [H]a' 1+ (G /7L
withj = 1,...,.J. asshownin Figurel.19.

As an example we can now compute the wavelet itself, by inputing a unit vector and applying the inverse
wavelet transform. For example, the fifth basisfrom D4 isgivenin Figure1.20.

Of course by construction all the other bases are translated and scaled versions of this one.

7.8 Multiscale Edge Detection

There is an important connection between wavelets and edge detection, since wavelets transforms are well
adapted to “react” locally to rapid changes in values of the signal. Thisis made more precise by Mallat and
Zhong [133]. Given asmoothing function §() (related to ¢( ), but not the same), such that [ 6(¢) dt = 1and
it converges to O at infinity, if itsfirst and second derivative exist, they are wavelets:

ot = LU g w2 =

d?0(t)
dt?

If we use these wavel ets to compute the wavel et transform of some function f(¢), noting ¢, (¢) = % (L)

dé,

WEL(1) = [avhy(t) = [+ (@D)(0) = a (0,0

2 2
WEZ(1) = [e?(1) = f(@20)(1) = @S (F 00

So the wavel et transforms are the first and second derivative of the signal smoothed at scale a. The local
extremaof WE',(t) are zero-crossings of W2, (¢) and inflection pointsof f  8,(¢). If 6(¢) isaGaussian,
then zero-crossing detection is equivalent to the Marr-Hildreth [139] edge detector, and extrema detection
equivalent to Canny [17] edge detection.
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20 A. FOURNIER

8 Multi-dimensional Wavelets

For many applications, in particular for image processing and image compression, we need to generalize
wavelets transforms to two dimensions. First, we will consider how to perform a wavelet transform of
the pixel values in a two-dimensional image. Then the scaling functions and wavelets that form a two-
dimensiona wavelet basis. We will use the Haar basis as a simple example, but it will apply to other
bases as well*. There are two ways we can generalize the one-dimensional wavelet transform to two
dimensions, standard and non-standard decomposition (since a multi-dimensional wavelet transform is
frequently referred to in the literature as awavel et decomposition, we will use that term in this section).

8.1 Standard Decomposition

To obtain the standard decomposition[15] of animage, wefirst apply the one-dimensiona wavelet transform
to each row of pixel values. This operation gives us an average value along with detail coefficients for
each row. Next, we treat these transformed rows as if they were themselves an image, and apply the
one-dimensiona transform to each column. The resulting values are all detail coefficients except for a
single overal average coefficient. We illustrate each step of the standard decompositionin Figure |.21.

The standard decomposition of an image gives coefficients for a basis formed by the standard construc-
tion [15] of a two-dimensional basis. Similarly, the non-standard decomposition gives coefficients for the
non-standard construction of basis functions.

The standard construction of a two-dimensiona wavelet basis consists of all possible tensor products of
one-dimensional basis functions. For example, when we start with the one-dimensional Haar basisfor 12,
we get thetwo-dimensional basisfor V2 that isshownin Figure.22. In general we define the new functions
from the 1D smooth and wavel et functions:

P(u) X ¢(v) ¢(u) X P(v) P(u)x ¢(v) P(u) X ¢(v)

These are orthogonal if the 1-D version are, and thefirst isasmoothingfunction, the other three are wavel ets.

8.2 Non-Standard Decomposition

The second type of two-dimensional wavelet transform, called the non-standard decomposition, aternates
between operations on rows and columns. First, we perform one step of horizontal pairwise averaging
and differencing on the pixel valuesin each row of theimage. Next, we apply vertical pairwise averaging
and differencing to each column of the result. To complete the transformation, we repeat this process
recursively on the quadrant containing averages in both directions. Figure 1.23 shows all the stepsinvolved
in the non-standard decomposition of an image.

The non-standard construction of a two-dimensional basis proceeds by first defining a two-dimensional
scaling function,

“This section is largely copied, with kind permission, from a University of Washington Technical Report (94-09-11) by Eric
Stollnitz, Tony DeRose and David Salesin.
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and three wavel et functions,

oY(x,y) = o(x)d(y)
Yo, y) = P(z)(y)
V(e y) = P(x)P(y).

The basis consists of a single coarse scaling function along with all possible scales and trangdlates of the
three wavelet functions. This construction resultsin the basisfor V2 shown in Figure 1.24.

We have presented both the standard and non-standard approaches to wavel et transforms and basisfunctions
because they each have advantages. The standard decomposition of an image is appealing because it can
be accomplished simply by performing one-dimensional transforms on all the rows and then on all the
columns. On the other hand, it is dlightly more efficient to compute the non-standard decomposition of
an image. Each step of the non-standard decomposition computes one quarter of the coefficients that the
previous step did, as opposed to one half in the standard case.

Another consideration isthe support of each basis function, meaning the portion of each function’s domain
where that function is non-zero. All of the non-standard basis functions have square supports, while some
of the standard basis functions have non-square supports. Depending upon the application, one of these
choices may be more favorable than another.

8.3 Quincunx Scheme

One can define a sublatticein Z2 by selecting only points (4, j ) which satisfies:

()= )

for al m,n € Z. One can construct non-separable smoothing and detail functions based on this sampling
matrix, with a subsampling factor of 2 (as opposed to 4 in the separable case). Theiteration schemeisthen
identical to the onefor the 1-D case [50].

9 Applications of Waveletsin Graphics

Except for theillustration of signal compressionin 1D, thisisonly abrief overview. The following sections
cover most of thesetopicsin useful details.

9.1 Signal Compression

A transform can be used for signal compression, either by keeping all the coefficients, and hoping that there
will beenough O coefficientsto save spacein storage (and transmission). Thiswill beal oss-lesscompression,
and clearly the compression ratio will depend on the signal. Transforms for our test signals indicate that
there are indeed many 0 coefficients for simple signals. If we are willing to lose some information on the
signal, we can clamp the coefficients, that is set to 0 al the coefficients whose absolute values are less than
some threshold (user-defined). One can then reconstruct an approximation (a “simplified” version) of the
origina signa. There is an abundant literature on the topic, and this is one of the biggest applications of
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wavelets so far. Chapter |V covers thistopic.

To illustrate some of the results with wavel ets vs we can test the transforms on signals more redlistic than
our previous examples (abeit till 1D).

Thefollowing figure (Figure 1.25) showsasignal (signal 3) which is made of 256 samples of thered signa
off a digitized video frame of area scene (a corner of atypical lab). Figure 1.26 shows the coefficients
of the Walsh transform for this signal. If we apply the Haar transform to our exemplar signal, we obtain
the following coefficients (Figure 1.27). We can now reconstruct that signal, but first we remove al the
coefficients whose absolute valueis not greater than 1 (which leaves 28 non-zero coefficients). Theresultis
shown in Figure 1.28. For another example we use one of Daubechies' wavelets, noted D,. It isacompact
wavelet, but not smooth. We obtain the following coefficients (Figure 1.29).

We can now reconstruct that signal, thistime clamping the coefficients at 7 (warning: thisis sensitiveto the
constants used in the transform). This leaves 35 non-zero coefficients. The result is shown in Figure 1.30.
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Figurel.12: Signa 2 analysed with scaled windowed Wal sh transform
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Figurel.13: Signd 2 analysed with scaled windowed Walsh transform (bar graph)
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Figurel.14: First 8 Haar bases
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Figurel.16: Haar coefficients for signal 2.

Figurel.17: Haar coefficients for signd 2 (circle plot).
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Figurel.18: Discrete wavelet transform as a pyramid
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Figurel.19: Reconstructing the signal from wavelet pyramid
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Figure1.20: Wavd et basis function (from D)
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Figurel.21: Standard decomposition of an image.
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Figure 1.22: The standard construction of a two-dimensional Haar wavelet basis for V2. In the unnormalized case,
functionsare +1 where plus signs appear, —1 where minus signs appear, and O in gray regions.
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Figurel.23: Non-standard decomposition of an image.
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Figurel.24: The non-standard
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Figurel.25: 1D section of digitized video (signal 3)
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Figurel.26: Walsh transform of signal 3
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Figurel.27: Haar transform of signal 3
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Figure.28: Reconstructed signal 3 with 28 Haar coefficients
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Figurel.29: D, transform of signal 3
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Figure1.30: Reconstructed signal 3 with 35 D, coefficients
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We now go through the same series with a signal (signal 4) sampled across a computer generated image
(Figure1.31). Figure1.32 showsthe coefficients of the Walsh transform for thissignal. If we apply the Haar
transform to this signal, we obtain the following coefficients (Figure 1.33). We can now again reconstruct
the signal, but first we remove all the coefficients whose absolute value is not greater than 1 (which leaves
47 non-zero coefficients). The result is shown in Figure 1.34. Now with D4. We obtain the following
coefficients (Figure 1.35). Again we clamp the coefficients at 7. Thisleaves 70 non-zero coefficients. The
result is shownin Figure 1.36.

Chapter 1V will cover thetopicin itspractical context, image processing.

9.2 Modelling of Curvesand Surfaces

This application is aso only beginning, even though the concept of multi-resolution modelling has been
around, both in graphics[83] and in vision [145]. Chapter V will describe severd applicationsin this area.

9.3 Radiosity Computations

To compute global illumination in a scene, the current favourite approach is using “radiosity” [39]. This
approach leads to a system of integral equations, which can be solved by restricting the solutions to a
subspace spanned by a finite basis. We then can choose wavelets basis to span that subspace, hoping that
the resulting matrix necessary to solve the system will be sparse. Chapter V1 will elaborate on thistopic.

10 Other Applications

There are many more applications of wavelets relevant to computer graphics. As a sample, Chapter VII
will survey applications to spacetime control, variational modeling, solutions of integral and differentia
equations, light flux representations and computation of fractal processes.

An interesting area of application of wavel et techniques not covered hereisin paint systems. A paper at this
conference (by D. F. Berman. J. T. Bartell and D. H. Salesin) describes a system based on the Haar basis
to implement multiresolution painting. The inherent hierarchy of the wavelet transform alows the user
to paint using common painting operations such as over and erase at any level of detail needed. Another
implementation of the same concept is from Luis Velho and Ken Perlin. They use a biorthogonal spline
basis for smoothness (remember that in the straightforward case the wavelet smoothing filter serves as a
reconstruction filter when the user zooms into the “empty spaces’). A priceispaid in performance (more
non-zero elementsin the filters), but the parameters of the trade-off are of course changing rapidly.
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Figure1.32: Walsh transform of signa 4
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Figure1.33: Haar transform of signal 4
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Figure1.36: Reconstructed signal 4 with 70 D, coefficients
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|l Multiresolution and Wavelets

Leena-Maija REISSELL
University of British Columbia

1 Introduction

This section discusses the properties of the basic discrete wavelet transform. The concentration is on
orthonormal multiresolution wavelets, but we also briefly review common extensions, such as biorthog-
onal wavelets. The fundamental ideas in the development of orthonormal multiresolution wavel et bases
generdize to many other wavelet constructions.

The orthonormal wavel et decomposition of discrete datais obtained by a pyramid filtering algorithm which
also alows exact reconstruction of the original data from the new coefficients. Finding this wavelet
decomposition is easy, and we start by giving a quick recipe for doing this. However, it is surprisingly
difficult to find suitable, preferably finite, filters for the algorithm. One objective in this chapter is to find
and characterize such filters. The other is to understand what the wavelet decomposition says about the
data, and to briefly justify its usein common applications.

In order to study the properties of the wavelet decomposition and construct suitable filters, we change our
viewpoint from pyramid filtering to spaces of functions. A discrete data sequence represents afunctionin a
given basis. Similarly, the wavelet decomposition of data isthe representation of the function in a wavel et
basis, which is formed by the discrete dilations and trand ations of a suitable basic wavelet. Thisis anax
ogous to the control point representation of a function using underlying cardinal B-spline functions.

For simplicity, we will restrict the discussion to the 1-d case. There will be some justification of selected
results, but no formal proofs. More details can be found in the texts [50] and [26] and the review paper
[113]. A brief overview isaso givenin [177].

1.1 Arecipefor finding wavelet coefficients

The wavelet decomposition of data is derived from 2-channel subband filtering with two filter sequences
(h), the smoothing or scaling filter, and (g% ), the detail, or wavelet, filter. These filters should have the
following specia properties:
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Filter conditions:

= 2l = V2
—gi = (=1 h1_;
-2 k9 =0

— >k hikhit2m = bom,fordl m

At first glance, these conditions may look dlightly strange, but they in fact contain the requirements for
exact reconstruction. The wavelet filter (%) is sometimes called the mirror filter of thefilter (hy), since it
is given by the elements of the scaling filter but in backwards order, and with every other element negated.
For simplicity, we only consider filters which are finite and real.

The two-element filter (1, 1), normalized suitably, is a simple example —thisfilter yields the Haar pyramid
scheme. Another example which satisfies these conditionsis the 4-element filter

1+v3 3+v3 3-v3 1-V3

‘D: b b b b
AN I I BN

constructed by Daubechies.

We now look more closely at where these conditions comefrom. Two-channel filtering of the data sequence
x = (z;) by afilter (h;,) meansfiltering which yields two new sequences:

Y= thwZﬂrk = th—zmk, Zi = ng$2i+k = ng_zmck. (1)
k k k k
In matrix form, thisfiltering can be expressed as follows:
y = Hx, z=Gx.
Here thematrix H = (hy_2; ):x IS aconvolution matrix, with every other row dropped:

O ho h1 ho h3 O O O .
O ho h1 h h3 0O 0O ...
O ho h1 hp hy O

Thematrix G isdefined similarly using the detail filter (¢, ). The 2-channd filtering process“downsamples’
(by dropping aternate rows from the convolution matrix) and produces a sequence half the length of the
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original. The normalization conditions for the filters imply that the filter (;) constitutes a lowpass filter
which smooths data and the filter (¢;) a highpass filter which picks out the detail; this difference in filter
roles can also be seen in the examplesin the previous section.

Reconstruction is performed in the opposite direction using the adjoint filtering operation:
zi =Y hi_okyk + gi-2kzk- (2)
e

In matrix form: x = HTy + GTz, where HT isthe transpose of H:

ho
hi 0 0
hy ho O
hs hi O
0 hy ho
0 hs M
0 0 &y

The reconstruction step filters and upsamples: the upsampling produces a sequence twice as long as the
sequences started with.

Note: Some of thefilter requirementsoften show up in dightly different formsintheliterature. For instance,
the normalization to v/2 is a convention stemming from the derivation of the filters, but it is also common
to normalize the sum of thefilter elementsto equal 1. Similarly, the wavelet filter definition can appear with
different indices: thefilter elements can for instance be shifted by an even number of steps. The differences
due to these changes are minor.

Similarly, decomposition filtering is often defined using the following convention:

yi=> haiptk, Z =) g2kt (3)
k k

The only difference is that the filter is applied “backwards” in the scheme (3), conforming to the usua
convolution notation, and forwards in (1). Again, thereis no real difference between the definitions. We
choose the “forward” one only because it agrees notationally with the standard definition of wavelets via
dilations and translations. I1f decomposition is performed as in (3), the reconstruction operation (2) should
be replaced by:

T; = Z hky/i+k + ngIi+k . (4)
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1.2 Wavelet decomposition

We should theoretically deal with data of infinite length in this setup. But in practice, let’s assume the data
has length 2"V, The full wavelet decompositionisfound viathe pyramid, or tree, algorithm:

H H H
s — 81 —> S2 —— ...
G G G (5)
N\ N\ N\
w1 w2

Thepyramidfilteringisperformedfor V steps, and each step gives sequenceshalf the sizeof the sequencesin
the previous step. Theintermediate sequences obtained by filtering by H are called the scaling coefficients.
The wavelet coefficients of the data then consist of al the sequences w;. In redlity, the decomposition is
truncated after a given number of steps and data length does not have to be a full power of 2.

The original data.can now be reconstructed from thewavel et coefficients and the onefinal scaling coefficient
sequence by using the reconstruction pyramid: thisisthe decomposition pyramid with the arrows reversed,
and using thefilters HT and GT.

Thefilter conditions above can a so be expressed in matrix form:
HTH+GTc=1, GHT=HGT =0, GGT=HHT -1

Note: In real applications, we have to account for the fact that the data is not infinite. Otherwise, exact
reconstruction will fail near the edges of the datafor all but the Haar filter. There are many ways of dealing
with this; one is to extend the data sufficiently beyond the segment of interest, so that we do have exact
reconstruction on the part we care about. Another method, which does not involve adding more elements, is
to assumethedataisperiodic. Incorporatedinto thefilter matricesH and G, thiswill produce*wrap-around”
effect: for example,

ho hi hp h3 0 0 0 O
O 0 ho hi hy hg O O
0 0 O O hg hi hy ha
hp h3 0 0 0 0 hy m

There are other methods for dealing with finite data, and they aso involve modifying the filters near the
edges of the data. We briefly discussthese at the end of this chapter.

How isall this connected to the wavel et transform discussed earlier? The discrete datain a subband coding
scheme can also be interpreted as the coefficients of a given set of basis functions — this is analogous to
defining splines using control points. In thisway the data represents a function, and its wavel et transform
in a suitably defined basis consists of exactly the discrete wavelet decomposition of thisfunction.
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1.3 Example of wavelet decomposition

The following figure shows a data sequence together with the first few steps of its wavelet decomposition.
Thefilter used isthe Daubechiesfilter D4 given above. Thewavel et coefficients are shownin Figurell.1 for
levels 1-3, together withtheleve 4 scaling coefficients. (The wavel et coefficients are displayed so that finer
resolution levels are at the top of the figure and coarser levels are on the bottom.) The scaling coefficients
give a sketchy outline of the original data, and the wavelet coefficients indicate where detail has been lost
between the successive simplifications of the datain the pyramid algorithm: the larger the coefficient size,
the larger the error.

(For clarity, the 0-axis for each wavelet coefficient level has been moved vertically in this picture, but the
coefficients have not been scaled. The scaling coefficients have been scaled to be the same size as the
original data)

original data —
scaling coeffs -——-
wavel et coeffs —
wavel et coeffs —
wavel et coeffs —
|l evel 1 0O-axis -----
| evel 2 0-axis -----
| evel 3 0-axis -----

®

<

il
WN P A

0 50 100 150 200 250 300

Figurell.1l: Wavelet coefficients
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1.4 From thecontinuouswavelet transform to more compact representations

We now shift our viewpoint from discrete data to functions and their representations in given bases, and
briefly discussthe relation of the wavelet decomposition to other forms of the wavelet transform.

The continuouswavel et transform for a given basic wavel et > was defined as the function taking the scaling
and translation parameters «, b to the inner product with the scaled and translated wavelet 1,

W()(ab) = wila,b) = (fobus) = [ STuada.

The wavelet transform is amap from the space of square integrable functions, L2, into the space of square
integrable functions of two real variables, L.2( R?). Typicaly, this map takes functionsinto a proper subset
of L2(R?). Thismeans that not al reasonable functions w; : (a, b) — wy(a, b) are wavelet transforms of
any function and there are heavy constraints on such w;. Thisfact can beillustrated by using the Gaussian
e~** asabasic “wavelet”. (The Gaussian is not really an admissiblewavel et in our context sinceitsintegra
isnot 0, but it is a good example of the properties of the transform abtained using inner products.) In this
case, the wavelet transform w¢(a, b) of any function f satisfies the heat equation

82wf 8wf _

02b da

So, since most functions w(«, b) do not satisfy the heat equation, they are not the wavelet transform of any
square integrable f. — In practice, this means for instance that attempts to “edit” a function by moving its
wavel et coefficients are questionabl e, sincethereis no guarantee that the new coefficients represent anything
reasonable in terms of the chosen wavelet transform.

The continuous wavel et transform w(a, b) isaso redundant: the function f can be recovered from only a
subset of the values w¢(a, b).

Most discretizations of the continuous wavelet transform have similar properties. They are redundant rep-
resentations with restrictions on the allowable transforms. Redundancy, for instance, can be useful in many
areas, however, some applications, such as data compression, benefit from more compact representations.

Nonredundancy and afull correspondence between functions and sequences representing potential wavel et
transforms can be achieved by using a discretized wavel et family which forms an orthonormal basisfor the
space of square integrable functions Z2. We will look for orthonormal bases which arise from the simplest
specid case of the discrete wavel et transform: the one with integer dilation and translation steps of 2 and 1,
respectively. The wavelet family then consists of the functions:

Uponl() = \/2_m¢(2mx —n).

The functions are normalized here to have L2 norm [|¢|| = (f [¢[2)Y2 = 1.

In this case, the wavelet transform wy(a, b) is now a sequence of reals w,, ,. For some choices of v,
these wavelets form an orthonormal basis. There isa 1-1, onto correspondence between square integrable
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functions and square summable sequences using the orthonormal wavelet transform. One example of an
orthonormal wavel et was the Haar wavelet, which was also connected with a pyramid filtering scheme. We
will next discuss a more genera method of finding such wavelet bases, multiresolution analysis, and its
connection with 2-channel subband filtering.

Note: It is possible to consider multiresolution schemes with more general dilations as well, but we will
deal here with the dyadic case only.

2 Multiresolution: definition and basic consequences

Thefirst god isto construct orthonormal bases of wavelets and to show how these are related to pyramid
schemes. For simplicity, we will limit the description here to the 1-dimensional case.

Multiresolution is a general method for constructing orthonormal bases, developed by Mallat and Meyer
[134], [142]. We should note that even though most orthonormal wavel et bases come from multiresolution,
not all do. However, most “nice” onesdo: for instance, all orthonormal bases with a compactly supported
1 (that is, ¢ which vanishes outside afinite interval) are known to come from multiresolution [118].

Intuitively, multiresolution slices the space L2 into a nested sequence of subspaces V;, where each V;
corresponds to a different scale. The multiresolution is completely determined by the choice of a specia
function, called the scaling function. (Thisfunction in fact corresponds to the scaling filter of the pyramid
scheme.) More formally:

Multiresolution definition

An orthonormal multiresolution analysisfor 2 generated by the scaling function ¢ isa sequence of closed

subspaces®
L.CV i CVoC V...

which satisfy:

- UV, =12
This condition states that al functionsin the space are arbitrarily close to functions in the multireso-
[ution spaces.

— AV, = {0}

—feVo— f(2) eV,

Thisis the multiresolution condition. As: increases, the spaces V; correspond to “finer resolution”:
if the function f isin the basic multiresolution space Vo, then the narrower, finer resolution function
f(2) 1 2 — f(22)isinthe space indexed by :.

!Daubechies[50] indexes the subspacesin the opposite direction.
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- feVi— f(--J)eV;

This condition meansthat the spaces are shift invariant: integer tranglates of any function in the space
must still be in the space.

— Thetranglates ¢; ;, where
¢ij(x) = V2ip(2a - j)

form an orthonormal basisfor V.

The orthonormality condition can be relaxed —we will go into this and other generalizationsin more detail
later. We will however allow general (non-orthonormal) multiresolutionsto be built with a scaling function
which satisfies the following:

— independence: thetranslates ¢; ; must be linearly independent

— stability: the translates ¢o; on level 0 must satisfy:
Thereare positiveconstants A and B sit. for al f generated by the ¢o;, f = 3 ¢;o;, With (c;) ini?,

AQ P2 < Il < B leiP)2 (6)

J J

This condition guarantees that each function has a unique representation in terms of the translates of ¢, and
that this representation effectively behaves like the representation in an orthonormal basis: the L2 norm of
afunctionisequivalent tothe 2 norm |(¢;)|| = (X, |¢;|?)Y/2 of its coefficient sequence.

2.1 Wavelet spaces
As a conseguence of the definition, we can approximate a given function f by functions from the multires-

olution subspaces: for instance, if P;( f) denotes the orthonormal projection of f into the subspace V;, we
get:

11— 00

Now, define the scaling coefficients of the function f as the components of the projection P;. Because of the
orthonormality, these are given by theinner products

sijf(f) = ([, dij) -

We want to also represent the error in each approximation; the error between the successive approximations
at each step 7 is an object in a complement space V11 — V;. Since we are working towards obtaining
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orthonormal bases, we will choose the orthogonal complement to represent the approximation error.  The
wavel et spaces W, are defined as the orthogonal complementsof V; in the larger space Vi1,

W, =VigaoV, W;,L1LV.

Since we are also looking for a situation analogous to the continuous wavel et transform, we need a single
function «» which generates all the wavel et spaces:

Wavelet property

Each W, is generated by the trandlates +; ; of the function >, where

b () = V22 — j).

If this extra property is satisfied, as an immediate consequence, we have

— multiresolutionfor W;'s: f € Wo «— f(2'-) € W,
— shiftinvariancefor W;'s. f ¢ W, — f(-—j) e W,
— orthonormality between wavelet spaces: W, L Wy, @ # k.

— dl L? functions can be obtained uniquely as asum of al the error components, or:
L*=Ppw.

From this, orthonorma multiresolution will now immediately yield an orthonormal basis consisting of
tranglations and dilations of the wavelet ¢». The wavelet coefficients of f are the coefficients of f with
respect to thisbasis:

wi;(f) = (f:i)

and the Z2-norm of afunction f can now be expressed in terms of the wavelet coefficients:
17 = (3 fwialY2 = ll(wiy)-
1J

Thewavelet property in fact holds under the most general multiresol ution assumptionswe consider, even if
the multiresolution is not orthonormal.
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Under practical conditions, the ¢ generating the multiresolutionis a smoothing function, that is, its integral
does not vanish:

/(bdx;éo.

We will make this a requirement when finding scaling functions. Similarly, for orthonormal bases, > will
satisfy the basic condition on wavelets: [+ dz = 0. We will not require this property explicitly, since it
will turn out to be satisfied in practical situations automatically from the definitions.

We also want to require ¢ and its Fourier transform & to have reasonable decay, to guarantee localization
both in the usua space and in frequency space. The space localization part is often taken care of by the
use of compactly supported scaling functions and wavel ets, that is, wavelets which vanish outside a finite
interval.

2.2 Therefinement equation

We will now continueto look for conditionsthe scaling function ¢ hasto satisfy for (orthonormal) multires-
olution, and how the definition is related to subband filtering.

In the multiresol ution situation, we have two subspaces Vy C V1, generated respectively by integer translates
of ¢(z) and ¢(2z). The subspace relation impliesthat ¢ () must be generated by the finer scale functions
P2z —j):

() = V2 3 hi¢(2e - j), (7)

with 3= [h; |2 < oo. This equation, known as the dilation or refinement equation is the principal relation
determining the multiresolution. It will hold for any two successive levelsin the multiresol ution hierarchy.

It is easy to check that the solution of the dilation equation must be unique, once the normalization of the
function ¢ is fixed. This means that the coefficients of the equation, (%;) can be used to determine the
scaling function, and the multiresolution. Further, the scaling function will be compactly supported exactly
when the filter sequence isfinite.

Since Wy C V1, we aso know that the wavelet must satisfy a similar equation:
v(z)= V2 ) gip(2r — ). (8)
J
The similarity of the coefficients in these equations to the filter coefficients in the introduction is not

coincidental! The next section looks at the connection of multiresolution to subband filtering.

2.3 Connection tofiltering

In genera, finding inner products with the translates of a single function is connected to convolution.
This can be seen for instance by looking at the following function, obtained by taking inner products with
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P 10 (t) = P(x — a):
up(a) = (f,1a) /f Yo — a)de = f 4,

where 1* is obtained from ¢ by reflection.

In the multiresol ution situation, the scaling and wavel et coefficients are found by filtering from the scaling
coefficients on a finer level, without having to calculate the inner products explicitly. This can be seen
directly from the refinement and wavel et equationsin the following way. The refinement equation on level
¢, rewritten in terms of the functions ¢; 1.1 ; is:

dio(x Z hjitaj(a

More generdly, expressing ¢, in terms of the finer level functions, using the refinement equation:
k(e Zh1¢2+1 2kt (@ Zh] 2k Pit1,5().

The scaling coefficients s; on level i are then
sik = (fs0m) =D hj_ax (fsdiy1j) = (Hsit1).
J

HereH = (h;_2)x; isthe modified convolution matrix with respect to thefilter (%;), with every other row
dropped, exactly asin Section 1.1.

For wavel et coefficients we have similarly:
Wi = Gsi—|—17

where G = (g¢;—_2) isthe convolution and downsampling matrix with respect to thefilter (g¢;).

This of course means that the wavelet and scaling coefficients can now computed by a pyramid filtering
scheme with exact reconstruction, asin Section 1.1, once we know the scaling coefficients on one level.

2.4 Obtainingscaling functionsby iterated filtering

Wheat do scaling functions and wavel etslook like? The multiresol ution conditionshave another consequence
for the scaling function: the function is obtained by a sequence of iterated filtering.
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24.1 Computing ¢ using the cascade algorithm

The function ¢ can be approximated by iteration essentialy by applying the reconstruction agorithm to a
scaling coefficient sequence

x0=(...0,0,0,0,1,0,0,0,0, ...),
with all wavelet coefficients set to 0. This corresponds to a single scaling function at the position indicated
by the 1.
In this case we reconstruct and scal e (the normalization will otherwise shrink each reconstruction by 1/+/2).
This means applying thefilter /2 H” repeatedly:

Xi41 = V2 HTXZ'.

Each sequence refines the previous one and the process can be shown to approach ¢ at the limit. Thisis
sometimes called the cascade algorithm, and it constitutes the simplest way to draw pictures of a scaling
function. Because thefilters are finite, the a gorithm can be easily modified to approximate portions of the
scaling function more efficiently, without drawing the whole function.

The wavelet can be drawn in the same way by applying thefilter /2 G once to the sequence of zeros and
asinglel:

x0=1(...0,0,0,0,1,0,0,00,...), x1=v2Glx,
and then performing the above iteration with H”' on the result:
Xi41 = V2 HTXZ', 1> 2.

Figure I1.2 depictsthe results of applying the cascade algorithm to the Daubechiesfilter Dy:
1+v3 3+v/3 3-v3 1-v3
420 &2 420 42

24.2 Computing ¢ at dyadic values

If finding an approximation to ¢ isnot enough, but precise values are needed, these can be cal culated using
the same cascade a gorithm, asfollows. Supposethe values of the ¢ at integers are known. Then the values
of ¢ at al points2~"k, where n > 0 and k& are integers, can be computed from the refinement equation

O(r) = V2 3 hié(2e = j).
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FigureIl.2: Cascade a gorithm applied to the Daubechies filter

In other words, begin with the vector xg consisting of theinteger values of ¢, and iterate:
Xi41 = V2 HTXZ'.

If thefilter lengthis V, theinteger values ¢(0), ¢(1), .. . can be found as the eigenvector corresponding to
theeigenvalue 1 of the N — 1 x N — 1 matrix (\/(2)h;_2 :i,j = 1,..., N — 1), obtained by truncation
from H and normalized by /2. This can be seen easily by substituting integers 0, 1, . .. for z into the
refinement eguation.

243 TheFourier transform of ¢

The cascade agorithm convergesto ¢ , if the scaling function solution ¢ of arefinement equation exists. If
we begin with agiven refinement equation, we don’t necessarily know that the cascade al gorithm converges,
and that there is any solution at al. The proofs of the existence of scaling functions usually look at the
corresponding algorithm in Fourier space and show that the Fourier transform of ¢ is awell defined 1?2
function.

Suppose we begin with the refinement equation (7). As mentioned, the solution ¢ , if one exists, is unique
once the normalization for [ ¢ # Oisfixed. Thiscondition isequivaent to the Fourier transform condition

$(0) £ 0. Weset [ ¢ = 1,0r ¢(0) = 1/y/2x.
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The Fourier transform of ¢ is now obtained from the refinement equation as before, by iteration. The FT
form of the refinement equationis

Sw) = 1V2 (3 he™*/2)d(w/2).

k

(Translation in Fourier transform becomes a phase shift, and scaling isinverted.) The key function hereis
the following 27 - periodic function corresponding to the filter:

mo(w) = 1/vV2 (D hre ™), (9)
k
and so the refinement equation is

$(w) = mo(w/2)¢(w/2). (10)
For thisto make sense, we must have mo(0) = 1. Iterating thisFT refinement equation we get

H(w) = mo(w/2)P(w/2) = mo(w/2)mo(w/4)d(w/4) = . . ..
This suggests that the choice for the Fourier transform of the function ¢ is the infinite product

w

CDoo(w) = ﬁmo(zk)
1

Our normalization condition &(0) = 1/v/27 impliesthat the constant C' is1/v/2r, sincemg(0) = 1. If this
product converges pointwise almost everywhere, it in fact defines an L2 function (which is then the Fourier
transform of the required L? function ¢ ) ([134]).

24.4 Examples

Scaling functions can also have closed forms; one such function is the box function. More generally, B-

splinesare examplesof functionswhich satisfy arefinement equation. (Their translates are not orthonormal,
however.) There are n + 2 many refinement equation coefficients for the degree n cardina B-spline, and

they are given by
i n+1
2" k

multiplied by a normalization factor /2. For instance, a quadratic spline has the coefficients
Vv2(1/8,3/8,3/8,1/8).
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The fact that B-splines satisfy a refinement equation can aso be seen from their definition as convolutions:
the degree O (order 1) B-spline V; is the box function, and degree » — 1, order n, splines N, for higher n
are abtained recursively by

Nn_|_1 = Nn * Nl.

The Fourier transform of N, is '
1 _ e—ZW

(——)"

W

Thefollowing Figure 11.3 shows a quadratic B-spline and the components of the refinement equation.

0 20 40 60 80 100 120 140 160 180 200

Figurell.3: B-splineand its refinement equation

How do we obtain other scaling functions, and, especially, how do we obtain scaling functionsfor orthonor-
mal multiresolution? The general methodisto begin withafilter ( ;) and iterate using the above procedures.
If theiteration startswith an arbitrary filter, we can only hopethat the process endsin something reasonable!
In the next sections we will give conditions on the filter which guarantee that the scaling function built this
way does in fact give avalid L? function and a valid orthonormal multiresolution. Further conditions are
required to allow scaling functions with a given degree of differentiability and guarantee other properties.
(Conditions can aso be obtained for the existence of a scaling function defined by a refinement scheme,
without orthonormality requirements. Theserefinement schemes, and their special cases, functions obtained
by subdivision, have also been explored independently of wavelets: see[71], [20].)

The necessary conditions on the filter turn out to be the exact reconstruction conditions given in the
introductory “recipe’. These are combined with some further requirements which guarantee that the
corresponding wavelets form a suitable basis. Although the necessary conditions are simple to state, they
arein fact difficult to satisfy. Giventhematrix H, it'snot hard to guess what the elements of the convolution
matrix G have to be in order to satisfy the orthogonality condition GH” = 0. However, it is not at all
easy to build longer filters H so that the remaining exact reconstruction properties are satisfied. Expressing
these conditionsin an alternative form will eventually lead to Daubechies’ general method for constructing
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finite filters for this. (We should note that the generalization to biorthogonal wavelets allows easier filter
constructions. But this construction is usualy aso carried out in Fourier space, and much of the analysis
remains the same as here.)

3 Requirementson filters for multiresolution

We can start from thefilters (h;) and (g;) and try to pin down the requirements needed for these to generate
avalid orthonormal multiresolution and wavelet. 1t’s convenient to ook at these in Fourier transform form.
If wetake F.T.'s of both sides of the refinement and wavelet equations (7) and (8), we get, as before,

Sw) = 1/V2 (3 hpe™™/2)d(w/2) (11)
k

B(w) = V23 gre™™?)d(w/2) (12)
e
Thefilters correspond to the 27 — periodic filter functions

mo(z) = 1/V2 (D hye ") (13)
k

ma(z) = 1/V2 (Y gre™ ") (14)
p

and the refinement equation and wavel et equation become

H(w) = mo(w/2)d(w/2),  P(w) = mi(w/2)d(w/2).

Theseidentitiesjust expressthefact that onefunctionisobtained using translates of another, scaled function.

3.1 Basicrequirementsfor thescaling function

We will first look at the basic consequences of the multiresolution definition. The scaling function must be
such that

uv, = L2

For functions with reasonable Fourier transforms?, and which satisfy the minimal stability conditions, this
property holdswhen

2(;? bounded and continuousnear O . ..
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[o#o

Thisintegral condition is also necessary in most cases. Theintegral conditionimpliesall of the following:

- 30)#0
We fix ¢(0) = 1/v/2r, as discussed before.
- mp(0) =1
- Yrolr—k)=1
— S hp =2

For instance, the normalization condition S~ A, = /2 can essentialy be obtained from the refinement
equation by integrating both sides and using the fact that the integral of ¢ does not vanish. Condition
$(0) # Oisarestatement of theintegral condition, and the requirement on g follows from the FT form of
the refinement equation

o(w) = mo(w/2)(w/2).

The normalization conditions were aready mentioned in Section 2.4.3. These conditions constitute a
“smoothing property” for thefilter (hy), and they allow the approximation of functions from the multireso-
[ution spaces.

3.2 Wavelet definition

We want to find awavelet b which generates the orthogona complement of Vg in V3. The wavelet ¢ isa
combination of the trand ates of finer resolution ¢’s:

v(a) = V2 Y g6(2e — ),

for thefilter (g¢;), and the corresponding filter functionis . Can thisfilter be chosen so that « isorthogonal
to the trandates of ¢ (and generates the space of all such functionsin V1)? The orthogonality of ¢ to the
tranglates of « can be expressed in FT form as:

0= (fou,5) =2 [ moleo/2m(w/2)|d(e0/ D)™ e =

/o27T e " mo(w/2+ wh)mn(w/2 + 7k)| $(w/2 + 7k)|Adw.
%
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Thelast formulation is obtained by splitting the integral over the whole frequency axisinto dlices of length
2r. Thefact that thisintegra vanishesimpliesthat, amost everywhere, the sum term must vanish also:

3" mo(w/2 + wk)ma(w/2+ k)| d(w + 7k)|? = 0. (15)
k

With some manipulation (splitting the sum into parts for even and odd % to use periodicity), thisleadsto the
condition

ma(w)mo(w) + mi(w + m)mo(w + 7) = 0. (16)
Thisin turnissatisfied for instance by the function

w

mi(w) = —e~“mo(w + 7).

(This can be seen by substituting into the equation and noting that e =™ 4 ¢~(«w*7) = 0))

By writing out the definition of thefilter functionmy, it isalso easy to seethat this correspondsto the mirror
filter definition given earlier: ¢; = (—=1)7hq_;.

It is possible to show, by repesting a similar argument for an arbitrary function f in Wy, that the wavel et
chosen will in fact span the complement wavel et spaces. This argument will also give the possible choices
for ¢ (there areinfinitely many of them). The general form for thefilter function m1 is

mi(w) = v(w)mo(w + 7),

where v is 2r-periodic and satisfies v(w + 7) + v(w) = 0. In addition, for deducing orthonormality of
the translates of ¢ from the same property for ¢ , we aso need |v| = 1. Above we chose the v to be
simply —e~%, but other choices are possible: any shift of this filter by an even number elements (that is,
multiplication of » by e~27“) would still give a suitable wavelet.

This definition works irrespective of the orthonormality of the multiresolution, provided the stability condi-
tion holds. If themultiresolutionis not orthonormal, the corresponding wavelet is often called aprewavel et,
or a semiorthogonal wavelet ([26]).

Again, it can be seen from the wavel et equation (8), that the wavelet filter must satisfy (g;) = Ofor [ =0
to hold. Thisisalso equivaent to saying that o hasazero a =. This condition follows from the previous
normalization condition mo(0) = 1 assuming minimal continuity requirements.

3.3 Orthonormality

Inner products of the translates of ¢ can be expressed in Fourier transform form:
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~ 2r ~
{600, Pon) :/|¢|26de:/o € 37 3w + 2mk)|2do,
k

Thelast equation is again obtained by splitting the original integral over the wholefrequency axisinto slices
of length 27. From this, we get the following conditions:

Orthonormality:

S |6(w + 27k)> = 1/2r  dmost everywhere. (17)
p

The less restrictive stability condition requires that this quantity is between some positive numbers.
Stability:

0<a< |dlw+2rk)?> <3 dmosteverywhere.
p

The above sum is a 2r-periodic function which is generally important in multiresolution, since it governs
the stability and orthonormality of the translates of ¢ , that is, whether the choice of ¢ makes sense as a
basic scaling function.

A necessary orthonormality condition is now found by the same procedures as before from the condition
(17): substitute the refinement equation into (17) for ¢, and use periodicity:

[mo(w)[? + [mo(w + m)* = 1. (18)

The wavelet and orthonormality conditions (16) and (18) can & so be expressed more simply by stating that
the following matrix is unitary (that is, its columns are orthonormal):

mo(w) ma(w)
molw+7) mi(w+m) |-
3.4 Summary of necessary conditionsfor orthonormal multiresolution

The following conditions are necessary® to define an orthonormal multiresolution and the accompanying
orthonormal wavelet bases:

Conditions for filter coefficientsin Fourier transform form

3under some minimally restrictive conditions
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— mg(0) =1, mo(r)=0
— [mo(w)? + [mo(w + m)|? = 1
— ina(w) = vlw)mole F 7,

with v 27-periodic, |v| = 1, and v(w + 7) + v(w) = 0. A standard choice for m1 is

mi(w) = —e “mo(w + 7). (19)

These conditions can aso be expressed in directly in terms of the original filters. Using the standard choice
(29) for the wavelet filter:

Corresponding conditions for filter coefficients

— normalization conditionsfor smoothing and wavelet filter: S, hr, = V2, S, gx = 0;
— orthonormality: >, hihit2m = dom, foralm

— wavelet: g; = (—1)jh1_]‘

The equivalence of the filter coefficient conditions to the previous ones can be seen relatively easily by
rewriting the Fourier transform conditions. The filter conditions are the same as the exact reconstruction
conditions given in the introductory section 1.1.

3.5 Sufficiency of conditions

While the above conditions are necessary for the generation of an orthonormal multiresolutionanaysisand
the appropriate scaling function, these conditionsdon’'t always guarantee that we actually get an orthonormal
basis, or even that the key stability condition (6) holds. Nor do they guarantee that a scaling function ¢
satisfying these conditions can be found. Various authors ([134], [48], [32], . . .) have devel oped sufficient
conditionsfor this— necessary and sufficient conditionsare found in [32], [117]. We briefly review some of
these sufficient conditions.

35.1 Sufficient conditions

Suppose that the following conditions by Mallat are added to the necessary conditions above:

— filter decay condition: |24 = O(47)
— mo(w) # 0forw € [-7/2,7/2].
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Then the product

w

1 o0
var il

converges to an 2 function q@oo(f ), and the function ¢ generates a multiresolution analysis.

Daubechies [48] gives a different condition on the filter tranfer function mo, which, when added to the
necessary conditions above, is sufficient:

— mo(w) = ((1+ €)/2)Nm(w), where sup, |m(w)| < 2V-1/2,
3.5.2 Necessary and sufficient conditions for compactly supported orthonormal multiresolution

Finally, there are conditionswhich are necessary and sufficient for acompactly supported scaling functionto
define amultiresolution analysis. Cohen ([32]) gave such conditions using the above necessary conditions
and an extra condition involving the zeros of mg(w). Thisextrareguirement is equivalent to the following
condition, which uses the eigenvectors of a matrix [117]:

Assume thefilter (&, ) isfinite, with indicesfrom 0 to V, such that the corresponding filter function
mo(w) = 1/\/52 hpe~the

satisfies mo(0) = 1 and the necessary orthonormality condition (18). Define

N

Al =D hohy—a—,
0

with |{], || < N — 1.
Then the following is a necessary and sufficient condition for the corresponding scaling function to exist

and generate an orthonormal multiresolution anaysis:

The eigenvalue 1 of the matrix A is nondegenerate.

353 Example

The following example from [50] shows that the exact reconstruction conditions aone are not enough to
guarantee that the resulting wavelets are orthonormal. The following scaling filter satisfies the necessary
orthonormality condition but does not actualy give an orthonormal basis:

mo(w) = %(1+ 3w,
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The filter leads to a ¢ whose translates are not orthonormal: using the iterated product definition of b, we
find that

b= \/%6_3”/zsinc(3w/2).

Then ¢, theinverse transform of this, equals the dilated box function, which is 1/3 between 0 and 3, and O
elsewhere. It'simmediately seen that the integer tranglates of this ¢ are not orthonormal.

3.6 Construction of compactly supported orthonor mal wavelets

The first orthonormal wavelet bases were functions supported on the whole rea line. Examples of these
are Meyer's wavelets, and the Battle-Lemarié wavelets (see [50]). Although the Battle-L emarié wavelets
produce good results, the filters for these functions are infinite, a drawback in many applications. The only
known orthonormal wavelets corresponding to finite filters were the Haar wavelets. This situation changed
when Daubechies used the filter conditions above to directly construct families of compactly supported
wavelets [48].

We will briefly outline the Daubechies construction here. For more details, see for instance [50]. (The
development in this section is not necessary for following the rest of the material.)

By theresults above, we require thefilter function mo(w),

mo(w) = l/\/é (Z hke_ik‘”),
k

to satisfy the orthonormality condition

[mo(w)[? + [mo(w + m)| = 1.

We a so want the following new condition:

mo(w) = (1/2(1+ )N Q(e™).

This alows the resulting function to have certain regularity and approximation properties — for future
reference, N isthe number of vanishing moments of the wavelet, discussed in more detail in alater section.
We also assume that mo(w) consists of a finite sum of the powers e=*#*, that is, mo(w) is atrigonometric
polynomial.

One of the main steps of the construction is finding the trigonometric polynomial P = |mo(w)|2. Thisis
first rewritten by taking out the (1 4 ¢*)" factor:
[mo(w)” = (co(w/2))" |Q(1 - cos?(w/2))

‘ 2
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and we let y = 1 — cos’(w/2). Then the orthonormality condition becomes an equation for finding the
polynomial Q(y):

yNQL-y)+(1-pNQy) =1

This condition can be solved explicitly. The following constitutes the unique form of the solutions:

N-1
Q(y)zz(N_lirk)@/kerNF(l/Z—y), (20)

where F is any odd polynomial such that ¢)(y) > Ofor y € [0, 1].

Finally, we need to obtain mq from |mo|®. In fact, |mo|? can be factored explicitly into its complex factors
using aresult by Riesz — this technique is called spectral factorization in signal processing. For positive
even trigonometric polynomials A, Riesz's lemma implies the existence of a“square root” polynomia B
st. A = |B|?. Thispolynomial isnot unique. By making certain choicesin the square root we arrive at the
Daubechies scaling functions ¢5),. The standard wavelet condition then yields the wavelets /£);. (Other
choicesin the factorization lead to different orthonormal wavelets.)

The wavelets are compactly supported: the supports of ¢, and %), are [0,2N — 1] and [1 — N, N].
The Daubechies wavel ets have regularity which increases linearly with the number N, and so the wavel ets
can be chosen to be arbitrary smooth at the price of increasing their support length. For most NV, this
construction cannot be given in a closed form, and there is no nice analytical formula for describing the
resulting wavelets.

3.6.1 Examples

For N = 1 the Daubechies wavelets are the Haar wavel ets.

For N = 2 we have the wavelet +»}’ which has made previous appearances here. Thefilter function mq is

mo(w) = [1/2(1+e™)> 1/2[(1+ V3) + (1~ V3)e™].

(It isessy to verify that this satisfies the orthonormality equation above.) The scaling filter (/) is obtained
by writing out ¢ as the full trigonometric polynomial :

1+v3 3++v3 3-vV3 1-3
42 a2 42 42

The following figures show the Daubechies scaling functions and waveletsfor N = 2, 4:
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Figurell.5: Dg
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3.7 Some shortcomings of compactly supported orthonor mal bases

There are tradeoffs to using compactly supported orthonormal bases. The bases are convenient and simple
touse. However, no symmetry or antisymmetry ispossiblefor thesewavel ets (apart from the Haar wavelet),
and “nice” compactly supported functions (e.g. splines) cannot be used. The Daubechies scaling functions
and wavelets have in general no closed analytical expression athough they can be computed to arbitrary
precision with arapidly converging algorithm.

Some of these shortcomings can be remedied by using biorthogonal and semiorthogonal wavel et construc-
tions (Section 5.2).

4 Approximation properties

In this section we will look at some of the properties of the wavelet decomposition and sketch the reason
why wavelets are useful in application such as compression. The wavelet decomposition is a complete
description of the underlying function, and so the behavior of wavelet coefficients can be used to get
information about the original data. This coefficient behavior in turn is closely tied to the approximation
properties of the chosen wavelets.

4.1 Approximation from multiresolution spaces

A key condition for understanding the behavior of orthonormal wavel etsand their generalizationsin function
approximation is the vanishing moment condition, defined below.

Theintegral of awavelet isOinour context. Extending thisto higher orders gives the vanishing moment
condition, which has the following equivaent forms. The m™ moment of afunction f isdefined as

Vanishing moment conditions

— Thefirst N momentsof « vanish: form =0,...,N — 1
/$m¢($)d$ =0

— mo(w) = % S~ e hasazero of order N-latw = 7
(Thatis, themth derivatives of mg, form =0,..., N — 1, dl vanishat 7.)
— mo(w) can befactored as mo(w) = (1 + )N f(w)

— Y kg = Y (=1 k"hp =0 form =0,...,N.
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The last condition is based on expressing the m™ moment of the wavelet in terms of the wavelet filter
coefficients (g¢;). These conditions guarantee that polynomias up to degree N — 1 are (localy) in the
multiresolution spaces. important for deducing the approximation properties of the multiresolution spaces.
Vanishing moments al so form anecessary conditionfor ¢ tobe C', or N timescontinuously differentiable.

If the compactly supported orthonormal basiswavelet v isin C', with bounded derivatives,,
then the first N moments of ) must vanish.

There are orthonormal wavelets with arbitrarily large vanishing moments. the Daubechies wavelets are a
family indexed by the number of vanishing moments2/N'.

The following result on the approximation properties of the wavelet decompositionis a direct consequence
of results on approximation from translation invariant spaces ([178]).

Approximation from multiresolution spaces

Suppose(V;) isamultiresolutionwithawavelet 1. If 1> has N vanishing moments, theerror of approximating
afunction f with at least NV derivatives from the multiresolution space V; is:

If = Pfll < C27 (L f flw

(The norm of the function is the Sobolev space norm obtained from the derivative norms || f (|2, y=
S 1712

Using the fact that the Z2-norm of afunction f is(3";; [wi;|?)Y/2, wherethe w;; arethe wavelet coefficients
of f, the above also impliesthat the wavelet coefficients of a sufficiently smooth function decay by levels
at least as a power of 2V, provided v has N vanishing moments:

maX]‘|wZ']‘| <C 27NV,

The rate of decay is governed by the number of vanishing moments of the wavelet used. As an example,
Haar wavelets have only one vanishing moment (the minimum allowed here), which means that they don't
approximate functions very rapidly. Similarly, the Haar coefficients do not tend to zero fast at finer levels,
so Haar wavelets will not produce as marked a contrast in coefficient size between smooth and non-smooth
sections of data as wavel ets with more vanishing moments.

The approximation result above also leads to a characterization of certain “smoothness’ spaces, Sobolev
spaces, in terms of wavelet coefficient behavior [142]. Many other spaces can be characterized by wavelet
coefficients ([142]) — these include the LPspaces, 1 < p < oo, Holder spaces, and Besov spaces. The
wavel et decomposition can even be modified to apply to LP, p < 1 ([60]).

“This also holds for wavelets with sufficiently rapid decay.
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411 Examples

Thefollowing figures show thewavel et coefficientsfor datawith varying differentiability using twowavelets:
the Haar wavel et with one vanishing moment, and the Daubechies wavelet Dg with 4 vanishing moments.
The wavelet coefficients are given with the finest level a the top.> Due to the difference in vanishing
moments, the coefficients for Dg are smaller and decay faster in the smoother data sections (i.e., the data
sections with more differentiability).

Figurell.6: Haar wavelet
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Figurell.7: Dg wavelet

5The wavelet coefficients have again been moved vertically for display but not scaled. For clarity, the 0-axesfor the coefficients
have not been shown explicitly.
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4.2 Approximation using the largest wavelet coefficients

Wavelet applications aso use other types of approximation. This is typical in compression: in these
situationsapproximation occurs from spaces >, consisting of functionswith » nonzero wavel et coefficients.
Unlike the multiresol ution spaces, these are not linear spaces, since they are not closed under addition. If
the same number of points » is used in both methods, the resulting approximation error from the space Z,,
is smaller than the the approximation error using the corresponding multiresol ution space.

Inthe underlying space L2, approximationfrom %, isbased on thefollowing. Supposethat f isthefunction
to be approximated. If A isthe set of coefficients (4, j) chosen to bein the approximating function f4, the
L? norm of the error is

I1F = fall = (32 lwyl?)M2
(i.0)¢A

This means that the L2-error is smallest when the » largest wavelet coefficients are chosen for the approx-
imation. This corresponds to simple threshold compression of the wavelet coefficient information. From
the above results it is clear that for smooth data, compression rates improve as the number of vanishing
moments of the wavelet increases.

It is possible to extend the method of choosing the largest wavelet coefficients to approximating within
spaces LP, p # 2, and to link functions with certain global smoothness properties with the asymptotic
properties of this approximation ([60]). These results do also have practical consequences, for instancein
analyzing the compression rates of images coded by wavel et coefficient thresholding — see [58].

4.3 Local regularity

We have mentioned above that global differentiability, or regularity, can be characterized by the behavior
of the wavelet coefficients across scales. What about the local existence of derivatives, or local regularity?
Loca regularity at a point « can be studied for instance by using the notion of Lipschitz continuity: a
function f issaid to be a-Lipschitzat a, 0 < a < 1, if

[f(z) = fla)] < Cfz—al

Asan example, astep discontinuity has Lipschitz exponent 0. Extensionsof thisconcept to « > 1 are made
by requiring the highest derivative to satisfy the above equation.

The following result by Jaffard [107] characterizes the local behavior of wavelet coefficients near an
a-Lipschitz point:

— If fisa-Lipschitzata, a < N, and thewavelet 1> isC"Y and hasat least V vanishing moments, then
maX; jyealwi;| < ¢ 271/2+e)

where A contains those index pairs (, j ) for which a € support(<;;).
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The converse holds with some modifications. The theorem requires the wavelet itself to have a certain
amount of differentiability. (The relative smoothness, or regularity, of a given wavelet can be determined
using various methods [53], [ 73] —for an outline of some of these, see for instance [50].)

Figure 4.3 illustrates this behavior near a step discontinuity, where « = 0. The coefficients decay as
O((Z5))-
V2

Figurell.8: Decay of wavelet coefficients at a step discontinuity.

Local variationsin the decay rate of wavelet coefficients can also be seen from the examplesin Figures|1.6
and11.7.

Thees properties mean that orthonormal wavel ets can in theory be used in discontinuity and edge detection.
However, in practice, orthonormal wavelet bases are not best suited for finding estimates of the Lipschitz
constants. Similar results as the one above hold for the continuous wavelet transform, but without any
restrictions on the smoothness of the wavelet, and edge detection has been performed with success with
thesemethods. The*discrete dyadic wavelets’ of Mallat are al so used in edgedetection [131], [132] (aswell
asin compression to improve the coding of image discontinuities). The method isolates as key elementsthe
local maxima of the redundant wavelet transform.

5 Extensions of orthonormal wavelet bases

Orthonormality is a very restrictive condition, and orthonormal wavelet constructions become relatively
complicated. We want to expand the allowable range of functions: we keep “as much orthogonality” as
necessary or desirable, while allowing more general scaling functions, which still satisfy the refinement
equation. Such scaling functionsinclude “nice” functions, for instance splines. (Splines define a multires-
olution, athough not an orthonormal one.) There are several ways to obtain wavelets in this situation.

We assume throughout that we start with a function ¢ defining a stable (6), but not necessarily orthonormal
multiresolution analysis (V).
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5.1 Orthogonalization

Orthogonalization procedures can be used to form a new scaling function ¢* whose dilations and translates
generate the multiresolution spaces, and provide an orthonormal basis for each V;. One way of doing this
isthefollowing (Meyer): let

¢ = ¢/ |20 3 dlw + 2nk)2.
k

This sum in the denominator is connected to the inner product of two trandates of ¢ and can be explicitly
computed for some functions, for instance B-splines.

One drawback of this orthogonalization, and related orthogonalization procedures, is that the resulting new
scaling functions are usually not compactly supported and so the wavelets are not compactly supported
either.

511 Example Battle-Lemariéwavelets

Battle-Lemarié wavelets can be obtained this way from B-spline multiresolution — this means that the
multiresolution spaces spanned by the new scaling functions are exactly the spline multiresol ution spaces.
The new scaling functions and the corresponding wavel ets have infinite support, but decay exponentially
fast. The scaling function is depicted in Figurel1.9.

1.2 T T
scaling function —

RETAY

0 100 200 300 400 500 600 700

Figurell.9: Battle-Lemarié scaling function

5.2 Biorthogonal wavelets

Biorthogonal wavelets were introduced in [33]. In this construction, orthonormal wavelets are generalized
by using two sets of functions, ¢;;, v, qbw, %] The wavelets (1), (%]) do not form orthogonal bases,
but they are required to form dual basesfor L2:

(ijs Dirjr) = 8385,
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and the following “anayzing” and “reconstructing” relations hold:

F=32Fwg) &5 =3 (£ by
]

)

An analogue for this situation is common for the continuous wavel et transform.

In this case have two dua multiresolutions V;, f/Z and the complement Wavelgt spaces Wi,ﬁ/i. We do
not necessarily get orthogonality between 1W; and V;, but have instead W, 1L V; and V; L W,. The two
multiresolutionsmay also coincide.

We al'so have two sets of filters: the usual filter matrices H and G and the dual filter matrices / and GG For
orthonormal wavelets, # = H and G = G. The advantage of the added generdity here isthat all filters
can be chosen to befinite and to have other required properties, such as symmetry. It isaso much easier to
construct biorthogona filters than orthonormal ones.

In an application, one of the filter pairs is selected as the “analyzing” pair, and the other one the “recon-
structing” pair. Here we choose the primal filters for the reconstruction and the dual ones for obtaining the
coefficients. Otherwise, reverse the roles of primal and dual in the diagram below. (We think of the primal
scaling filter here asthe “nicer” filter of the two. Thisfilter is the one usually used in reconstruction.) The
decompositioninto wavel et coefficients and the corresponding reconstruction is now obtained by amost the
same pyramidal algorithm as before:

Decomposition and reconstruction:

H HT
s — 81 s «— 81
G GT
21
N N (21)
W1 W1

Note: the definition of the wavelet filter i is connected to the dual scaling filter /, and similarly for the
dual wavelet filter. This means that the previous results in Section 4.1 have to be adjusted accordingly: for
instance, the conditions on vanishing moments for approximation are now on the dual wavelet (assuming
the convention that the primal functions are used for reconstruction).

5.21 Formal conditionsfor biorthogonality
Suppose we have mg, m1, 1o, 111 corresponding to the filters (¢;), (h;) and the dua filters (g;), (ﬁi) as

before. We also require the normalization condition mg(0) = 1 anditsdual 120(0) = 1. (Thefirst condition
could berelaxed [113].)

We can abtain the dual wavelets from the primal scaling functions and vice versa by the usual definitions:

ma(w) = —e “rig(w + 1), My(w) = —e"“mo(w + 7). (22)
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This choice has the advantage of alowing all four filters to be finite. With the choice of wavelets fixed as
above, the necessary condition for biorthogonality of the wavelets, or the exact reconstruction property,
can be expressed as

mo(w)rmio(w) + mo(w + m)mg(w + 7) = 1. (23)
This replaces the necessary orthonormality condition we had before. Necessary and sufficient conditions

similar to those for orthonormal wavelets are given in [33].

When allowing a more general choice of wavelet than the one in (22), the necessary conditions are the
following:

mo(w)mo(w) + mi(w)mi(w) =0 (24)

mo(w + m)Mmo(w) — mi(w + 7)my(w) = 0. (25)

For details and examples of the construction of spline-based biorthogonal wavelets, see [33]. Additional
theoretical material is covered in [26], [30], [113], and [190].

5.3 Examples

The following figures 11.10 and 11.11 depict biorthogonal wavelets based on the quadratic B-spline. The
number of vanishing momentsfor both waveletsis 3, and the dual scaling filter lengthis8. Thedual scaling
function does not have very much regularity. It is possible to get smoother functions by increasing the
number of vanishing moments; thiswill quickly result in long filters. (However, in many applications high
regularity for both sets of functionsis of less importance than fast filtering, and in these cases the shorter
filters are adequate.)

Other examples of biorthogona wavelets, connected to interpolating scaling functions, are constructed in
[165], [161].

54 Semiorthogonal wavelets

Semiorthogonal wavelets ([30], [26]) are biorthogonal wavel etsfor which the two multiresol utionscoincide,
and the wavel et spaces are obtained as orthogonal complements. Semiorthogonal wavel ets are not generally
fully orthonormal, but they do possess this property between levels:

W, L Wy, i #k.
The dual scaling ¢ function can be obtained as

= Z w—|—27rk
k
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The dual will generate the same spaces as ¢; however, it is generally not a compactly supported function,
even if ¢ is. The denominator can be computed explicitly for some functions, for instance B-splines [30].
The wavelets are computed using the genera biorthogonality conditions (24) and (25). Chui and Wang
[31] choose (the unique) wavelets with minimal support length; dual wavelets are computed from the
biorthogonality conditions. We will not get into the general construction here but refer to their paper and
[26], [30].

If ¢ isacardina B-spline of order n, the corresponding minimal support semiorthogonal wavelet is aso
a B-spline function of order », with support in [0, 2r]. The underlying multiresolution spaces for this
construction are the same as the ones for the orthonormal Battle-Lemarié wavelets. The dua functions are
not compactly supported — this means that if the splineis used as a reconstructing function, the analyzing
filters are not finite.

55 Other extensionsof wavelets

There are many other ways to extend the scope of wavelets. Even within the “standard” framework here,
examples of more general constructions include p-adic wavel ets (wavel ets corresponding to dilation by an
integer p, or even arational), and wavelet packets. Wavelet packets extend the 2-channel filtering by the
filters H and G to dl previousfiltering results, including the original wavelet coefficients. Thisgivesafull
binary decomposition tree. Depending on which members of this tree are selected, the origina space is
splitinto different orthonormal bases. Applications, such asimage and audio compression, can then choose
among these bases to obtain optimal results. For more on these and other extensions see for instance [50],
[41].

5.6 Waveletson intervals

The original definition of wavel ets uses functions defined on the wholereal line. In practical cases we want
to find the wavelet decomposition of a finite sequence, or of afunction defined only on an interval. It is
possible to extend the data over the endpoints for instance by making it cyclic, by padding with zeros, by
reflection, or by fitting a polynomial to the ends of the discrete data set. Thisis expensive and, for many of
these methods, the discontinuities at the ends will produce artificial edge effects.

To avoid these drawbacks, it is also possible to define special wavelets on an interval: these consist of the
usual wavelets, when their supports are completely inside the interval, and special modified edge wavelets.
Examples of interval wavelets can be found in [143], [35]. These constructions can be carried out so that
the edge wavel ets have the required approximation properties, and they apply to biorthogona as well as
orthonormal wavelets.
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Figurell.10: Quadratic spline functions
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Figurell.11: Dua scaling function and wavel et
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1 Introduction

In earlier chapters we have seen classical constructions of wavelets on the infinite real line. The filter
sequences for scaling functions and wavelets are typically derived through the use of Fourier techniques
and the consideration of certain trigonometric polynomiasand their properties[51]. From auser’s point of
view though, the constructions are not always suitable for straightforward implementation or specialization
to particular cases, such as boundaries.

The purpose of this chapter is to show that very simple techniques exist which allow the construction of
versatile families of scaling functions and wavel ets under very genera circumstances. Some of these con-
structionswill lead towel| studied classical cases, othersto wavel ets custom-designedto certain applications.
None of the techniques, interpolating subdivision [56], average interpolation [62], and lifting [179, 181],
are new, but taken together they result in a straightforward and easy to implement toolkit.

To make the treatment as accessible as possible we will take a very “nuts and bolts”, agorithmic approach.
In particular we will initially ignore many of the mathematical details and introduce the basic techniques
with a sequence of examples. Other sections will be devoted to more formal and rigorous mathematical
descriptions of the underlying principles. On first reading one can skip these sections which are marked
with an asterisk.

All the algorithms can be derived via simple arguments involving nothing more than polynomial interpo-
lation. In fact constraints such as specidization to intervas, boundary conditions, biorthogonality with
respect to aweighted inner product, and irregular samples, are easily incorporated.
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Figure I11.1: Examples of interpolating subdivision. On the left a diagram showing the filling in of “in between”
samples by linear interpolation between neighboring samples. On the right the same idea is applied to higher order
interpolation using two neighborsto either side and the unique cubi ¢ polynomial which interpol atesthese. Thisprocess
isrepeated an infinitum to define the limit function.

We begin with the construction of scaling functions by interpolating subdivision, and average-interpolation.
Later we show how this fits into a general framework and how the lifting scheme can be used to construct
“second generationwavelets.” Finaly wedemonstrate someof thesegeneralizationswith concrete examples
and conclude with a discussion of the properties of these constructions (as far as they are known) and point
out the questions which require further research.

2 Interpolating Subdivision

2.1 Algorithm

To motivate the construction of interpolating scaling functions we begin by considering the problem of
interpolating a sequence of data values. To be concrete, suppose we have the samples { Ao | & € Z} of
some unknown function given at the integers {zo ; = &}. How can we define an extension of these values
to a function defined on the whole real line? Obviously there are many possible approaches. Deslauriers
and Dubuc attacked this problem by defining arecursive procedure for finding the value of an interpolating
function at all dyadic points [56, 57]. We will refer to this as interpolating subdivision. For our purposes
thisis a particularly well suited approach since we are interested in constructions which obey refinement
relations. Aswe will see later these will lead to a particular set of wavelets.

Perhaps the simplest way to set up such an interpolating subdivision schemeisthefollowing. Let { Ao} be
the original samplevalues. Now define a refined sequence of sample values recursively as

Ajir12e = Ajk
Nirr2krr = L/2(Nj 5+ Ajera),

and place the )\, ;. at locations z; x = k277, Or in words, new values are inserted halfway between old
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Figurelll.2: Scaling functionswhich result from interpol ating subdivision Going from Ieft to right the order N of the
subdivisionis 2, 4, 6, and 8.

values by linearly interpolating the two neighboring old values (see the left side of Figure 111.1). It is not
difficult to see that in the limit this will result in a piecewise linear interpolation of the original sample
values. Suppose the initial sample values given to us were actually samples of alinear polynomial. In that
case our subdivision scheme will exactly reproduce that polynomial.

L et usconsider fancier interpol ation schemes. For example, instead of defining the new val ue at the midpoint
between two old values asalinear interpol ation of the neighboring val ueswe can usetwo neighboring values
on either side and define the (unique) cubic polynomial p(z) which interpolates those four values

Nik-1 = p(Tjr-1)
Aje = plajk)
Ajgtr = pajke1)
g2 = Pajkt2)-

The new samplevalue (odd index) will then bethe value that this cubic polynomial takes on at the midpoint,
while al old samples (even index) are preserved

Ait1,2 = Ak
Nitt2k+l = P(Tj412641)-

Figurelll.1 (right side) shows this processin a diagram.

Even though each step in the subdivision involves cubic polynomials the limit function will not be a
polynomia anymore. While we don’t have a sense yet as to what the limit function looks like it is easy
to see that it can reproduce cubic polynomials. Assume that the original sequence of sample vaues came
from some given cubic polynomial. In that case the interpolating polynomial over each set of 4 neighboring
sample values will be the same polynomia and all newly generated samples will be on the original cubic
polynomial, in the limit reproducing it. In general weuse N (N even) samples and build a polynomials of
degree N — 1. We then say that the order of the subdivision schemeis V.

Next we define afunction, which Deslauriers and Dubuc refer to as the fundamental solution, but which we
will refer to as the scaling function: set all Ag equal to zero except for Ago which is set to 1. Now run
the interpolating subdivision ad infinitum. The resulting functionis ¢ (), the scaling function. Figurelll.2
shows the scaling functions which result from the interpolating subdivision of order 2, 4, 6, and 8 (l&ft to
right).

What makes interpolating subdivision so attractive from an implementation point of view is that we only
need a routine which can construct an interpolating polynomia given some number of sample values and
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locations. The new sample vaue is then simply given by the evauation of this polynomial at the new,
refined location. A particularly efficient (and stable) procedure for thisis Neville's algorithm [175, 156].
Notice aso that nothing in the definition of this procedure requires the original samples to be located at
integers. Later we will use this feature to define scaling functions over irregular subdivisions. Interval
boundaries for finite sequences are also easily accommodated. E.g., for the cubic construction described
above we can take 1 sample on the left and 3 on the right at the left boundary of an interval. We will come
back to thisin Section 4.

First we turn to amore formal definition of the interpolating subdivisionin the regular case (z . = k277)
and discuss some of the properties of the scaling functions.

2.2 Formal Description*

The interpolating subdivision scheme can formally be defined as follows. For each group of N = 2D
coefficients {A; k—p4+1,- - s Ajks - - -» Aj kgD }, it iNVOIVES WO StEPS:

1. Construct apolynomial p of degree N — 1 so that

p(xjert) = Mg for =D 4+1<I<D.

2. Calculate one coefficient on the next finer level asthe value of this polynomial at = ;41 2+1

Njrr2ktr = P(Tj11,2641)-

The properties of the resulting scaling function (2 ) are given in the following table.
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1. Compact support: ¢(z) isexactly zero outsidethe interval [— N, N]. This easily follows
from the locality of the subdivision scheme.

2. Interpolation: ¢(z) isinterpolating in the sense that ¢(0) = 1 and ¢(k) = Ofor k& # O.
Thisimmediately follows from the definition.

3. Symmetry: ¢(z)issymmetric. Thisfollows from the symmetry of the construction.

4. Polynomial reproduction: The scaling functionsand itstranslates reproduces polynomials
up to degree N — 1. In other words

kacp(x—k) = 2P for 0< p < N.
k

This can be seen by starting the subdivision scheme with the sequence £? and using the fact
that the subdivision definition insures the reproduction of polynomiasup to degree N — 1.

5. Smoothness: Typicaly ¢ € C* where a = a(N). We know that a(4) < 2 and a(6) <
2.830 (strict bounds). Also, the smoothness increases linearly with N. This fact is much
lesstrivia than the previous ones. We refer to [56, 57].

6. Refinability: Thismeansit satisfies arefinement relation of the form

N
ez) = D hip(2e—1).
=—N

This can be seen as follows. Do one step in the subdivision starting from Ao ; = é5,0. Call
theresult h; = Aq;. Itiseasy to seethat only 2V + 1 coefficients /; are non-zero. Now,
start the subdivision scheme from level 1 with these values A1;. The refinement relation
follows from the fact that this should give the same result as starting from level 0 with the
vaues Ao ;. Also because of interpolation, it follows that 2o = é; 0. We refer to the 2; as
filter coefficients.

We next define the scaling function ; () asthe limit function of the subdivision scheme started on level
jwith \; x = é1.0. A moment’s thought reveals that o, () = ¢(2/z — k). With achange of variablesin
the refinement relation we get
Cik = Zhl—Zk Pit+1,0-
]

With these facts in hand consider some original sequence of sample values A; ;; at level 5. Simply using
linear superposition and starting the subdivision scheme at level j, yieldsalimit function f(z) of theform

J@) = D Ak ein(e).
k
The same limit function f(«) can aso be written as

fl2) = > Njgrieieni(a).
{
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Hat function (N=2) Basis of translated hat functions

Figurelll.3: Anexample functionissampled at a number of locations. The values at these sample pointsare used as
coefficients in theinterpolating scheme of N = 2. The scaling functionof N = 2isthe familiar hat function and the
basisfor the approximation isa set of transated hat functions ¢; (z) = (2« — k).

Equating these two ways of writing f and using the refinement relation to replace ¢; ; with a linear
combination of ¢;41; we get

S o Arnieirni(@) =D Ak Y hicak 041
[ k [

Evaluating both sides at = ;1 . wefinaly arrive at

Ayl = Zhl—Zk Aj k-
%

This equation has the same structure as the usua inverse wavel et transform (synthesis) in case all wavelet
coefficients are set to zero.

In the case of linear subdivision, the filter coefficients are h; = {1/2,1,1/2}. The associated scaling
function is the familiar linear B-spline “hat” function, see Figure 111.3. The cubic case leads to filters
h; ={-1/16,0,9/16,1,9/16,0,—1/16}. The generd expressionis

155 (i = D +1/2)

hairs = (=P (k+1/2)(D+ kYD - k- 1)V

for odd numbered coefficients. The even numbered ones are hy;, = 6y 0.

3 Average-Interpolating Subdivision

3.1 Algorithm

In contrast to the interpolating subdivision scheme of Deslauriers-Dubuc we now consider average-
interpolation as introduced by Donoho [62]. The starting point of interpolating subdivision was a set
of samples of some function. Suppose that instead of samples we are given averages of some unknown
function over intervals

k+1
Aok = /k flz)de.

Siggraph '95 Course Notes: #26 Wavelets



BUILDING YOUR OWN WAVELETS AT HOME 77
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Figure I11.4: Examples of average-interpolation. On the |eft a diagram showing the constant average-interpolation
scheme. Each subinterval getsthe average of a constant function defined by the parent interval. On the right the same
ideais applied to higher order average-interpolation using a neighboring interval on either side. The unique quadratic
polynomial which has the correct averages over one such tripleis used to compute the averages over the subintervals
of themiddleinterval. This processis repeated an infinitumto define the limit function.

Such values might arise from a physica device which does not perform point sampling but integration as
is done, for example, by a CCD cell (to afirst approximation). How can we use such vaues to define a
function whose averages are exactly the measurement values given to us? One obvious answer is to use
these values to define a piecewise constant function which takes on the value Ao, for = € [k, k 4 1]. This
corresponds to the following constant average-interpolation scheme

A2k = Ak

Aj+1,2k+1 = Ajk-

In words, we assign averages to each subinterval (left and right) by setting them to be the same value
as the average for the parent interval. Cascading this procedure ad infinitum we get a function which is
defined everywhere and is piecewise constant. Furthermore its averages over intervals [k, £ + 1] match
the observed averages. The disadvantage of this simple scheme is that the limit function is not smooth.
In order to understand how to increase the smoothness of such a reconstruction we again define a genera
average-interpolating procedure.

One way to think about the previous scheme is to describe it as follows. We assume that the (unknown)
function we are dealing with is a constant polynomial over the interval [k 277, (k + 1)277]. The values of
Aj+1.26 and A ;41 2541 then follow as the averages of this polynomial over the respective subintervals. The
diagram on the left side of Figure I11.4 illustrates this scheme.

Just as before we can extend thisideato higher order polynomias. The next natural choiceisquadratic. For
agiven interval consider the intervasto itsleft and right. Define the (unique) quadratic polynomial p(z )
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Figurelll.5: Scaling functionswhich result fromaverageinterpolation. Goingfrom left toright ordersof therespective
subdivision schemeswere 1, 3, 5, and 7.

such that

k277
Ajk—1 = / p(z)dz
(k—1)2-

)

(k+1) 27

N = / p(z)dz
k2—J

(k42) 270
Ajkl = / p(z) de.
(k4+1) 2

Now compute A; 11 2r ad A ;41 2x11 8Sthe average of this polynomial over the subintervals of [k 277, (k+
1)277]

(2k41)2—31
A1k = 2 p(x)dx

k2

(k+1)27
Ajf12k41 = 2/(2k+1)2_]_1p(90)d90-

FigureIl1.4 (right side) shows this procedure.

It is not immediately clear what the limit function of this process will look like, but it easy to see that the
procedure will reproduce quadratic polynomials. Assumethat theinitial averages { Ao . } were averages of a
given quadratic polynomial. Inthat case the uniquepolynomial p( ) which hasthe prescribed averages over
each triple of intervals will aways be that same polynomial which gave riseto the initial set of averages.
Sincetheinterval sizes go to zero and the averages over the intervals approach the value of the underlying
function in the limit the origina quadratic polynomial will be reproduced.

We can now define the scaling function exactly the same way as in the interpolating subdivision case. In
general we use N intervals (V odd) to construct apolynomial of degree ¥ — 1. Again N isthe order of the
subdivision scheme. Figurelll.5 showsthe scaling functions of order 1, 3, 5, and 7 (l&ft to right).

Just as the earlier interpolating subdivision process this scheme aso has the virtue that it is very easy to
implement. The conditions on the integrals of the polynomial result in an easily solvable linear system
relating the coefficients of p tothe A; ;.. Initssimplest form (we will see more general versionslater on) we
can streamline thiscomputation even further by taking advantage of thefact that theintegral of apolynomial
isitself another polynomial. This leads to another interpolation problem

0 = P(zjk-1)
Ak = Plajk)
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Aik+ Ak = Pljren)
Aik+ Akt A2 = P2 k42)-

Given such apolynomial P thefiner averages become
Aivrze = 2(P(xjp12k41) = Ajk)
Aj+r2k+1 = 2(Aj 41— Plajr1,2641))-

This computation, just like the earlier interpolating subdivision, can be implemented in a stable and very
efficient way with a ssmple Neville interpolation a gorithm.

Notice again how we have not assumed that the z; ; are regular and generalizations to non-even sized
intervals are possible without fundamental changes. Asin the earlier case boundaries are easily absorbed
by taking two intervalsto theright at the left boundary, for example. We can also alow weighted averages.
All of these generalizations will be discussed in more detail in Section 4.

In the next section we again take a more formal look at these ideas in the regular case.

3.2 Formal Description*

The average-interpolating subdivision scheme of order N can be defined as follows. For each group of
N = 2D + 1 coefficients {\; r—p, ..., Aj ks ..., Aj et }, it iNVOIVES twO Steps:

1. Construct apolynomial p of degree N — 1 so that

IN

(k+1+1) 2~
/(k.H) - p(w) dx = /\j,k-l—l for — D<ILD.

2. Cdculate two coefficients on the next finer level as

(2k+1)2-7-1 (k+1)2—

/\j-|—1,2k = 2/ p(w) dz and /\j-|—1,2k-|—l =2 p(w) dz.
k2=s (2k+1)2—3-1

The properties of the scaling function are given in the following table, see [62].

Siggraph '95 Course Notes: #26 Wavelets



80

WIM SWELDENS, PETER SCHRODER

Next consider some original sequence of averages \; ;. at level 7. Simply using linear superposition and

. Compact support: ¢(z) is exactly zero outside the interval [-N + 1, N]. This easily

follows from the locality of the subdivision scheme.

. Average-interpolation: ¢(z) isaverage-interpolating in the sense that

k+1
/k p(z)de = b;0.

Thisimmediately follows from the definition.

. Symmetry: ¢(x) is symmetric around = = 1/2. This follows from the symmetry of the

construction.

. Polynomial reproduction: «(z) reproduces polynomials up to degree N — 1. In other

words

Zl/(p—l— 1) ((k4 1Pt — kPt oz — k) = 2P for 0K p < N.
k

This can be seen by starting the scheme with this particular coefficient sequence and using
the fact that the subdivision reproduces polynomialsup to degree N — 1.

. Smoothness: ¢(z) is continuous of order R, with R = R(N) > 0. One can show

that R(3) > .678, R(5) > 1.272, R(7) > 1.826, R(9) > 2.354, and asymptotically
R(N) ~ .2075N [62].

. Refinability: ¢(«) satisfies arefinement relation of the form

N
elz) = D hp(2e-1).

[=—N+1

This follows from similar reasoning as in the interpolating case starting from A; o = 65 0.
The construction then |mpll%that ho=h1=1 and hy = —h21_|_1 ifl 75 0.

starting the subdivision scheme at level j, yieldsalimit function f(z) of theform

f(@) = Y Nkwir(a).
k

The same limit function f(«) can aso be written as

Equating these two ways of writing f and using the refinement relation to replace ¢; ; with a linear

fl2) = > Njgrieieni(a).
{

combination of ;4 1; we again get

This equation has the same structure as the usua inverse wavel et transform (synthesis) in case all wavelet

Ayl = Zhl—Zk Aj k-
%

coefficients are set to zero.
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/ boundary / boundary : / boundary

k=l k=2 k=3 k=4 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3
unaffected by boundary unaffected by boundary affected by boundary

Figure 111.6: Behavior of the cubic interpolating subdivision near the boundary. The midpoint samples between
k =2 3and k = 1,2 are unaffected by the boundary. When attempting to compute the midpoint sample for the
interval ¥ = 0,1 we must modify the procedure since there is no neighbor to the left for the cubic interpolation
problem. Instead we choose 3 neighbors to the right. Note how this results in the same cubic polynomial as used in
the definition of the midpoint value & = 1, 2. The procedure clearly preserves the cubic reconstruction property even
at theinterval boundary and isthus the natural choice for the boundary modification.

boundary boundary boundary
k=l k=2 k=3 k=0 k=1 k=2 o k=0 k=1 k=2 o
unaffected by boundary unaffected by boundary affected by boundary

Figure 111.7: Behavior of the quadratic average-interpolation process near the boundary. The averages for the
subintervalsk = 2and k = 1 are unaffected. When attempting to compute the finer averages for the left most interval
the procedure needs to be modified since no further average to the left of & = 0 exists for the average-interpolation
problem. Instead we use 2 intervalstotheright of £ = 0, effectively reusing the same average-interpol ating polynomial
congtructed for thesubinterval averageson k = 1. Onceagainitisimmediately clear that thisisthenatural modification
to the process near the boundary, since it insuresthat the crucial quadratic reproduction property is preserved.

4 Generalizations

So far we have been discussing scaling functions defined on thereal linewith samplelocationsz ; , = k277.
Thishasthe nice feature that al scaling functions are trand ates and dilates of onefixed function. However,
the true power of subdivision schemes lies in the fact that they can also be used in much more genera
settings. In particular we are interested in the following cases:

1. Interval constructions: When working with finite datait is desirableto have basis functions adapted
tolifeon aninterval. Thisway no half solutionssuch as zero padding, periodization, or reflection are
needed. We point out that many wavelet constructions on the interval already exist, see [4, 36, 24],
but we would like to use the subdivision schemes of the previous sections since they lead to easy
implementations.
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2. Weighted inner products. Often one needs a basis adapted to a weighted inner product instead of
the regular L2 inner product. A weighted inner product of two functions f and g is defined as

(f.9) = [w@) fa)gle)da.

where w(z) is some positive function. Weighted wavelets are extremely useful in the solution of
boundary value ODEs, see [112, 180]. Also, aswewill see later, they are useful in the approximation
of functionswith singularities.

3. Irregular samples: In many practical applications, the samples do not necessarily live on aregular
grid. Resampling is awkward. A basis adapted to the irregular grid is desired.

The exciting aspect of subdivision schemesisthat they adapt in astraightforward way to these settings. Let
us discussthisin more detail.

Both of the subdivision schemes we discussed assemble N coefficients A; ;. in each step. These uniquely
define a polynomial p of degree N — 1. This polynomid is then used to generate one (interpolating case)
or two (average-interpolation case) new coefficients A;1;. Each time the new coefficients are located in
the middle of the N old coefficients. When working on an interval the same principle can be used as long
aswe are sufficiently far from the boundary. Closeto the boundary we need to adapt this scheme. Consider
the case where one wants to generate a new coefficient A; 1 ; but is unableto find old samples A; ;. equally
spaced to the left or right of the new sample, simply because they are not available. The basicideaisthen
to choose, from the set of available samples A; ., those N which are closest to the new coefficient A, 1.

To be concrete, taketheinterval [0, 1]. In theinterpolating case we have 2/ + 1 coefficients ) ;. at locations
k277 for 0 < k < 27. In the average-interpol ation case we have 27 coefficients A; . corresponding to the
intervals [k 277, (k 4+ 1) 277] for 0 < k < 2/. Now consider the interpolating case as an example. The
left most coefficient \;11.0issimply A; . The next one, A;41 1 isfound by constructing the interpolating
polynomial to the points (z; 5, A; %) for 0 < k < N and evaluating it at z;41,1. For A;41 2 we evauate the
same polynomial p at z;412. Similar constructions work for the other N boundary coefficients, the right
side, and the average-interpolation case. Figures 111.6 and 111.7 show thisidea for a concrete example in
the interpolating and average-interpolation case. Figure 111.8 shows the scaling functions affected by the
boundary for both the interpol ating and average-interpolation case.

Next, take the case of aweighted inner product. In the interpolating case, nothing changes. In the average-
interpolation case, the only thing we need to do isto replace the integrals with weighted integrals. We now
construct a polynomial p of degree N — 1 so that

Tj k4i41
/ w(w)p(w) dx = |Ij,k+l| /\j,k-l—l for — DI D,

J,k+1

where
Ty k+1
4] = / w(z) de.

7,k
Then we cal cul ate two coefficients on the next finer level as
Ly k+1

Tj11,2k41
Aj+1.2k = 1/|fj+1,2k|/ w(z)p(r)de and Ajy126+1 = 1/ 1112641 w(z) p(z) dz.
l’Lk

Ty+12k+1
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1.0+ 1.0+ 1.0+ 1.0+
0.0+ 0.0+ 0.0+ 0.0
-1.0 -1.0 -1.0 -1.0
104 104 104 104
00 \/— 0.0-] . — 00 \M 00 ¢

-1.0+ -1.0+ -1.0+ -1.0+

Figurel11.8: Examples of scaling functions affected by a boundary. On top the scaling function of quadratic (N = 3)
average-interpolationat j = 3and £ = 0, 1, 2, 3. On the bottom the scaling functions of cubic (V = 4) interpolation
aj=3andk = 0,1, 2 3. Note how the boundary scaling functions are still interpolating.

Everything else remains the same, except the fact that the polynomial problem cannot be recast into a
Neville algorithm any longer since the integral of a polynomial times the weight function is not necessarily
apolynomial. This construction of weighted wavelets using average-interpolation was first done in [180].

The case of irregular samples can also be accommodated by observing that neither of the subdivision
schemes requires samples on a regular grid. We can take an arbitrarily spaced set of points z; ; with
Tip12c = @5 and 25 < x;r41. In the interpolating case a coefficient A, livesat z; 5, while in the
average-interpolation case a coefficient A; ;. is associated with the interval [z 1, 2;x+1]. The subdivision
schemes can now be applied in a straightforward manner.

Obviously any combinations of these three cases can a so be accommodated.

5 Multiresolution Analysis

5.1 Introduction

In the above sections we have discussed two subdivision schemesto generate scaling functions and pointed
out how their definitionsleft plenty of roomfor generalizations. Theresulting modificationstothea gorithms
are straightforward. We have yet to introduce the wavelets that go with these scaling functions. In order to
do sowe need adlightly moreformal framework in which to embed the above scaling function constructions.
In particular we need a framework which alows us to carry over al the generalizations described above.
This general framework we refer to as “ second generation wavelets.” The ambition of second generation
wavelets isto generalize the construction of wavelets and scaling functionsto intervals, bounded domains,
curves and surfaces, weights, irregular samples, etc. Inthese settingstranslation and dilation cannot be used
any more. Second generation wavelets rely on the fact that translation and dilation are not fundamental to
obtain wavel ets with desirable properties such as localization in space and frequency and fast transforms.

We begin with a discussion of multiresolution anaysis before showing how second generation wavel ets can
be constructed with the lifting scheme.
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5.2 Generalized Refinement Relations

In classical constructions, scaling functions are defined as the dyadic translates and dilates of one fixed
scaling function ¢( ). |.e, the classical scaling functions satisfy arefinement relation of the form

©ik = Zhl—Zk Pit1,l-
]

However, in the generalizati ons discussed in the previous section, the scaling functions constructed through
subdivision are not necessarily translates and dilates of one fixed function. However they ill satisfy
refinement relations which we can find as follows. Start the subdivision on level j with A, = éo. We
know that the subdivision scheme convergesto ¢; . Now do only one step of the subdivision scheme. Call
the resulting coefficients ;. ; = A;41,. Only afinite number are non zero. Since starting the subdivision
schemeat level j + 1withthe{%;; | [} coefficients aso converges to ¢; i, we have that

Cik = D hjkg it
l
The coefficients of the refinement relation are thus different for each scaling function.

5.3 Formal Description*

Before we begin, let usfix notation. We will always assumethe interval [0, 1], aweight function w(z ), and
possibly irregular samples z; .. The coarsest level will be denoted j = 0. Theindex k ranges from 0 to 2/
in the interpolation case and from 0to 2/ — 1 in the average-interpolation case. In the refinement relations,
0<k < 2(4+1)while0 < < 27+1(+1).

We begin with the definition of multiresolution analysisin thisgeneral context. A multiresolution anaysis
isaset of closed subspaces V; C L?(]0, 1]) with j € N, which are defined as

V; = span{e; |0< k< 2(+1)}.

It followsfrom the refinement relationsthat the spaces are nested, V; C V;41. Werequirethat every function
of finite energy can be approximated arbitrarily close with scaling functions, or

|J V;isdenseinL2.
i>0

In other words, projection operators P; : L2(X ) — V; exist, so that for every f ¢ L2
I|m P]‘f = f.
7—00

The question now is: how do we find these projection operators P;? In case the ¢; ;. form an orthonormal
basisfor V;, the answer would be easy. We et

Pif =3 (fioik) @ik

k

i.e., the coefficients of the projection of f can be found by taking inner products against the basis functions
themselves. However, in generd, it is very hard to construct orthonormal scaling functions. Instead we
consider amoregeneral, biorthogonal setting. In that setting we have a second set of scaling functions, dual
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scaling functions ¢; 1., so that we can write

P f = Z<f795j,k> Piks

k

i.e., we need a second set of functions such that when we take inner products of f against them, they yield
exactly the right coefficients with respect to ¢; ..

How can we find these dual scaling functions? Their defining property follows from the requirement that
P; beaprojection operétor, i.e., P; P; = P;. Using somearbitrary test function f and substituting P; f into
P; we find that scaling functions and dual scaling functions have to be biorthogonal in the sense that

(@iks Pikr ) = Ok

For normalization purposes, we aways | et
l ~
| w@) @ty = 1 (1)

54 Examples

We aready encountered dua functionsin both of the subdivision schemes. Indeed, average-interpolation
subdivision relies on the fact that the A; ;. are local averages, i.e., inner products with box functions. If we
let \;x = (f,@;x),according to (1) thedua functionsare (cf. Section 4)

ik = Xp. /il

Note that in the canonical case with w(z) = 1 the dual functions are box functions of height inversely
proportional to the width of their support.

In the interpolating case, the A ; ;. were actual evaluations of the function. Thisimpliesthat

ik(x) = 8(x —2jk),

sincetaking inner products with (formal) duals, which are Dirac pul ses, amounts to eval uating the function
at the location where the pulseis located.

5.5 Polynomial Reproduction

With the aboveideas about dual scaling functionsin the back of our mindswe can now better appreciate the
motivation behind the earlier subdivision schemes. It is given by the following: assumethat N coefficients
A; % localy are the coefficients of a polynomial of degree N — 1, then locally generate A ;1 coefficients
so that they are the coefficients of the same polynomia. Thisimplies that if all the coefficients A;, » on
level jo are the coefficients of one fixed polynomial of degree lessthan N, i.e., the function we are trying
to synthesize actually is a polynomial, then the subdivision scheme will exactly reproduce this polynomial.
In other words, any polynomial of degree lessthan N can be reproduced by the scaling functions on each
level, or in the language of projection operators

Pia? = 2P for 0O<p< N.
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We then say that the order of the multiresolutionanalysisis N.

Obvioudly, prima and dual scaling functions are interchangeable and we can define a projection operator
with respect to the dual scaling functions by taking inner products with the primal scaling functions

Pi=> (. 0ik) @ik
k

Thisleadsto the observation that thedual scaling functionsformally also generate amultiresolutionanalysis.
We denote the order of the dual multiresolution analysisby N. Any polynomial of degree lessthan N is
reproduced by the dua projection operator. Alternatively we can establish a connection with the primal
projection P; by exploiting the biorthogonality condition which states for f arbitrary

(2P, Pif) = S (@) (2P i) = (Pra f) = (Piaa®, f) = (2, Piyaf) for 0<p < .
k

Or in other words, the P; preserve up to N moments. In theinterpolating case N = 0,i.e, no momentsare
preserved, whilein the average-interpolation case N = 1, i.e, thetota integrd is preserved.

5.6 Subdivision

Let us now reconsider subdivision schemes (both interpolation and average-interpolation). Given the

coefficients A, . of afunction f € V;,, with

=" Nk @iok Where Njor = (f,&jok ) s
k

a subdivision scheme allows us to synthesize the function f. This is done by rewriting the same f (an
element of V), asan element of V; (j > jo)

F = Nwosn With X = ([, 3)
%
where we know that 4
lim Ao = f(R27).

In other words the value of the function f at any point can be found as a limit on the coefficients in the
subdivision scheme.

Similar to the regular case, the subdivision scheme can aso be written as afilter relation,

N1l = Y hiki Ak
k

5.7 Coarsening

We have now seen that subdivision uses the primal scaling functions to allow usto go to finer resolutions.
How do we go to coarser resolutions? To answer thiswe need to have arefinement relation for dual scaling
functions. Aswe mentioned earlier, the dual scaling functions also generate a multiresolution analysis and
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Figure 111.9: Successively coarser piecewise linear approximations arrived at by subsampling and interpolating
subdivisionwith N = 2.

thus satisfy adual refinement relation

Gik = > ki Bitr1-
[

Assume now that we are given aprojection P, f and that we want to find the coarser projections P; f with
J < n. Recal that the definition of P; requires inner products with dua functions, ;. = (f,&;x) -
Substituting the dual refinement relation in place of ¢, , and observing that ( f, ?;+1:) = Aj41,; Weget

Nk = D hga Mg (2)
[

In other wordsthe dual scaling function refinement relation tellsus how to filter scaling function coefficients
when going from afiner to acoarser level.

5.8 Examples

In the interpolating case it is extremely easy to find the dual scaling function refinement relation. Since the
dual scaling functions are Dirac distributionswe simply get

Aik = Ajr1.2k-
The filter sequence ;L]‘7k7l isequal to 6;_p;. Anexample of coarsening for N = 2isgivenin Figurelll.9.

In the average-interpolation case the dual functions are box functions, normalized so that their (weighted)
integral is one. The refinement relation thusis

Gik = Wjrr2el/I Lkl Gjrr2r + [Ljra2ns1l/ k] @j41,2042-
It follows that coarser levels are cal culated as pairwise weighted averages

ik = Wjgv2el /1L el Ajva2e + 1w 2642l /1 k] A, 2641

With these relations, we can now build linear approximation operators. Theideagoesasfollows: start with
an approximationon level » (the origina coefficients), find acoarser approximation P; with j < n, next use
P; to start the cascade al gorithm and cascade out to level » again. By doingthisforj = n—-1,n—-2,n-3, ..,
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Figure 111.10: Wavelets with one vanishing moment associated with average interpolation. Going from left to right
are the wavel ets which correspond to dual wavelets of 1, 3, 5, and 7 vanishing moments.
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Figure 111.11: Wavdets with two vanishing moments associated with interpolating subdivision. Going from left to
right are the wavel ets which correspond to dual waveets of 2, 4, 6, and 8 vanishing moments.

we can find smoother and smoother approximationsto the origina samples. We will come back to this|ater.

Where are we now? We understand how to do subdivision with both the interpolating and average-
interpolating scheme of order N (even and odd respectively). We have also seen the idea of the dual
scaling functions, which are Dirac distributions (interpolating), and properly scaled box functions (average-
interpolating). These give us the dual scaling function refinement relations. Given these relations we also
understand how to go to coarser approximations from a finer approximation. This is the moment when
wavelets will finally enter the scene.

6 Second Generation Wavelets

So far the discussion was only concerned with subdivision schemes and how they can be used to build
scaling functions. In this section we introduce wavelets. Typically wavelets form a basis for the difference
of two consecutive approximations. In the next section we will show how they can be constructed with the
lifting scheme, agenera technique to build biorthogona wavel ets and scaling functions.

6.1 Introducing Wavelets

To hone our intuition some more we begin with wavelets in the classical, i.e., trandation and dilation,
setting, and consider the interpolating case with linear (*hat”) scaling functions.

Assume we are given regular point samples of afunction {\,, ;. | £} where A, ., = f(k27"). By using
the linear interpolating scheme (N = 2), we can build a piecewise linear approximationto f(z) asseenin
Section 2. Let ¢( ) bethelinear Hat function, see Figurell1.3. The piecewise linear approximationto f(z)
isthen

271
P, f(z) = Z Ak (2 — k).
k=0
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subsample

cascade one level W

]

j+1

‘ \ :

Figurelll.12: Ontheleft we begin with the piecewise linear approximation at level j + 1. After subsamplingwearrive
at the piecewise linear approximation at level j. Cascading the latter out again to j + 1 we can take the difference
with the original to quantify the detail lost (right side). This detail can itself be written as a linear combination of hat
functionsat odd indices. These are actualy the wavel ets.

By definition £, f(z ) interpolates f(z) in pointsof theformz = k27",

Let us build coarser approximations. Since the dual scaling function is a Dirac distribution (ﬁj,k,z = 61_21)
thisis done by leaving out every other sample, i.e., subsampling the even samples and constructing a new
sequence A,_1% With 0 < k£ < 2"~1 and An—1k = An2k (Se€ the discussion in the previous section).
By connecting the subsampled sequence again with piecewise linears, we obtain an approximation which
interpolates f(z) in pointsx = k2"~ (see Figure 111.9). Obviously, we can keep doing this. The coarser
approximations can be written as (j < n),

27

27
Pif(z) = > Npo(2z—k) = > ANjreir
k=0 =0

where ¢, 1. = ¢(2/x — k). Thefunction P; f can be constructed trivially since the only operationsinvolved
are subsampling and piecewise linear interpolation.

As the approximations become coarser (; becomes smaller) more and more information is lost. We can
ask ourselves: isthere any way to capture this information? In other words, is there any way to express
the difference between two successive approximations P; and P;;1? Thisis precisely where wavelets will
enter the stage.

L et the coefficients v; ., represent the degrees of freedom of the difference between P; and P; 1 and refer
to them as wavelet coefficients. Since P; uses the even subsamples from P;, 1, the information lost is
essentially contained in the odd samples. The wavelet coefficients can be found as follows. Start from
P;+1 and subsampleto find ;. By the definition of subsampling and of the scaling function coefficients we
know that /\j-|—1,2k = P]‘_|_1 f($j+172k) = P]‘ f($j7k) = /\]‘Jg. Now cascade P]‘ f back out one levd to find
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P; f($j+172m_|_1) and take the difference between P f and P; fatzii12ms1
Vim = (Pipaf = B [)(@j412m41) = Ajgrom+1 — 1/2(Njm + Ajmta)-

The wavelet coefficient is thus the difference between ;412,41 and the average of its two neighbors
Ajm and Aj 1. In other words, it encodes the amount by which the signal locally fails to be linear, see
Figure I11.12. Thisis reflected in the computation of the wavelet coefficients from the scaling function
coefficients: average two neighboring scaling function coefficients—one step in the subdivision, or the
linear “guess’—and subtract from the actual sample value.

The difference between two linear approximation now can be written as

201
P f(z) = P f(z) = D Vim Pitl2m+1-

m=0
Iterating this we find the wavel et series of the origina sequence as

n—127-1
P, f($) = b f($) + Z Z Yim ¢j,m($)7 (3)
7=0m=0

where ¥, ,,(z) = ¥(2z —m) and ¥(z) = p(2z — 1). This wavelet built from interpolating scaling
functions was first introduced in [63].

6.2 Formal Description*

In this section, we give the formal definition of wavelets. We immediately do thisin the second generation
setting, i.e., on an interval, with aweight function and possibly irregular samples.

Since wavel ets provide a basisin which to represent the difference between two successive approximations
P41 f — P; f wedefine the closed subspaces W; (; > 0) so that

Vier = Vi@ W, 4

The difference in dimension between V; 11 and V; is always 2/, thus the basis of W; should consist of 2/
wavelets. We denotethem as +; ,,, where 0 < m < 2. Since W; C V;11, awavelet v; ,,, can bewritten as
alinear combination of scaling functions ¢ ;4 1;. Thisleadsto the refinement relation

Gjm = D Gm i Piri (5)
I
Since .
V., = Vo W,
7=0
we canwrite P, f as
n—127-1

Pof = Pof+> > Yim $im:

=0 m=0
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and by passing to the limit the wavelet expansion of afunction f can be written as

oo 27-1

F=Pof+3 " Vi bjm- (6)

=0 m=0

The choice of W, as a complementary space is not arbitrary, but in fact is determined by the dua scaling
functions. Indeed if the wavelets represent the difference P;;1 — P; they depend on how the coarser
approximation P; was calculated from the finer P;1, which is precisely determined by the dual scaling
functions (see Section 5). Since P; V;11 = V;, it follows from (4) that P; W; = {0}. In other words, the
dual scaling functions and wavelets are orthogonal, or

(Vjm, Pik) = 0.

Next questionis: how do we find the wavelet coefficients in the expansion (6)? Theoretically these again
are defined asinner products with dual wavelets,

Yim = <fvlzj,m>7

which requires us to understand the dual wavelets. If the order of the multiresolution analysisis N, and the
scaling functions reproduce polynomiasup to degree N — 1, the dual wavelets have N vanishing moments
since they are required to be orthogonal to the primal scaling functions, which reproduce polynomials of
degree < N. Similarly the primal wavelet will have N vanishing moments. We saw earlier that that is
the same as observing that the projectors P; preserved N moments. Indeed, if the difference between
two projectionsis encoded by the wavel ets and the projectors preserve some number of moments then the
wavelets must have exactly that many vanishing moments.

7 ThelLifting Scheme

So far, we have seen an example of wavel ets and have given the definition. In this section we introduce the
lifting scheme[179, 181] a general technique for constructing biorthogona second generation wavelets. In
fact it isso general, that even the subdivision schemes we studied earlier can be seen as aspecial case of it.

The wavelets we constructed in the example in the Section 6.1 are not very powerful, and we start out by
giving an example which shows how to improve their properties with the help of the lifting scheme.

7.1 Liftingand Interpolation: An Example

The problem with the wavelets of the previous section lies in the fact that the coarser approximations are
simply constructed by subsampling thefiner approximations. Thisleadsto horriblealiasing effects. Imagine
coefficientsof 1,0,1,0,...,1atlevel j + 1. Thesewould resultinthesequence1,1,1,...,1at level 5. Or
think of what would happenif the original signal were noisy. What we would like is some smoothing before
we subsample the signal. Said another way, we want to preserve average properties of the approximation
when going from level j + 1tolevel j. Preserving literaly the average simply means that the integrals of
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scaling functions at level j old wavelets

scaling functions at level j+1

combine old wavelet with two scaling
functions at level j to form new wavelet

Figure I11.13: On the left are some of the hat scaling functions when using pure subsampling. In the middle some of
the associated wavel et basis functions, which are ssimply the odd numbered scaling functionsfromleve j + 1. Their
properties can be improved by lifting. On the right we build a new wavelet from the old one by adding a properly
chosen multiple of two neighboring scaling functions from level j to them. The resulting wavel ets (two neighboring
ones are shown in the lower right) have a vanishing integral .

P41 fand P; f haveto be equal, or

/P]Hf /Pf

Recall that this correspondsto N = 1. Conversely, sincethe wavel ets are defined as the difference between
two successive levels, they should have avanishing integral, i.e., N should be at least 1. Consequently we
cannot simply omit the odd samples in the coarser approximation, but they must somehow contribute as
well.

This can be achieved by first constructing a new wavelet whose integral vanishes. The wavelet we have so
far does not havethisproperty, as [ ¢, ., = [ ¥;4+1,26+1 = 2-7~1, Thebasicideaof thelifting schemeisto
take an old wavelet and build a new, more performant one by adding in scaling functions of the same level,
as opposed to writing awavel et as alinear combination of scaling functions on thefiner level asin (5). We
thus propose a new wavelet of the following form, see Figure 111.13,

Pz) = o(2e —1) = 1/4p(x) - 1/4p(z - 1).
The coefficients are chosen such that the wavelet is symmetric and has a vanishing integral.

As we mentioned before, the wavelet and dua scaling function are orthogonal. If we change the wavelet,
also the dua scaling function and thus the computation of coarser approximations must change. We want
to formally keep the expansion (3), but with thisnew definition of > and thus a different meaning of P;. To
find the new coarse level coefficients A ; ;, consider the following equation

27+1 27-1
Z Nj+1l Pl = Z Ajk ik + Z Vim Vjm-
=0 m=0

By filling in the definition of the new wavelet and evaluating |eft and right hand side at = = k277 wefind
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that
Nik = Nk + /87 + L/4v; k-1

This corresponds to the definition of the new wavelet. Since the new wavelet is constructed from the old
wavelet by adding contributionsfrom neighboring scaling functions of —1/4 the properly adjusted scaling
function coefficients get contributions of +1/4 from neighboring old wavelets.

A coarser approximation is now found as follows: first calculatethe; ,,, asthefailureto belinear, then use
these wavel et coefficients to find the coarser A; ;. By applying this procedure recursively, we find al +; ,,,
values. Thisis precisely the fast wavelet transform. We are assured that the integral of the approximations
is preserved, since the integrals of al the wavelets in the sum do not make any contribution. Alternatively
we can interpret this as some amount of smoothing before the subsampling.

Notes:

1. Because of symmetry not only theintegral of the wavelet is zero, but also its first moment,

/amb(w) dz = 0.

Thus also the first moment of the approximations is preserved. In fact, as pointed out in [181]
the wavelet we just constructed is precisely the (2, 2) biorthogona wavelet of Cohen-Daubechies-
Feauveau [33]. If so needed, one can use more neighboring scaling functions in the lifting of the
wavelets to assure preservation of higher moments.

2. One advantage of the lifting scheme is that one never has to explicitly form the filters needed to
smooththe A ;41 values before subsampling. Consequently, the wavel et transform can be computed
much faster and the whole computation can be done in place. The true power of the lifting scheme,
however, liesin thefact that the same construction can also be used in the case of second generation
wavelets. We will come back to thisin alater section.

3. Actually the easiest choicefor thecoefficientswould havebeen A; . = A4 10k and ;= Ajp1,2m 41
Thischoiceis caled the Lazy wavelet transform [181]. The name Lazy comes from the fact that this
transform doesn’t really do anything but subsampling the odd samples. We only mention here that
any interpolating subdivision scheme can be seen as the result of applying dua lifting to the Lazy
wavelet.

4. Another example of the power of lifting is that the inverse transform can be derived immediately.
We simply replace all additions (resp. subtractions) in the forward transform by subtractions (resp.
additions).

7.2 Lifting: Formal Description*

The subdivision schemes mentioned above yield a set of biorthogonal scaling functions. In a classical
(tranglation and dilation) setting, the wavel ets can then easily be found through the connection with quadra-
ture mirror filters. Typically one chooses g, = (—1)* h1_,. In the second generation case, wavelets can
not be found this easily. The lifting scheme provides an answer to this question.
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The basic idea, which inspired the name, is to start from a simple or trivial multiresolution analysis and
build a new, more performant one. Thisis done by leaving the scaling function untouched. A new wavelet
;. 1S built by taking the old wavel et ¢fm and adding on linear combinations of scaling functions on the
same level (and not afiner level asin the refinement relation). Thisresultsin

O
Gim = U0 = Sikm ik
k

As we dready mentioned changing the wavelet affects the dual scaling function. The new dua scaling
function isgiven by

~ O~ ~
Gik = DBk Birri+ Y Sikm Liims
[ m

where ﬁfw are the coefficients of the refinement relation of the dual scaling function before lifting. The
prima scaling function remains the same after lifting. The dua wavelet changes, but it still obeys its old
refinement relation, but now with respect to a new dual scaling function.

A variant of thelifting scheme exists, the dual lifting scheme, in which one leaves the dua scaling function
untouched, but builds a new dua wavelet and thus a new primal scaling function. The new dual wavelet is
given by N N

Gim = U0 = ik ik
7.3 Liftingand Interpolation: Formal description

In this section we discuss how to use the lifting scheme to construct wavel ets in the interpolating case. Let
us start out by making the following observation concerning the filters of an interpolating scaling function
¢;.%. BY filling in the refinement relation we see that

bk = ein(ip) = Do hjri it (@ieraw) = hjgan.
]
Thisimpliesthat we can write the refinement relation as
Pik = Pj+12k + Z hj k. 2m+1 Pj41,2m41-
Next, just asin theclassical case, we start with an approximation P;1 f and try to build acoarser one P; f.
First we perform simple subsampling, A; . = A;41.2x, whichisfollowed by one step of subdivision of P;

Pif =D Xik®ik = 2 Aig1ok @412k + 2 O Ajk Bk 2m 41 Pit12m i1,
k k L m

using therefinement relation. Thisexpressionimpliesthat thedifference P;;1 — P; consistsonly of functions
of the form ;41 2,,,+1. Thus the wavelets are given by

Vim = ©jt12m+1-
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Thewavelet coefficients can be found by simply identifying components,

Viem = Nitr2m — O hik2me1 Ajk-
k

It is not hard to understand that these wavelets form a space complementing V; in V1. They essen-
tialy “capture” the odd samples of V;.1, while V; captures the even samples. To see that the ; ,,, are
orthogonal to the ¢, »(z) = 6(x — z; ;) isequaly easy. It follows from the interpolation properties since
Pi+12m+1(7jk) = 0.

As we mentioned before, this multiresolution analysis suffers from the fact that the integral of the approxi-
mations is hot preserved which can lead to diasing. In other words the primal wavelet does not have even
one vanishing moment (]\7 = 0). Indeed, it is simply a scaling function which has a non zero integral.
However a necessary (but not sufficient) condition for the wavelets to form a stable basis, isthat V is at
least one. Thelifting scheme proposes a new wavelet of the form

Vim = ©j+1.2m41 — Ajm ©jm — Bjm @jm+1-

In other words, the new wavelet will be composed of the old wavelet, which itsalf isjust a scaling function,
and itsimmediate scaling function neighbors at level j (seethe examplein Figure I11.13). Here we choose
the constants A4; ,,, and B; ,,, such that

1
[ vt vsn(erde = 0ad [ e = 0
To find the new A; 5, consider the following equation
2041 2/-1
Z ALl i1l = Z’\J,k ikt Z Viim Vim-
1=0 k=0 m=0

By filling in the definition of the new, lifted wavelet and evaluating left and right hand side &t « ; ;, we find
that

Aik = Njr2e + Ajk vk + Bik-17) k-1

Note: Asintheregular case, an interpolating subdivision scheme can be seen asaresult of the dual lifting
scheme applied to the so-called Lazy wavelet [179].

7.4 Waveletsand Average-Interpolation: An Example

In this section we give an example that shows how the lifting scheme can be used to construct wavelets
in the average-interpolation case. Let usfirst consider the simplest case of average-interpolation, namely
piecewise constant approximation (N = 1) in the classical translation and dilation case.

We can now write an approximation on level j as
2-1

r) = ) Ak wik(e)
k=0
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Figurelll.14: On theleft we begin with the piecewise constant approximation et level j + 1. After averagingwearrive
at the piecewise constant approximation at level ;. Cascading the latter out againto j + 1 we can take the difference
with the origina to quantify the detail lost (right side). This detail can be written as a linear combination of Haar

wavel ets.

where ;. = ¢(2z — k) and p(z) = X[o,1)» thefunctionwhichis1 on [0, 1) and zero elsewhere. The dual
functionsare given by @, . = 2/ ¢(2/x — k) (see Section 5). Thisimplies (see Equation 2) that a coarser

approximation is found by
ik = Y2(Njs12k + Ajr1,2k41)-

(7)

Let us next try to find the wavelet. We use the same idea as in the previous section and simply calculate

P;1 — P;, seeFigurelll.14. Taking

Aj412k Pj+1,2k F Aj412k+1 Pi412k+1 = Ak Pk + Vik Ujiks

and filling in the refinement relation for ¢; . = ;4128 + ©;j4+1,26+1 and (7) we find that

Vik ik = L/2(Njp126 — Ajrr2k+1) @126 + 1/2(A 112641 — Ajr12k) ©j12641

= 1/2(Ajt126 — Ajr12e41) (941,26 — Pi+1,2641)-
Comparing both sides we see that the wavel et coefficients are calculated as
Yik = Y2(Mjrae — Ajr1,2p41),
andthat ¢, x = (22 — k) with
Y(x) = X[0,1/2) — X[1/2,2) = o(2z) — (22 — 1).
Thisisthe famous Haar wavelet. The formulas for inverse transform in this case are

Ait1,26 = Ajk+Vik

Nit126+1 = Ajk — Vik-
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Note that the pure subdivision schemewith N = 1 issimply theinverse wavel et transform with all wavelet
coefficients equal to zero.

Let us next discuss a higher order example (VN = 3). We would like to build scaling functions that can
reproduce polynomial sup to degree 2. Instead of building such scaling functionsdirectly, thelifting scheme
first constructs a new dua wavelet which has 3 vanishing moments. This should be equivaent (see our
earlier remarks).

Again the dual wavelet isthe sum of an old dual wavelet (the Haar) and dual scaling functions on the same

old dual wavelet
P(r) = G(20)— G20 — 1) —AP(x + 1) - B(z) — C §a — 1).

It iseasy to seethat for the dual wavel et to have 3 vanishing moments, we need to choose A = 1/8, B = 0,
and C' = —1/8. Thus

Yim = Pit12m — Pi+1.2m+1 — 1/8 & m—1+ 1/8@; m+1.

Given the fact that the dual lifting scheme does not change the dua scaling function, the coarser A;
coefficients are still given by

ik = 12(Njy1k + Ajy12kt1)-
Thewavelet coefficients are now found by first caculating the Haar coefficients
Yik = Y2(Mjr2e — Ajr1,2p41),
and then using the scaling function coefficients on the same level to find the new wavelet coefficients
Yim = —1/8X; 1+ 1/8 X nt1.

The calculation of a coarser level now involves first the calculation of the A; ;. values and secondly the
update of the v, ,,, using the A; ... The inverse transform first undoes the update of the wavelet coefficients
and then does an inverse Haar step.

Now what happened to the primal wavelet and scaling function? Thelifting scheme saysthat the coefficients
of the primal wavelet in the refinement relation do not change, thus

(x) = p(2z) — p(22 - 1).
The new scaling function is given by
plr)=e(20) + ¢(2e — 1) - 1/8¢(x + 1) + 1/8¢(x — 1).

By filling in the refinement relation of the wavelet, we realize that thisis exactly the same scaling func-
tion as generated with the average-interpolation scheme with N = 3. Indeed the filter coefficients are
{-1/8,1/8,1,1,1/8,—1/8}.
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7.5 Waveletsand Average-Interpolation: Formal description*

Let us again start with the simplest example, namely if ¥ = 1. We aready saw that
@ik = X1, and @ik = x1, /x|

How do we find the wavelets? They are piecewise constant functions with a vanishing integral. The dual
wavelets are N

Vim = Pit12m — Pit12mt1-
Thefact that they have a zero integral followsimmediately from the fact that the dual scaling functions are
normalized to have integral 1. The primal wavelets are given by

Vim = i1 2maal /L ml €i41.2m — [ Lir1.2m| /1 m] ©j11,2m+1,

and again have one vanishing moment. These wavelets are called the generalized biorthogonal Haar
wavelets.

Now how does this connect with the average-interpolation scheme? Again we use the dua lifting scheme
to start from the biorthogonal Haar multiresolution analysis and build a dual wavelet with N vanishing
moments and thus a scaling function which can reproduce N polynomials. Take N = 3. We build a new
dual wavelet of theform

Vim = Pi+1,2m — Pi+1,2m+1 — Ajom Bjm—1— Bim @im — Chm Pim+1-

Here the coefficient A;,,, B;,, and (., are chosen such that ¢;,, has 3 vanishing moments. The dual
scaling function is still abox function. The new scaling function after lifting satisfies a refinement relation
of theform

Ok = Pi+1.2k T Pj+1.2k41+ Cim-1Vjm-1+ Bjm Cjom + Ajms1 Vjm+1-

The new wavelet after liftingis given by

Vim = [ liy12maal/ jml ©i412m — jr1.2m| /| Lm| €541,2m41-

Figurell1.15 show the wavelets affected by the boundary in both theinterpol ating and average-interpolation
case. In the average-interpolation case N = 3 and the wavelets have N = 1. In the interpolating case
N = 4 and the wavelets, built with lifting, have N = 2 vanishing moments.

In the next section we will describe how to build the fast wavel et transform.

8 Fast wavdet transform

In this section we describe the implementation of the fast wavelet transform with the use of the lifting
scheme. The fast wavelet transform is a linear algorithm to, given the A, ;, coefficients, calculate the v; ,,
wavelet coefficientswith 0 < j < n and the coarsest level coefficients Ag ;. Theinverse transform doesthe
opposite. The transform works level wise and on each level splits coefficients {A; 41, | I} into {A; % | k}
and {7, | m}. Theinverse transform does the opposite. The overal structureis given by the following
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Figurell1.15: Examples of wavelets affected by a boundary. On the top wavelets with N = 1 vanishing moment and
N =3aj=3andk =0,1,2 3. Onthe bottom the wavelets with N = 2 vanishing momentsand N =4a j = 3

andk =0,1,2 3.

algorithm

Forward wavel et transform

For j = n-1 downto O For level = 0 to n-1

Forward(j)

Inverse wavel et transform

I nverse(j)

One of the nice features of thelifting schemeisthat once we write down the forward transform, the inverse
transform can simply be found by reversing the steps and undoing what the forward transform did in each
step. In theinterpolation case, wefirst subsampl ethe scaling function coefficients, then cal cul ate thewavel et
coefficients v, ,,,, and finally of use the wavelet coefficients to update the scaling function coefficients A; .
The agorithmsfor forward and inverse transform are given by

Forward(j):

For 0<k<g?
For O<m <2
For 0<kg?

Ajk 1= Ajr1,2k
Viom = Ajr12m+1 = 2ok Pk 2m+1 Ak
Nk += AjxVik + Big-17jk-1

I nverse(j):

For 0<k<g?
For O<m <2
For 0<kg?

ANk == Ak Vik + Bjr-17jk-1
Ajt12m41 = Viom + 2k Py 2ma 1k Ajik
Ajr12k i= Ajk

In the average-interpolation case we first calculate one step in the generalized Haar transform, and then
updatethe; ., coefficients with the help of the A; ;. coefficients. We givethe agorithmsfor N = 3. Higher
N aredonesimilarly.
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Forward(j):

For O0<k< 2
Nk = (ra2kl Ajrazar + v 2642 Ajra2k1)/ [k
Vik = Aj41,2k — Aj41,2k+1

For 0O<m< 2 :

Vim == Ajm Ajm—1+ Bjm Ajm + Cim Ajm1

I nverse(j):
For 0O<m< 2 :

Yim += A],m Aj,m—l + B],m A],m + C',m Aj,m—l—l
For 0<k<2 :

Nivrze = Nkt a2l /el vk
ik = rv2el /115 k] 7ok

Aj+1,26+1

Note how the A, B, C relate back to the average-interpolation subdivision scheme. Simply substitutey; ,,,
into the right hand side of the A1 2 and A;41 2x+1 computation. For N > 3 the same reasoning can be
applied to make this connection.

9 Examples

In this section we describe results of some experimentsinvolving the ideas presented earlier. The examples
were generated with a simple C code whose implementation is a direct trangliteration of the algorithms
described above. The only essential piece of code imported was an implementation of Neville's algorithm
from Numerical Recipes [156]. All examples were computed on the unit interval, that is all constructions
are adapted to the boundary as described earlier. The only code modification to accommodate this is to
insure that the moving window of coefficients does not cross the left or right end point of theinterval. The
case of aweight function required somewhat more machinery which we describe in that section.

9.1 Interpolation of Randomly Sampled Data

The first and simplest generalization concerns the use of z;, , placed at random locations. Figure 111.16
shows the scaling functions (left) and wavel ets (right) which result for such a set of random locations. The
scaling functions are of order N = 4 (interpolating subdivision) and the wavelets have N = 2 vanishing
moments (using lifting). Inthiscase we placed 7 uniformly random samplesbetween z3 0 = Oand 238 = 1.
These locations are discernible in the graph as the unique points at which all scaling functions have a root
save for one which takes on thevalue 1. Sample points at finer levelswere generated recursively by simply
addlng midpoints, i.e, Tj41,2k+1 = 1/2($j,k + wj,k-l—l) for j > 3.

An interesting question is how the new sample points should be placed. A disadvantage of always adding
midpointsis that imbalances between the lengths of the intervals are maintained. A way to avoid thisisto
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Figure I11.16: Example of scaling functions (left) with N' = 4 (interpolating subdivision) and wavelets (right) with
N = 2 (lifting) adapted to irregular sample locations. The origina sample locations x3 ; can be discerned as the
locationswhere al scaling functions but one are zero.
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Figurelll.17: Example of datadefined at random locations x4 ; on the unit interval and interpol ated with interpol ating
subdivision of order N = 2 and 4 respectively.

place new sample points only in intervalswhose length islarger than the average interval length. Doing so
repeatedly will bring the ratio of largest to smallest interval length ever closer to 1.

Another possible approach would add new points such that the length of the intervals varies in a smooth
manner, i.e., no large intervals neighbor small intervals. This can be done by applying an interpolating
subdivision scheme, with integers as sample locations, to the z; ;, themselves to find the ;11 2z11. This
would result in a smooth mapping from the integers to the z; ;. After performing this step the usual
interpolating subdivision would follow. Depending on the application one of these schemes may be
preferable.

Next we took some random data over arandom set of 16 sample locations and applied linear (N = 2) and
cubic (N = 4) interpolating subdivision to them. The resulting interpolating functions are compared on
the right side of Figure I11.17. These functions can be thought of as a linear superposition of the kinds of
scaling functions we constructed above for the example j = 3.

Note how sample points which are very close to each other can introduce sharp features in the resulting
function. We aso note that the interpolation of order 4 exhibits some of the overshoot behavior one would
expect when encountering long and steep sections of the curve followed by areversa of direction. This
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Figurelll.18: A sine wave with additive noise sampled at uniformly distributed random locationsin the unit interval
and reconstructed with quintic average-interpol ation and successive smoothings of the origina data.
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Figure 111.19: Comparison of weighted (solid ling) and unweighted (dotted line) wavelets at the left endpoint of the
interval where the weight function z~/2 becomes singular. On the left 2 primal vanishing moments and 4 dual
vanishing moments; on theright 1 primal vanishing moment and 5 dual vanishing moments. Note how the weighted
wavelets take on smaller values at zero in order to adapt to the weight function whose value tends to infinity.

behavior gets worse for higher order interpolation schemes. These experiments suggest that it might be
desirable to enforce some condition on the ratio of the largest to the smallest interval in a random sample
construction.

9.2 Smoothing of Randomly Sampled Data

A typical use for wavelet constructions over irregular sample locations is smoothing of data acquired at
such locations. Asan example of thiswe took 512 uniformly random locations on the unit interval (V) and
initialized them with averages of sin(3/4rx) with £20% additive white noise. The resulting function is
plotted on theleft of Figurelll.18 at level 9. The scaling functions used were based on average-interpol ation
with N = 5and N = 1. Smoothingwas performed by goingto coarser spaces (lower index) and subdividing
back out. Thisis the linear approximation algorithm described in Section 5.8 and is equivalent to setting
wavelet coefficients below acertain level to zero. From left to right these were Vg, V7, Vs, and V.

We hasten to point out that thisis is a very simple and naive smoothing technique. Depending on the
application and knowledge of the underlying processes much more powerful smoothing operators can be
constructed [65, 66]. This example merely serves to suggest that such operations can also be performed
over irregular samples.
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9.3 Weighted Inner Products

When we discussed the construction of scaling functions and wavel ets we pointed out how aweight function
in the inner product can be incorporated to construct bases biorthogona with respect to a weighted inner
product. The only complication is that we cannot cast the average-interpolation problem into the form
of a Neville interpolation problem anymore. Instead we first explicitly construct the polynomia p in the
subdivision and use it to find the filter coefficients. This implies solving the underlying linear system
which relates the coefficients of p to the observed weighted averages. We thus need to know the weighted
moments of the dua (box) scaling functions. Similarly when lifting the interpolating wavelets to give
them 2 vanishing moments the weighted moments of the primal scaling function enters. In both of these
cases the construction of weighted bases requires additional code to compute moments and solve the linear
systemsinvolved in finding the filters. Moment cal culations can be performed recursively from the finest
level on up by using the refinement relationship for the scaling function (dual scaling function respectively)
during the wavelet transform. Without going into much detail we point out that moment cal culations and
the solution of the linear system to find p can be numerically delicate. The stability essentialy depends
on which polynomial basisis used. For example, we found the linear systems that result when expressing
everything with respect to global monomia moments so ill-conditioned as to be unsolvable even in double
precision. The solution liesin using a local polynomidl, i.e., a basis which changes for each interval. A
better choice might be a basis of local orthogonal polynomials.

In our experiments we used the weight function z~1/2 which is singular at the left interval boundary. For
the moment computationslocal monomiaswere used, resulting in integrals for which anaytic expressions
are available.

Figure 111.19 shows some of the resulting wavelets. In both cases we show the left most wavelet, which is
most impacted by the weight function. Weighted and unweighted wavel ets further to the right become ever
more similar. Part of the reason why they look similar is the normalization. For example, both weighted
and unweighted scaling functions have to satisfy >, ¢;» = 1. The images show wavelets with N = 4
(interpolating) and N = 2 vanishing moments (lifting) on the left and wavelets with N = 5 (average-
interpolation) and N = 1 primal vanishing moment on the right. In both cases the weighted wavelet is
shown with a solid line and the unweighted case with a dotted line.

The weighted and unweighted wavel ets are only slightly different in shape. However, when applied to the
expansion of some function they can make a dramatic difference. Asan example we applied both types of
wavelets to the function f(z) = sin(4rz1/2), which has a divergent derivative at zero. With unweighted
wavelets the convergence will be slow closeto the singularity, typically O(h) with A = 277 independent of
N. Inother words, thereisno gain in using higher order wavelets. However, if we build weighted wavelets
for which the weight function times f is an anaytic function, we can expect O(2") behavior everywhere
again. For our example we can take w(z) = 2~%/2. This way the weighted wavelets are adapted to the
singularity of thefunction f. Figurelll.20 showstheerror inthe resulting expansionswith N = 1, 3, 5, and
7 (average-interpolation) dual vanishing moments and N=1 prima vanishing moment. For unweighted
wavelets higher order constructions only get better by a constant factor, while the weighted wavel ets show
higher order convergence when going to higher order wavelets.
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Figure 111.20: Comparison of approximation error when expanding the function sin(4=x%?) over [0,1/2] using
wavelets biorthogonal with respect to an unweighted inner product (left) and a weighted inner product with weight
2~ 2 (right). The number of dual vanishing momentswas 1, 3, 5, and 7.

10 Warning

Like every “do it yourself at home” product this one comes with a warning. Most of the techniques we
presented here are straightforward to implement and before you know it you will be generating wavelets
yourself. However, we did not discuss most of the deeper underlying mathematical properties which assure
that everything works like we expect it to. These address issues such as. What are the conditions on
the subdivision scheme so that it generates smooth functions? or: Do the resulting scaling functions and
wavelets generate a stable, i.e,, Riesz basis? These questions are not easily answered and require some
heavy mathematics. Oneof thefundamental questionsishow properties, such asconvergence of the cascade
algorithm, Riesz bounds, and smoothness, can be related back to properties of the filter sequences. Thisis
avery hard question and at this moment no general answer is available to our knowledge.

We restrict ourselves here to a short description of the extent to which these questions have been answered.
In the classical case, i.e, regular samples and no weight function, everything essentially works. More
precisely if the wavelet and dua wavelet have at least 1 vanishing moment, we have stable bases. The
regularity of the basis functions varies linearly with N. In the case of the interval, regular samples, and
no weight function, again the same results hold. This is because the boundary basis functions are finite
linear combinations of the ones from the real line. In the case of regular samples with a weight function,
it can be shown that with some minimal conditions on the weight function, the basis functions have the
same regularity as in the unweighted case. In the case of irregular samples, littleis known at this moment.
Everything essentially depends on how irregular the samplesare. 1t might be possibleto obtain results under
the conditionsthat theirregular samples are not too far from the regular samples, but this has to be studied
in detail in the future.

Recent results concerning general multiscale transforms and their stability were obtained by Wolfgang
Dahmen and his collaborators. They have been working (independently from [179, 181]) on a scheme
which isvery similar to the lifting scheme [18, 47]. In particular, Dahmen shows in [44] which properties
in addition to biorthogonality are needed to assure stable bases. Whether this result can be applied to the
bases constructed here needs to be studied in the future.
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11 Outlook

So far we have only discussed the construction of second generation waveletson thereal lineor theinterval.
Most of the technigques presented here such as polynomia subdivision and lifting extend easily to much
more genera sets. In particular domainsin RR™, curves, surfaces, and manifolds.

One example is the construction of wavelets on the sphere [168]. There we use the lifting scheme to
construct locally supported, biorthogonal spherical wavelets and their associated fast transforms. The
construction starts from arecursive triangul ation of the sphere and is parameterization independent. Since
the construction does not rely on any specific properties of the sphereit can be generaized to other surfaces.
Theonly question which needsto be addressed iswhat theright replacement for polynomialsis. Polynomials
restricted to a sphere are still anatural choice because of the connection with spherical harmonics, but on a
general surface thisisno longer the case.

A further application of these techniques isto scattered data processing in the plane. Imagine the original
;.1 sample locations as being in the plane. A Delauney triangulation of the sample |ocations can then be
used to go to finer levels by midpoint subdivision or a smoother subdivision method. The coarser levels
can be constructed using standard computationa geometry coarsening techniques. For smooth interpolating
subdivision methods on triangles, we refer to [72].
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1 Waveletsand signal compression

Wim SWELDENS

University of South Carolina

1.1 Theneed for compression

As we know, the amount of information stored, transmitted, and handled by computers has been growing
exponentially over thelast decades. Two recent devel opment have particularly contributed to thiseffect. One
development is the breakthrough of multi-media systems along with its spin-off to numerous applications.
The time when computers handled only numbers and text is long gone and has been replaced by an era of
sound, images, moviesand virtual reality. Another development istheincreased availability of the Internet,
which has madethisinformation availableto alarge body of users. Thesetwo developmentsare synthesized
in the so-called World Wide Web, an interactive, multi-media, hyper-text based information network.

This development was only possible because of the rapid evolution on the hardware side. The performance
of cpu’s, disks, and transmission channels has grown tremendously. However, there is till away to go as
can be understood from the following examples:

1. To store a moderately large image, say a 512 x 512 pixels, 24 bit color image, takes about 0.75
MBytes. A video signal typically has around 30 frames per second.

2. A standard 35mm photograph digitized at 12 ;sm resolution requires about 18 M Bytes.
3. One second of NTSC color video takes 23 MBytes.

This shows that one can easily find examples where the current hardware is inadequate (either technically
or economically). Compression techniques, which are presented in this chapter, provide a solution. The
reasoning behind attempting compression is straightforward. If we can represent the information in a
compressed format, we can obviously:



108 W. SWELDENS

1. savestorage,
2. save cpu-time,

3. savetransmissiontime.

Most of the information we use is highly correlated. In other works, it inherently contains redundancy.
Thus it seems possible to use compression without losing information. The major requirement from the
compression isthat one can quickly switch between the original and compressed data.

1.2 General idea

There are two basic kinds of compression schemes:. lossless and lossy. In the case of 10ssless compression
oneisinterested in reconstructing the data exactly, without any loss of information. Lossless compression
is often used for text files.

In the case of lossy compression we alow an error as long as the quality after compression is acceptable.
A lossy compression scheme has the advantage that one can achieve much higher compression ratios than
with lossless compression; however, it can only be used in case one can replace the origina data with an
approximation which is easier to compress. We have to be specific in what we mean by an “acceptable”
representation. For example, in image compression an acceptabl e approximation of an imageis onethat is
visually indistinguishablefrom the original image.

The underlying idea of any compression schemeisto remove the correlation present in the data. Correlated
datais characterized by the fact that one can, given one part of the data, fill in the missing part.

Severa types of correlation exist. We give some examples:

1. Spatia correlation: One can often predict the value of a pixel in an image by looking at the neigh-
bouring pixels.

2. Spectral correlation: The Fourier transform of a signal is often smooth. This means that one can
predict one frequency component by looking at the neighbouring frequencies.

3. Temporal correlation: Inadigital video, most pixelsof two neighbouring frames change very littlein
thetimedirection (e.g. the background).

One of the standard procedures for lossy compression is through transform coding, as indicated in Figure
IV.1. Theideais to represent the data using a different mathematical basis in the hope that this new
representation will reveal or unravel the correlation. By thiswe mean that in the new basis, the majority of
the coefficients are so small they can be set to zero. The information is thus packed into a small number
of coefficients. Compression is achieved by calculating the transform associated with this basis, setting
coefficients below athreshold to zero, and lossless encoding of the non-zero coefficients.

In case one knows precisely the correlation present in a data set, it is possible to find the optimal trans-
form. It is the so-caled Karhunen-Loéve representation. The optimal basis, i.e. that one with the best
information packing quality, is given by the eigenvectors of the correlation matrix. Thistheoretical optimal
representation, however, has several practica disadvantages:
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origind forward coding inverse reconstructed
signa transform coefficients transform . signa

Figure IV.1: Transform coding.

1. In most cases the correlation matrix is not known.

2. Theagorithm to cal culate the eigenvectors of amatrix has cubic complexity. Given the fact that the
dimension of the problem in the case of image compression is eg. 512 x 512, we redlize that it is
impossibleto compute the Karhunen-Loéve basis.

3. Suppose one knows the optimal basis, calculating the transform is a quadratic algorithm, which in
most cases still is unacceptable.

4. The basis depends on the data set. It can thus only be used in case one knows precisely which set the
databelong to.

Thistdlsusthat we need atransform with the following properties:

1. Thetransform isindependent of the data set.
2. A fast (linear or linear-logarithmic) agorithm to cal cul ate the transform exists.

3. Thetransform is capable of removing the correlation for alarge, genera set of data.

A possible candidate for a transform is the Fast Fourier Transform (FFT). It definitely has the first two
properties. However, it does not always have the third property. The basis functions are perfectly loca in
frequency, but not local at al in time. Therefore, it is unable to reveal local temporal correlation. Most
signals have both local frequency and spatia correlation. We need a transform that is adapted to this
behavior. More precisely, we need a basis which is loca in time and frequency. There are two ways to
construct such abasis.

1. Onecan divide the spatial domain into pieces and use a Fourier series on each piece separately. This
way one gets aloca trigonometric basis.
2. Onecan use awavelet basis.
Both these methods result in a transform, which is data-independent, fast, and which yields a compact
representation for alarge, general set of data.

In both cases, one can alow some limited, but quite powerful data-dependency. Thisis done by not simple
considering one basis, but a family of closely related bases, out of which one can select the best one. This
process is called best basis selection [43]. In the case of loca trigonometric bases, one builds a family of

Siggraph '95 Course Notes: #26 Wavelets



110 W. SWELDENS

bases by allowing domainsto bejoined, whilein the wavel et case one useswavel et packets[42]. Thesetwo
basis families are closely related as, roughly speaking, one can be seen as the Fourier transform of the other
[74]. One could say that using the first basis family corresponds to using the second one on the Fourier
transform of the data.

1.3 Error measure

For any lossy compression scheme we need to measure the quality of the compressed data in order to be
able to compare different methods. For example, in the case of image compression one usually wants the
compressed image to be of the same visual quality as the original. Since such comparisons are subjective,
one often turnsto quantitative measures.

Let usbe more specific. Supposewearegiven aset of N datasamples{ f;} where: belongsto somesuitable
index range. Take { ﬁ} to be the lossy compressed data. The compression ratio is defined as the number
of bitsit takes to store the f; divided by the number of bits required to store the f:. We use the followi ng
measures to compare f; and f;:

1. Root Mean Square Error:

1 Y -
RMSE = ﬁz(fi_fi)z‘
=1

2. Peak Signa-to-Noise Ratio (in dB):

max; | f;|
10 RMSE

For example, if we use 8 hits per sample the numerator is 255.

PSNR = 201og

1.4 Theory of wavelet compression

We discuss here compression from an approximation problem point of view [58, 59]. More specifically, let
us fix an orthogonal wavelet . Given aninteger M > 1, we try to find the “best” approximation of f by
using a representation

fa(z) = > djr;r(z) with M non-zero coefficients d; ;. (1)

el
The basic reason why this potentially might be useful is that each wavelet picks up information about the
function f essentially at a given location and at a given scale. Where the function has more interesting
features, we can spend more coefficients, and where the function is nice and smooth we can use fewer and

still get good quality of approximation. In other words, the wavelet transform alows us to focus on the
most relevant parts of f.

Asmentioned above, we areinterested in finding an optimal approximation minimizing the RM SE. Because
of the orthogonality of the wavelets thisis equivalent to minimizing

1/2
(ZI (fo0n) —dj,k|2) .
7.k
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A moment’sthought reveal sthat the best way to pick M non-zero coefficientsd; ., making the error as small
aspossible, isby simply pickingthe M coefficients with largest absolutevalue, and setting d;; . = ( f, ¥, 1)
for these numbers. Thisyieldsthe optimal approximation ]O\j’t.

Another fundamental question is which images can be approximated well by using the procedure just
sketched. Let ustake thisto mean that the error satisfies

1= ol = OM~P), (2)

for some 5 > 0. Thelarger 7, the faster the error decays as M increases and the fewer coefficients are
generaly needed to abtain an approximation within a given error. The exponent 5 can be found easily, in
fact it can be shown that

1/p
(Z (1) - fﬁ’tuﬁﬁ) ~ (D Fi) Y7 3)
7.k

M>1

with1/p = 1/24 5. The maximd 3 for which (2) isvalid can be estimated by finding the smallest p for
which the right-hand side of (3) is bounded.

If follows from this reasoning that a wide range of images can accurately be approximated by using only a
few wavel et coefficients. In other words, wavel ets are agood choice as basis in a transform coding scheme.

1.5 Image compression

One of the most commonly used algorithms for image compression is JPEG. It essentialy uses a local
trigonometric basisin a transform coding scheme. It divides an image into blocks of 8 x 8 pixels and uses
aDiscrete Cosine Transform on each block [192].

Thisidea has the disadvantage that the compressed image sometimes reveal s the blocks and that one cannot
exploit correlation among the blocks. Thefirst disadvantage can be solved by using smooth cutoff functions
to split theimage into blocks and fold the overlapping parts back into the blocksin a clever way. Thisidea
was first proposed in [40] and [136]. It was used in image compressionin [1] and [111].

Wefocusonwavel et based compression. Someof thematerial isborrowed from [105], werefer theinterested
reader to the original paper for more details. We start out with a simple example illustrating the power
of the wavelet transform. Figure IV.2 shows the histogram of the image before and after transformation.
While the distribution of the coefficients before the transformation is spread out, the mgjority of the wavel et
coefficients is neglectably small.

Algorithm

A wavelet compression algorithm essentially consistsof three steps: transform, quantization, and encoding,
see Figure IV.3.
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Figure IV.2: Histogram before and after transform

Wavedet transform

The wavelet transform and its implementation in 1D is commented on in other sections of these lecture
notes. The transformation in 2D can be derived in a straightforward manner from the 1D one. In each step
it involves applying the 1D transform to the rows and columns of amatrix, see Figure IV.4. After one step,
one ends up with 4 subbands: one average image f1.r,, and 3 detail images frr, frr, and fr. The next
step of the dgorithm does the same decomposition on frr. For the inverse transform, see the schemein
Figure IV.5.

In choosing aparticular wavelet one has to consider the following issues:

1. Compact support: If the scaling function and wavelet are compactly supported, the filters are finite

impul se responsefilters.

Rational coefficients: When using filters with rational coefficients or, even better, dyadic rationals,
floating point operations can be avoided.

Smoothness: As we saw, compression is achieved by setting small coefficients d;; to zero, and
thus leaving out a component d;; v;,; from the original function. If the original function represents
an image and the wavelet is not smooth, the error can easily be visualy detected. Note that the
smoothness of the waveets is much more important to this aspect than the smoothness of the dual
wavelets. Also, a higher degree of smoothness corresponds to better frequency localization of the
filters.

Number of vanishing moments of the dual wavelet: Thenumber of vanishing momentsdetermines
the convergence rate of wavelet approximations of smooth functions. Where the image is smooth
more vanishing moments lead to smaller wavelet coefficients. On the other hand, where the image
is non-smooth more vanishing moments lead to more large wavelet coefficients. Also, the number
of vanishing moments of the dual wavelet is connected to the smoothness of the wavelet (and vice

versa).
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FigurelV.3: Scheme of wavelet encoding/decoding

5. Length of the filters: Obviously short filters are preferable. However, there is a trade-off between
short filter lengths on one hand and the smoothness and number of vanishing moments on the other
hand. Asmentioned in Chapter 2, smoothness and vanishing moments are proportional to the length
of thefilter.

The most popular wavelets used in image compression are the orthogonal Daubechies’ wavelets with 3
vanishing moments, and the biorthogonal wavelets with 2 vanishing moments for the wavelet and dual
wavelet. Thefirst one hasfilters of length 6, while the second has filters with lengths 3 and 5.

Quantization

A problem that hinders efficient encoding isthe fact that the transform coefficients can have nearly arbitrary
values. The purpose of quantization is to restrict the vaues of the coefficients to a limited number of
possibilities.

One can distinguish two kinds of quantization: vector and scalar. In the case of scalar quantization, one
divides the real axisin a number of non-overlapping intervals, each corresponding to a symbol %;. Each
coefficient is now replaced by the symbol k; associated with the interval to which it belongs. The intervals
and symbols are kept in a quantization table.

A more powerful variant is vector quantization [89]. Here one replaces a group of coefficients (a vector)
with one symbol. The key isto find the right way of grouping the coefficients, such that as few symbolsas
possible are needed. One ideais to group wavelet coefficients of different bands associated with the same
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Figure IV.4: Forward wavelet transform.
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FigurelV.5: Inverse wavelet transform.
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gpatial location. For more details on vector quantization in combination with wavelets we refer to [5]. To
design a quantization scheme one has to study the statistical behavior of the transform together with the
properties of the human visual system [138]. To get optimal results, one uses different quantization tables
for each level.

Encoding

The encoding step involves replacing, in a reversible way, the string of inputs symbols coming from the
guantizer by a bit stream.

The two major categories are fixed length (FLC) and variable length coding (VLC). In afixed length coder
each symbol is replaced with the same number of bits. It istherefore essential to use agood quantizer. An
exampleisthe LIoyd-Max agorithm that can be used to construct atable that givesthe minimal quantization
error (in the mean square norm) [140]. With an empirical estimated probability density function for the
coefficients, one can build the quantizer. Usually one takes longer code words for the coefficients on the
coarser levels.

A more powerful variant uses variable length coding. The idea here is to assign shorter codewords to the
more frequent symbolsand longer to the less frequent. Supposethat acodeword k; hasa probability p; with

Zpi =1
The“information content” or entropy is now given by
H ==Y pilog,p;,
and this is the theoretical minimum amount of bits needed per codeword. The problem is that H is not

necessarily a natural number.

Variable length coders (or entropy coders) try to get as close as possible to this minimum. The two most
popular methods are Huffman and arithmetic coding. For more details and references we refer to [157].

One hasto bear in mind that these entropy encoders are only optimal in case the probabilities p; are known.
In practice one usudly hasto estimate the p; either based on the data or on some a priori information.

Evidently, the position of the coefficients that were set to zero has to aso be encoded. This can be done
by run length encoding, i.e. replacing every string of zeros by itslength [155]. Thisisusually followed by
entropy encoding of the run lengths.

A techniquethat has proven particularly useful in combination with wavel etsisso-called zero tree encoding.
It exploits the self similarity between the different wavelet bands. For example, if awavelet coefficient on
alevel is set to zero, it is likely that the wavelet coefficients corresponding to the same locations on the
finer levels are set to zero as well. With thistechnique it is possible to grestly improve the performance of
awavelet encoder. An exampleis Shapiro’s zero tree encoding [170].

One hasto redlize that any encoder represents a tradeoff between speed, memory and quality. For example
Shapiro’s encoder outperforms most other but is much slower.
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FigurelV.6: Comparison of wavelet compression.

When speed isimportant usually run-length encoding the zero coefficientsis preferable.

Results

For a comparison between JPEG and severa wavel et based encoders, werefer oneto Figure IV.6 (whichis
borrowed from [110]). The JPEG coder used is the one from Version 2.21 of the xvi ew program.

Finally, we include some results from commercia packages. Oneis awavelet based coder from Summus,
Ltd, while the other is Leadview, a JPEG based coder. Images | ena-4.tif till lena-9.tif are
compressed with the Summus code at ratios 4, 8, 16, 32, 64, and 128 respectively. Images| ena- 10. ti f
tilll ena- 13. ti f arecompressed withthelL eadview codeat ratios4, 8, 16, and 32 respectively. Summus's
compression outperforms Leadview’s in PSNR over the whole range of compression ratios. The execution
times are comparable.

1.6 Video compression

In this section we discuss how wavel ets can be used for video compression. A nhaive approach would be just
to use still image compression on each frame. However, much higher compression ratios can be achieved
if we also exploit the temporal redundancy. From that point of view, video compression is easier than
image compression. However, an additional requirement with video compression is that the encoding and
decoding hasto bedoneinrea time. A first problemisthat the regular wavelet transform on a PC cannot be
performed at frame rate (typically 30 frames/second; on a 66-Mhz 80486 processor the wavelet transform
takes 1/4 seconds). Second, in many situations one cannot work with multiple frames at the same time
because of memory constraints.

We present here an example of a simple wavelet video compression scheme based on the following two
ideas:

Siggraph '95 Course Notes: #26 Wavelets



WAVELETS, SIGNAL COMPRESSION AND IMAGE PROCESSING 117

— In order to remove the tempora redundancy we simply take the difference between two adjacent
frames, see Figures IV.7 and IV.8. Consequently, we only need to have two frames at the timein the
memory. The difference imageis often sparse and can be compressed efficiently with wavelet based
methods.

— Since the difference images are sparse, there is no need to calculate the whole wavel et transform. It
suffices to only calculate the coefficients that are non-zero. For more details on this scheme we refer
to [4]. For a compression of 20:1, this can speed up the calculation of the wavelet transform by a
factor of 4.

Other wavel et based video encoders use wavel ets a so in the tempora domain or techniques such as motion
estimation. More details can be found in [119] and [200].

We give an example from a commercial program by Summus, Ltd. It concerns 30 frames of a person
speaking. We give the origina sequence (vi deo-ori gi nal ) and the compressed (70:1) sequence
(vi deo- conpr essed).

2 Wavelets and image processing

21 Geneal idea

The genera idea behind wavel ets and image processing is simply to look at the wavelet coefficients as an
alternative representation of theimage. So instead of performing operations on the pixelswe can work with
the wavelet coefficients. This gives us the opportunity to take advantage of their multiresolution structure
and their time-frequency localization.

A typical example is edge detection. As we know, the wavelet coefficients on each level represent a band
pass filtering of the origina image; thus, they naturally provide an edge map on different scales. We will
come back to thislater.

A simple application where wavelets can be useful is the following. Often one wants to resize an image.
Simple subsampling to reduce the size or pixel duplication to increase the size usually gives poor quality
results. Wavelets can be useful here in the following way. Suppose the origina image can be seen as an
element of the space Vy. Smaller size image now can simply be found by taking the projectionsin V; with
¢ < 9. These can be calculated with the fast wavelet transform. Larger size images can be constructed by
looking at the image as an element in V; with i > 9. The coefficients in those spaces can be calculated by
using the inverse wavelet transform where the wavelet coefficients in the spaces W; with ¢ > 8 are set to
zero. Thisisin fact a subdivision scheme. In case we use an interpolating scaling function, the original
pixel values are not atered.

2.2 Multiscale edge detection and reconstruction

Mallat’s wavelet maxima representation
One of the major drawbacks of wavelets in pattern recognition is that the transform is not tranglation

invariant. In other words, when the input signd is shifted, the wavelet coefficient are not shifted, but
instead can change completely. Anideaof Mallat and co-workers isnot to work with the (discrete) wavel et
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coefficients but rather with the local maxima of each (continuous) wavelet band W F1(¢), see Section 7.8
of Chapter 1. These local maxima somehow correspond to the edges of the image. For a specific class of
wavelets this leads to the classic Canny edge detector [17].

The nice thing is that one can use these maxima not only for image analysis but also for the representation
of images. Thisidea goes back to a conjecture of David Marr concerning computer vision in [138], where
he claimsthat images can be reconstructed from their multiscale edges.

Mallat and co-workers have developed an elegant framework for these problems. In [131] they show
how one can use the wavelet transform to characterize the local smoothness of an image. Edges typically
correspond to locations where the image is non-smooth or where it has singularities. With the wavelet
transform it is possible to precisely characterize the kind of singularity (i.e. its algebraic degree or more
precisaly, its Holder regularity).

In[133] they present an algorithm to reconstruct an image from the wavelet maxima. It relieson an iteration
between two subspaces: on one hand the subspace of al possible dyadic wavelet transforms (there is a
one-to-one mapping from this space to the space of al images) and on the other hand the space of dl
functions having the same maxima. By repeatedly projecting back and forth between the two spaces, one
approaches the intersection of the two spaces. Thisway one finds the reconstructed image. However, there
is no theoretical proof of the convergence nor of the fact that the solution is unique. As a matter of fact,
Meyer has been ableto find an (exotic) counterexample.

Nevertheless, the agorithm works fine in practice. We include here two examples of a 256 x 256 Lena
images reconstructed from itswavelet maxima. Thefirst one (I ena- 1. ti f) isobtained after 8 iterations
of the algorithm and has an PSNR of 41dB. The second one (I ena- 2. t i f) isobtained after 20 iterations
and has a PSNR of 43dB.

One can also use this representation for compression purposes. To illustrate its feasibility, we give an
example of the Lena image reconstructed with 8 iterations and after omitting every wavelet maximum
below thethreshold of 8 (I ena- 3. ti f, PSNR 35dB). We see that thefine detailsand textures are lost, but
the main edges are preserved and sharp. The typical blurring effect that many compression schemes have
can be avoided with this technique. Mallat proposed an encoding algorithm that first connects the wavel et
maximainto chains and then uses a thresholding based on the length of the chain and the average modulus.

Note:
The software from Mallat and co-workers (source code) can be obtained with anonymousftp to the machine
cs.nyu.edu (128.122.140.24). The files are /pub/wave/wavel.tar.Z (1D) and /pub/wave/wavel.tar.Z (2D).

Wavelet probing

Another implementation of the sameideaexistsand iscaled wavel et probing. Itisbased on the construction
of wavelets on closed sets. We explain it first in two dimensions. For more details we refer one to [4] and
[55]. Suppose we are given asigna. Instead of using the standard wavelet transform on the whole signa,
it sometimesis useful to split the signa into several segments and perform the wavel et transform on each
segment. The latter can be done using wavelets on an interval, see Chapter 2.

The question now is: how do we find the optimal splitting locations? The answer is given by wavelet
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probing. Theideaisto simply try every possible splitting location and check whether it pays off to put
a segmentation point there. This can be done based on a criterion that depends on the application. For
example, inthe case of compression, one could simply count and compare the number of wavel et coefficients
bigger than a certain threshold with and without a splitting point. Using a method called split and merge,
checking one splitting point takes only a number of operations proportiona to the number of levelsin the
wavelet transform. The whole algorithm thus takes only N log( V) operations. To understand why this
is potentialy useful, consider the following example. Take a signal which is smooth except for a jump
discontinuity at one point. Where the signal is smooth, the wavelet coefficients decay rapidly to zero.
However the discontinuity is “expensive’ in terms of wavelet coefficients since it leads to large wavelet
coefficients on every level. By simply putting a splitting point at the discontinuity, one obtains two pieces,
which each are smooth; thisthsu lead to small wavelet coefficients everywhere.

Thisidea can be generalized to 2D. It then leads to an aternative way of picking the natural “edges’ in an
image. The advantage is that the reconstruction is not iterative and thus can be performed very fast.

We here include a simple example of how it can be used in image compression. In this example we do
not use the full wavelet probing algorithm but merely a simple edge detector to find the edges. We then
calculate the wavelet transform over the domains defined by those edges. This can be done using a tensor
product version of wavelets on an interval. Note that these domains need not be closed. Next, we can
achieve compression by simply thresholding the wavelet coefficients. The original image isa 512 x 512
color image of the F16 jet. The regular wavelet compressed (at roughly 400:1) isgivenin f 16- 3. ti f.
The one compressed with this edge technique (again at roughly 400:1) isgiveninsf 16- 4. ti f. Theedge
mapisgiveinf 16-5. ti f. Again we have the effect that the main edges are preserved while texture and
fine details disappear.

2.3 Enhancement

When using wavel ets for approximation and compression, one most often works with the L2 norm. Thisis
straightforward as the L2 norm of a function f and the discrete (2 norm of its wavelet coefficients d; ; are
closely related. In the case of orthogona wavelets, one even has an equality in the sense that

1Al = >,
7.k

However, one can add a tremendous amount of flexibility by using more general norms. We introduce a
new norm that makes use of someweightsw; 5, and let

1 fllw = 1/Zw§,kd§,k-
5k

By choosing theseweightscarefully, onecan direct attentionto very specificfeatures. Wegivetwo examples:

1. By choosing the weights as w;;, = 2/°, one obtains a so-called Sobolev norm. This is a norm
that measures the smoothness (or differentiability) of a function up to order . The Sobolev norm
gives more weight to the higher frequencies. This makes sense because the smoothness of a function
corresponds to the decay of its Fourier transform.
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2. By choosing the weights of wavelet coefficients associated with a certain region larger than the other
0ones, one can pay more attention to thisregion. Assuming that the mother wavelet is centered around
the origin, a wavelet coefficient d; . is associated with a certain region if, roughly speaking, 2/ k
belongsto that region. Thisway one can “focus’ on one particular part of an image.

Evidently, one can also combine these two methods. This way one makes full use of the time-frequency
localization of the wavelets.

We illustrate this with two examples taken from [110]. Image f 16-1.tif is a picture of a F-16 jet
compressed at 100:1. Many features of the jet are lost. Suppose one is mainly interested in the jet and
not so much in the background, this technique can be used to focus on the airplane. In this example, it is
done by multiplying the coefficients corresponding to the jet by a factor of 5. Imagef 16-2.ti f isthe
same picture, compressed at 100:1, but with focusing on the jet. Much more details of the jet are preserved.
Unavoidably, details of the background are lost.

The next example concerns theimage of amap. Imagemap- 1. ti f isthe map compressed at 15:1. Image
map- 2. tif isthe map compressed at 15:1 using a Sobolev norm, and thus paying more attention to the
high frequencies. It is obvious that this one contains much more fine detail. The weight factors used are
wg = 2.5, w7 = 1.5and the others are equal to 1.

24 Others

Many other applications of waveletsinimage processing exist. However, space does not permit usto further
expand here. We simply mention two other areas.

Thefirst oneinvolvesnoise removal. In some sense noise removal isclosey related to compression as both
try to eliminate non-correlated components. Noise by definition is uncorrelated. Severa schemes for noise
removal are presented by Donoho and Johnstone. We refer oneto [64], [65], [66], and [67] for more details.

Another direction involves high level image processing tasks such as shape from shading and stereo
matching. Most of these can bereformulated as aminimization problem or asapartia or integral differential
equation. We refer one to the section on differential equations for more details. One problem is that some
of these equations are non-linear and at this moment it is not clear yet how wavelets will be most useful in
their solution.

Disclaimer

Discussion of any specific product in these notes is provided to reference a particular capability and is not
intended to be a recommendation.
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filename description
lena.tif 512x512 origina lena
lena-1.tif Mallat 20 iterations
lena-2.tif Mallat 8 iterations
lena-3.tif Mallat 8 iterations after threshold
lena-4.tif Summus4:1
lena-5.tif Summus 8:1
lena-6.tif Summus 16:1
lena-7.tif Summus 32:1
lena-8.tif Summus 64:1
lena-9.tif Summus 128:1
| ena-10.tif Leadview 4:1
lena-11.tif Leadview 8:1
lena-12.tif Leadview 16:1
lena-13.tif Leadview 32:1
fl16.tif 512x512 original F16
fl16-color.tif 512x512 origina F16 (color)
f16-1.tif compressed 100:1
f16-2.tif compressed 100:1 and focused
f16-3. tif compressed 400:1 (color)
f16-4.tif compressed 400:1 with edge preservation
f16-5.tif edge map
map. tif 512x512 original map
map-1.tif compressed 15:1
map-2.tif compressed 15:1 with fine detail emphasized

vi deo-ori gi nal

origina movie (30 frames of 360x288)

vi deo- conpressed Summus70:1

Table I1V.1: List of images.
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1 Wavelet representation for curves (Leena-Maija Reissell)

1.1 Introduction

Hierarchical representation methodsfor curvesand surfaces are popul ar because of their obviousadvantages:
they allow efficient geometric computationsat sel ected accuracy levels, rapid dataclassification, fast display,
and multiresolution surface design. Since wavelets give rise to hierarchical representations and are aso
successful a many general tasks such as de-noising, compression and discontinuity detection, it is natural
to apply them to curve and surface representation.

For instance, wavelets can be used to represent parametric curves and surfaces simply by computing the
wavelet decomposition of each coordinate function separately. The wavelets should be suitably adapted to
intervals. This method has been used in [161]. Wavelets can aso be defined intrinsically on curves and
surfaces; more on this approach can be found in other chapters.

The genera advantages of using wavelets include:

— Good, well understood approximation properties.
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The wavelet coefficients provide a precise measure of the approximation error. This error behavior
iswell understood in terms of the number of vanishing moments of the wavelet. By contrast, other
hierarchica representation schemes often do not provide an analysis of the approximation error.

— Space-frequency localization.
— Fast, robust numerical calculations.
— Compression agorithmsfor compact data storage.

— Hierarchical curve/surface representation and analysistools.

Theseinclude the usua wavelet compression and multiresolutiontools. However, if the waveletsare
chosen appropriately, the scaling coefficients can also be used selectively, via wavelet compression
algorithms, to provide compact hierarchical representations. The scaling coefficient representation is
well suited for input to other operations, such as display and intersection. Thisis particularly useful
in large scal e applications which benefit from good piecewise linear approximations.

The wavelet coefficients can also be used to partition the curve or surface into areas of varying
complexity for use in other operations or geometric algorithms.

There are some genera requirements on the wavel ets used in geometric applications. In many areas wavel et
regularity and symmetry are not very important, but here any lack of those propertieswill show very clearly.
For instance, using the Daubechies wavelet with 4 vanishing moments, Dg, will lead to the “smoothed”
curvein Figure V.1. The corresponding curve with the P, wavelet, constructed here, is shown next toit. In
general, good choices for the underlying multiresolution include different B-spline-based scaling functions,
box splinesfor surfaces, and interpolating scaling functions.

FigureV.1: Original curve; Dg smoothed curve; P, smoothed curve

In this section, we will give examples of wavelet usein parametric curve/surface applications and construct
specific wavelets, pseudocoiflets ([161]), with good properties and with interpolating scaling functions.
Our construction actually yields a family of wavelets Pon, for even numbers of vanishing moments 2.
The construction provides an example of using the biorthogonal wavelet framework to build “customized”
wavelets.

Pseudocoifletsare constructed to provide scaling coefficientswhich approximatetheoriginal curveor surface
well. When combined with awavel et compression approach, this provides simple, accurate approximations
to the origina curve using asmall number of points. These approximations can be piecewise linear. Such
adaptive scaling coefficient approximations can then be used in, for instance, intersection algorithms. In
Section 3.2 we give examples of adaptive scaling coefficient approximations of a brain scan curve.
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Wavel ets can a so be used to analyze surfaces for relative smoothness. This has applicationsto motion plan-
ning, for instance. An example of rough terrain path planning for mobilerobots[151], using pseudocoiflets,
ispresented in Section 3.2.

The following figure illustrates some of the basic properties of pseudocoiflets. Selected levels of multires-
olution approximations and scaling coefficients, based on the pseudocoiflets Py, are shown. The scaling
coefficients form good approximations of the original curve.

FigureV.2: P, scaing coefficients and multiresol ution approximation curve, overlaid on origina data.

We will focus here on the wavel et decomposition of curves. The formal extensions to parametric surfaces
are anaogous. Much of the material isfrom [161].

1.2 Parametric wavelet decomposition notation

We will first consider curves C' from [0, 1] into R™ defined by the component functions

zp=f*t), k=0,...,n—1

with the restriction that these functions are in 2. Suppose aso that we have a biorthogonal wavelet family
determined by the analyzing scaling function ¢ and wavelet v , and the corresponding reconstruction
functions ¢ and 0. Apart from the switch in the roles of dua and primal filters, we adopt the conventions
of the previous sections. The wavelet family for > isdefined as

() = V27 (272 — 1),

and analogous notation is used for the families generated by the other functions. The fact that the data
is defined on an interval is dealt with by adapting the chosen wavelets to intervals, for instance by using
periodic wavelets for cyclic data or viathe methods of ([35]). We then represent the curve componentwise
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by the wavelet decomposition in the basis chosen. Other than the parametrization, there are no restrictions
on the kinds of curves represented this way (closed, open, nonmanifold . ..). The basic notation is given
below:

— The scaling coefficients of the curve are given by the scaling coefficients for each coordinate sfj =
2—i/2 <fk, @i,j> .
Herethe s* are normalized asif they were coefficients for the Z>°-normalized scaling functions —the
advantageisthat the scaling coefficients are closeto the original function thisway. The discrete set of
points defined by the scaling coefficients of C' at level i, {(s?;, s}, ....) : j € Z}, can also bethought
to form asampled curve, S;(C).

— The approximating curve A;(C') at level 7 consists of the projections of C' to the multiresolution
gpaces and it is constructed from the scaling coefficients by

Pifk(t) = Z dfj 952']‘(15), k < n,
J

where n is the dimension of the underlying space. For orthonormal wavel ets, each component of the
approximating curve is the least squares approximant from the :* level multiresolution space.

The coefficient curveisuseful for instancewhen piecewiselinear approximationsto the approximating
curves A; (') are needed (piecewise linear curves cannot approximate as well as higher order curves,
but since operations on them are very fast, the trade-off is often worth it.) Under certain conditions,
the coefficient curves provide good approximations of the original curve.

— The wavelet decomposition of the curve €' is the collection of wavelet decompositions of each
coordinate function f* = S (f*, 4 ;) ;5.
The k" component of the error between approximations at level i is, as usual, > wf] QZ” where
wf] = (f*, ¢, ;) arethewavelet coefficients of the curve.

In practice, the curve C' will be given as acollection of uniformly sampled coordinates, and it is represented
by aset of discrete points. The sampled pointsare transformed to arepresentation of thecurve C' a thefinest
multiresolutionlevel considered. Thisis often done by using the samples themselvesasinitia coefficients,
giving potentially an initial approximation error.

The wavelet decomposition and reconstruction for the sampled curve are now obtained as usua from the
initial coefficients via the Mallat tree algorithm; the analyzing filter pair is applied separately to each
coordinate. — If the wavelet filters used are finite, all computations of the coefficients and of points on the
scaling curve §;(C') and on the approximating curve A;(C') arelocdl.

1.3 Basic propertiesof the wavelet decomposition of curves

The parametric wavelet decomposition of curves respects basic geometric operations, such as translation,
rotation, and scaling:

— Op(8i(C)) = (S:(Op(C))),  Op(Ai(C)) = (A:(Op(C))).
where Op isatranslation, rotation or scaling.
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The proofs are simple, and follow from the bilinearity of inner products and the definitions.

Thewavelet decomposition is hot preserved under reparametrization.

Vanishing moments.

Defineasusua then—moment of f,» = 0,1,...,tobe [t" f(¢)dt . Thenumber of vanishing moments of
the wavelet determines its approximation properties. For instance, this number influences the preservation
of polynomials in successive multiresolution approximations. more precisely, if the analyzing wavelet
has N vanishing moments, polynomia curves and Bézier curves of degree N — 1 are not changed by
successive wavel et approximations. In addition, the scaling coefficient curves of polynomia curvesare aso
polynomial, with the same degree.

In addition to the vanishing moments of the wavelet, it is useful to consider the vanishing moments of the
scaling function: we say that the first V moments of the scaling function ¢ vanish, if the 1, . .., N moments
of ¢ are0. (The 0t moment can never vanishin this case.)

In order to use scaling coefficients to approximate the original curves, Daubechies constructed orthonormal
wavelets, caled coiflets, which have these vanishing moment properties for both the scaling function and
the wavelet. Coiflets produce “good” scaling coefficients: for instance, the initial sampling can be used
with only asmall penalty astheinitia coefficients of the wavelet decomposition, since the dyadic function
samples now satisfy

F2'k) =272 (F04) + O(KY), (1)

where N isthe number of vanishing moments and ¢ is the scaling function with the coiflet property (see
[50]).

Here, wewill cal biorthogonal wavel etswith N vanishing momentsfor both wavel ets and one scaling func-
tion coiflet-like. We will construct coiflet-like wavelets with interpolating scaling functions; interpolation
allowsfor instance the error free use of initia function samples as scaling coefficients.

1.4 Choosing a wavelet
We end this section with areview of some desirable properties for wavelets used in representing geometric
objects:

— Symmetry and smoothness.

— Small oscillationin the scaling function.

— Short support.

The computation time in wavelet algorithms is proportiona to the size of filter used, and so to the
support of the wavelet or scaling function. However, the approximation properties of wavelets tend
to improve with support length, resulting in a tradeoff.

— Good space-frequency localization.
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In addition, it is useful to consider wavelets with additional properties:

— Moment conditionsand interpolation.
Interpolating scaling functions allow:

Use of data samples asinitial scaling coefficients.

Fast, local schemesfor curve and surface interpolation.

Interchanging control points and curve points.

Natural use of scaling coefficients in curve and surface approximation.

The simplest interpolating scaling function is the hat function. The pseudocoiflets constructed here
also give higher order interpolating scaling functions. These higher order wavelets allow better
approximation when the datais relatively smooth.

Some examples of good wavelets

— Biorthogonal and semiorthogonal B-spline based wavelets.
— Wavelets based on B-splines with arbitrary knots (for instance, [127]).

— Wavelets with smooth interpolating scaling functions ([161]).
Another construction is the more genera.:

— Box splinebased, wavel et-like error decompositionfor surfaces, using nonorthogonal projectionsinto
multiresolution spaces. [59].

2 Waveetswith inter polating scaling functions

Wewill outlinethe construction ([161]) of compactly supported symmetric biorthogonal wavelets, for which
one of the scaling functions, say, the dual scaling function, isinterpolating. The construction is based on
the methods of Cohen, Daubechies, and Feauveau [33]. This example also illustrates the ease of specific
biorthogonal wavel et building. Similar biorthogonal wavel ets have been constructed independently in[165].

The interpolating dua scaling functions are Deslauriers-Dubuc functions ([57]), which are smooth. Since
it turns out that the resulting wavelets automatically must have coiflet-like moment properties, we will
call the biorthogonal wavel ets we construct pseudocoiflets, after the coiflet family of orthonormal wavelets
constructed by Daubechies ([50]).

More specifically, we will build a family P,x of scaling functions (¢, ¢) and corresponding wavelets
satisfying the exact reconstruction condition (see [33]) and with the following properties:

— Thescaling functions ¢ and ¢ are symmetric.
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Thefirst 2N momentsfor ¢» and <> vanish.

¢ satisfies the scaling function vanishing moment condition for 2N.

— ¢, ,3,and are compactly supported.

¢ isinterpolating and smooth.

According to the methods of [33], for agiven N, we find the appropriate trigonometric polynomialsmg()
and (&) correspondingto ¢ and & .

2.1 Theconstruction

We assume first that both mo(¢) and mo(£) correspond to filters which are symmetric and consist of an
odd number of elements. The moment conditions on the wavelet and the scaling function for such a filter
transfer function mg can then be rewritten in the following way:

mo(€) = (14 cos¢)™ Py(cost). (2)

mo(§) = 1+ (1 — cos€)"2 Py(cost) (3)

Thefactorization isimplied by the moment conditions. Here, both P; and P, are trigonometric polynomials
of cos¢, and 2N, and 2N, are the numbers of vanishing momentsrequired. We will notethat (2) isthe only
form the trigonometric polynomial g can take if ¢ isto be interpolating.

211 Theinterpolation condition

Wewill first observe that interpol ating scaling functions can be obtained as a special case from the construc-
tion of coiflet-like scaling functions. For these scaling functions, it turns out that both moment conditions
(3) and (2) are satisfied for N = Ny = N».

A scaling function ¢ corresponding to a multiresolution isinterpolating if the representation of a function
f using thetrandatesof ¢ , f(z) = 3, dip(x — ), interpolates the coefficients d;. The multiresolutionis
of necessity not an orthonormal one. For interpolation the coefficients 7; in the refinement equation for ¢
should satisfy

1
hzj = E(SLO' (4)

An equivalent condition is requiring that the corresponding filter transfer function

mo(€) = 5 3 hje™"¢ hasthe property

mo(£) + mo(§ + 7) = 1. (5)
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2.1.2 Coiflet-like wavelets

Assume first that both mo(¢) and mo(€) correspond to filters which are symmetric and consist of an odd
number of elements. Thenumber of vanishing momentsimposedis V. Therequirement that the construction
is coiflet-like can then be expressed as follows, using the factorization of (3) and (2) with N = Ny = Ny:

(14 2)VPy(e) = (1 - 2)V Pyfa) = 1, (6)
where x = cos. Thisequation has the solution

N-1
Pla)= 5 3 ( Mot ) =) 4 (1= )V F(e), ™)
0

Py(z) = —Pi(-x) (8)

where F isan arbitrary odd polynomial. For F' = 0 these P; correspond to functions studied by Deslauriers
and Dubuc (see [57], [50]).

In addition, interpolating scaling functions are also obtained thisway by the following observation ([161]):
— If the trigonometric polynomial 1 is coiflet-like, symmetric, and consists of an odd number of filter
elements, and has 2N vanishing moments, 1 is interpolating.

— Conversdly, compactly supported symmetric interpolating scaling functions are coiflet-like, have
an even number of vanishing moments, and the corresponding filter consists of an odd number of
elements.

Thisrelies on the fact that the equations (5 ) and (6) have the same solutions. For details, see[161].
2.1.3 Thebiorthogonality conditions
The interpolating trigonometric polynomials /o obtained in the above way are then inserted into the

biorthogonality conditions of [33] to find the dual trigonometric polynomiasmg. The necessary condition
for biorthogonality for mg and mg is

mo(€)mo(€) + mo(€ + m)mo(€ +7) = 1. (9)
Here we assume that the corresponding wavelets will be built from the scaling functions by using mirror

filters, as usual. For mg and 7 as in (3) and (2), with 2N and 2V giving the numbers of vanishing
moments, the biorthogonality condition can be expressed as

1+ 2V Pe)P(2) + (1 — o)V P(—2)P(~2) = 1. (10)
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The biorthogonality condition can always be satisfied if 7 is a solution of the coiflet equation (6) ([161]):

— If 15(30) isasolution (7) for P; to the coiflet equation (6), then there is a polynomia P such that P
and P solvethe biorthogonality equation (10) with N = N The unique minimum degree solution P
corresponding to the minimum degree P has degree 3N — 2.

In practice, finding the polynomial P only involves solving alinear system, which can be done when 15(90)
and P(—z) have no common zeros. In our case, the polynomias never have common zeros ([161]).

2.2 The pseudocoiflet family Py

Thefamily of pseudocoiflets Py, awavelet family (¢, 1), (@, 1) satisfying the necessary biorthogonality
condition (10), is now obtained by the following procedure.

Construction of pseudocoiflets Poy

1 Let P and P be the trigonometric polynomials mo(¢) = (14 cos¢)™ P(cos¢) and rio(£) = (1+
cos¢) M P(¢).

2. Find the minimal degree solution (7) for P by letting P=p.

3. Find the minimal degree solution P for the given P us ng the linear system in (10). This solution
exists by the above result.

4. Evaluate thefilter coefficients from P and P.

The above construction implies that there is an exact reconstruction filtering scheme corresponding to the

functions (¢, ), (¢,1). It does not yet guarantee that the constructed functions (¢, 1), (¢,1) arein
L2, or that the wavelets derived from «, <> form adual basis. A necessary and sufficient condition for the
functions (¢, v), (&, QZ) to define a true biorthogonal 2-wavelet family has been given by Cohenin [33].
This condition can be easily shown to hold for the first few members of the family P,5, and so we have
L?-biorthogonal wavelet bases corresponding to these V.

The following properties of the pseudocoiflets ) and ¥ follow immedi ately from the construction:

Properties of pseudocoiflets Poy

— The pseudocoiflets b and ¥ have 2N vanishing moments, as does the scaling function ¢ .
— The reconstructing scaling function ¢ isinterpolating.

— The scaling functions are symmetric.

— Thedegrees of g and mgare N — Land 3N — 2, respectively.
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— The lengths of the pseudocoiflet Pon reconstructing and analyzing filtersare 4N — 1 and 6N — 1,
respectively.

We note that it is possible to choose different values of ;' and V in (10), leading to a construction of a
family P,z o of pseudocoiflets consisting of afamily of analyzing functions, depending on N, for each
reconstructing scaling function with moment properties given by N. Other variations of the construction
can aso be obtained, for instance, by considering longer than minimal length reconstructing filters.

2.3 Examples

The filter coefficients for the pseudocoiflets with ¥ = 1 and N = 2 are listed below in Table V.1. The
coefficientsare exact. Thepseudocoifletfor N = 1hasthehat function asthe reconstructing scaling function
and thefilter pair equal sthe corresponding spline-based biorthogonal filter of [33]. Thepseudocoiflet scaling
functionsfor N = 2 are pictured in Figure V.3.

analyzing filter | reconstructing filter || analyzing filter | reconstructing filter
N=1 N=1 N=2 N=2
multiply by — | multiply by /2 multiply by — | multiply by /2
-0.00390625
0
0.0703125
-0.0625 -0.03125
-0.25 -0.24609375 0
0.5 0.25 0.5625 0.28125
15 0.5 1.359375 0.5
0.5 0.25 0.5625 0.28125
-0.25 -0.24609375 0
-0.0625 -0.03125
0.0703125
0
-0.00390625

Table V.1: Scaling filter coefficients for pseudocoifletswith NV = 1, 2.

The wavelet filter coefficients are obtained by the mirror filter construction from the scaling filters. The
analyzing wavelet is obtained from the reconstructing scaling function, and vice versa. The wavelet
coefficientsfor N = 2 are, for the analyzing filter,

(0.03125, 0, —0.28125, 0.5, —0.28125, 0, 0.03125)

multiplied by v/2, and, for the reconstructing wavelet filter,

(—0.00390625, 0, 0.0703125, 0.0625, —0.24609375, —0.5625, 1.359375,

~0.5625, —0.24609375, 0.0625, 0.0703125, 0, -—0.00390625)
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Figure V.3: Pseudocoiflet P, scaling function, wavelet and the duals

multiplied by % Note that the application of the analyzing wavelet filter to data has to be shifted by one
step from the application of the scaling filter to achieve exact reconstruction.

Examples of the multiresolution approximation and scaling coefficient curves obtained using £, are shown
inFigure V.4 and below. The approximationsobtained using the scaling coefficients are closeto theoriginal,
at thisresolution, at levels 3 and 4 (corresponding to 12.5 % and 6.25 % of the original points). Of course, by
using wavelet or scaling coefficients from different levels adaptively, we can approximate more effectively
— see the example in Section 3.2.
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Figure V.4: Selected scaling coefficient curves (levels 3, 5), overlaid on original curve. Level 4 scaling coefficients
and multiresol ution approximation curve,
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3 Applications

3.1 Adaptivescaling coefficient representation

The compact representation of curves and surfaces for use in operations such as display and interference
detection presents requirements which are somewhat different from those in data compression. Rather
than give a pure wavelet transform as input to these operations, it is useful to approximate the curve or
surface by aminima amount of simple, possibly nonuniform, segments, which can be processed fast. The
approximations can be piecewise linear or low order polynomial. The wavelet decomposition is now used
to build such compact representations.

A curve can be approximated adaptively using those scaling coefficients which correspond to areas where
all higher level wavelet coefficientsare < ¢, where e isan arbitrary small threshold (Figure V.5). Thismeans
that portionsof multiresol ution approximation curves from different levels, given by the scaling coefficients
as“control points’, are pieced together to give an approximation to the whole curve. Thisapproximationis
an adaptive scaling coefficient approximation.

Wavelet coefficients Truncated scaling coefficient tree

Figure V.5: Waveet coefficients with large coefficients shaded; corresponding truncated scaling coefficient tree.
Isolated small wavelet coefficients have been included in the scaling coefficient representation.

In theworst case, storing the scaling coefficients requires more space than the standard wavel et compression
scheme. But for most naturally occurring geometric data, there is little or no difference in compression
levels, since areas with small coarse level wavelet coefficients generally tend to have small finer level
coefficients as well.

If the threshol d changes, the scaling coefficient approximation can now berefined fast by simply adding finer
level wavel et coefficients where required by the new threshold. The new scaling coefficients are computed
inthese areas — scaling coefficients in other areas will not have to be updated, since no coarser level wavelet
coefficients are changed.

If the curve has smooth regions, the number of these compressed scaling coefficients can be much smaller
than the number of original curve samples. We should note that the number of scaling coefficient “control
points’ required to accurately represent smooth curve portions decreases with larger numbers of vanishing
moments for the underlying wavel et.

If thewavel et issuitably chosen, the scaling coefficients themsel ves can a so constitutegood approximations.
Inthiscase, an adaptive approximation to thewhol e curve can be obtai ned by piecing together portionsof the
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linearly interpolated scaling coefficients from different levels, as determined by the wavel et decomposition
and the given compression threshold. Thisis a piecewiselinear adaptive scaling coefficient approximation.

Again, the number of linear segments approximating the curve is usualy much smaller than the original
sample size; further, this approximation compares well with standard schemes for the nonuniform subdivi-
sion of curves into piecewise linear segments (the scaling coefficient approximation does not constitute an
actual subdivision of the curve). The pseudocoiflets P, of the previous section are good wavel ets for use
in this application.

The underlying data structure for an adaptive scaling coefficient approximation is a truncated binary tree,
the segment tree, where the segments are associated with scaling coefficients. The tree corresponds to
an adaptive subdivision of the parameter space. Each segment on a given level corresponds to a unique
section of the underlying curve or surface; these sections are nested across the scales. The leaves of the
truncated scaling coefficient tree represent the underlying compressed surface. Thiscompressed surface can
be recovered at the origina sampling density by extending the tree to its full binary form (either by point
evaluation or by carrying out the compl ete reconstruction algorithm).

3.2 Example of adaptive approximation using scaling coefficients

The above method effectively sections the curve or surface into regions of different complexity, and allows
the curve to be approximated by piecewise linear scaling coefficient curve segments at different levels of
refinement. This adaptive approximation is most effective for nonhomogeneous curves, with both smooth
segments and areas with significant small resolution detail. Instead of calculating the compressed surface
from the scaling coefficients at the original sampling density, the coefficients can be used by themselvesin a
pi ecewise approximation. This approximation consists of linear pieces (at the boundaries between regions
corresponding to different levels, the endpoints can be equated, since the error of doing thisis within the
error bound for the approximation).

Figures V.6, V.7 give examples of an adaptive, piecewise linear scaling coefficient approximation to a
~ 5000-point curve obtained from brain scan datal, using the pseudocoiflet Py.

The first figure is an illustration. For clarity, the error alowed is large, and only two levels of wavelet
decomposition are used. To show the areas from different level s better, the regions have not been connected
to one piecewise linear curve.

Wavelet coefficients for both coordinates are used to determine the appropriate scaling coefficient blocks.
Most of the curve can be adequately approximated using the lower resolution level, but some sharper corners
reguire the use of higher resolution scaling coefficients. The original curve has 4992 points.

Figure V.7 gives an adaptive scaling coefficient representation of the same 5000 point brain data curve, su-
perimposed onthe original data. The number of pointsin the adaptive representationis245, for compression
of lessthan 5 %.

!Data courtesy of Peter Cahoon, UBC.
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Figure V.6: Origina curve and a 2-level adaptive scaling coefficient approximation. Some sections of the curve are
approximated with the sparser 1ow resolution scaling coefficients, sharper corners need higher resol ution coefficients.

Figure V.7: Theorigina curve superimposed on the adaptive scaling coefficient representation for 5 % compression.
Selected levels of the corresponding compressed wavel et coefficients.
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3.3 Finding smooth sections of surfaces; natural terrain path planning

The size of the wavelet coefficients can be used to analyze the curve or surface for relative “ smoothness”.
Smooth sections are the ones for which higher level wavelet coefficientsaresmall, that is, the sectionswhich
are approximated well by coarser level data.

Figure V.8 shows an exampl e of identifying the smooth sections of a surface representing real terrain date’.
The sections are found by determining where the finer level coefficients are small. The smooth sections are
shown on acoarse level by the marked rectangles. The wavelet used is the pseudocoiflet Py.

surface ---
smoth o

FigureV.8: Identifying smooth surface sections- origina surface and smoother sections marked on coarselevel scaling
coefficients.

A similarideaisused in[151] to hierarchically plan mobilerobot pathsthrough natural terrain. Hierarchical
planning is a must in these problems due to the large size of the search space. Using wavelets, we can
in addition zero in on “nice’ terrain sections, while still searching only a coarse data level, and so reduce
planning time further. The wavelet coefficients are used to compute hierarchical terrain costs in each
region; the costs are a measure of terrain smoothness. These terrain costs, together with a new, nonscalar
path measure, are then used to find paths which prefer smoother terrain sections. The cost function can
be modified with robot- or terrain-dependent obstacles, and it can be extended to related motion planning
problems.

Figure V.9 shows paths planned hierarchically using the real terrain data of the previous example:

3.4 Error estimation

We end with a note on the calculation of error boxes for the adaptive scaling coefficient representation of
Section 3.1.

Many operationswith curvesand surfacesrequireerror boxesfor sel ected regions(thisisespecially important
for intersection and interference detection).

’Data from Bob Woodham, UBC.
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FigureV.9: Hierarchica rough terrain path planning.

There are methodsfor > compression, aswell as LP compression for other p ([60]) —but in practice the 1.2
approximation and compression obtained by wavelet procedures also gives excellent 1.°° gpproximations,
especially in the absence of discontinuities. We can estimate an upper bound for the distance error from the
wavelet coefficients. We briefly discuss this and other methods of determining error boxes here.

3.4.1 Error boundsfrom wavelet coefficients

Conservative error bounds for areplacing a given curve segment s by an approximating curve on level ¢
can be obtained from the > errors of the coordinate functions, so we need only look at the approximation
errors for afunction f of one variable. An upper bound for the L°° error of approximating afunction f by
its multiresolution approximation is obtained very easily from the wavel et coefficients:

Suppose that the component functionis f and its wavel et coefficients corresponding to theregion s on level
¢ are denoted by w;(s) = (w;; : j € A(s,1)). These are the coefficients entering into cal culations about s.
This set isrestricted to aset of indices A(s, 7), which is determined by thefilter length used.

The coefficients of the error in terms of the next level scaling functions, are w?(s) = Gwg(s), where (i isthe
reconstructing wavelet filter. The new coefficients are similarly restricted to a subset of all the coefficients
w*. Let f;(s) denotethe approximation f; on the segment s, and let ¢ be the reconstructing scaling function.
Then the error between a segment and its refinement by one level is given by

eror;(s) = || fi-1(s) = fi(s)|le = m]aX| > wijBil

JEA(s)

< (max () 30 1Es-

The quantity U($) = >, |#;;| can be estimated or calculated for general scaling functions and we have

arrori(s) < /(%) max|(wfy(s)l.
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Thetotal error at level ¢ is now bounded smply as

TotalError;(s) = Y _ error;(s).

o
1<

For positive scaling functions, such as B-splines, 3°; [¢;;| = 1, by the partition of unity property, and
error; < max; [(wy;(s))|. That is, the error is obtained by adding the maximum reconstructed wavelet
coefficient norms on each level.

For pseudocoiflets, themaximum real errorson each level are amost the same asthe maximum reconstructed
coefficient norms: as can be seen from an example in Figure V.10, the wavelet coefficients, with one step
of the reconstruction agorithm performed, give a good approximation of therea error.

800

600
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200 £

-200

-400

-600

Figure V.10: Real error compared to wavel et coefficients with 1 step reconstruction, using pseudocoiflets

The maximum reconstructed coefficient norm a = max; |wy;(s)| can aso be estimated from the wavelet
coefficient maximumb = max; |w;;(s)| directly: intheworst case, a = v/2 b. Thisworst caseisusualy not
atained. This procedure gives reasonable (but not minimal) error bounds, especially for smoother sections
of curves.

3.4.2 Linearization error

The previous error estimate was vaid for approximation curves. For the piecewise linear scaling coefficient
curves, the effect of linearizing the approximation curve has to be estimated aswell. Thislinearization error
isusually not as large as the error from the wavel et coefficients.

The linearization error can also be computed from the wavelet transform by looking at the difference
functions between the real approximation curve and the piecewise linear scaling coefficient curve. The
scaling coefficient curve can be formally obtained by applying the hat function as a reconstructing function
to the scaling coefficients.

So, the difference functions are obtained by looking at the difference “basis’ function ¢ — ppgt, Where
is the reconstructing scaling function, and ¢4 the hat function. Estimating the max norm of this “basis’
function, and applying thisto the scaling coefficients, gives a bound for the linearization error.

In cases where the above wavelet coefficient estimates do not give sufficiently tight bounds, minimal
error regions for replacing a curve section with scaling coefficients can be computed as follows. For
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two consecutive scaling coefficients on level L, find the 2™ points on the original curve corresponding to
these scaling coefficients, and compute a minimal box aligned with the line segment between the scaling
coefficients (the linein the figure), and containing the points (“X”):

o
e

4 Conclusion

We constructed specific wavelets Poy, pseudocoiflets ([161]), with interpolating scaling functions. These
wavelets are well suited for curve and surface representation. The construction can aso be viewed as an
example of using the biorthogonal wavelet framework to build “customized” wavelets.

Pseudocoiflets were constructed to provide scaling coefficients which approximate the original curve or
surface well. When combined with awavel et compression approach, thisprovides simple, accurate approx-
imations using a small number of points. These approximations can be piecewise linear. Such adaptive
scaling coefficient approximations can then be used in, for instance, display and intersection algorithms.
Examples of adaptive scaling coefficient approximations for a curve from brain scan data are given in
Section 3.2.

Other applications of wavelets include the analysis of curves and surfaces for relative smoothness. This
fact can be used in motion planning: an agorithm for natural terrain path planning for mobile robots using
pseudocoiflets has been derived in [151]. We briefly illustrate some resultsin Section 3.2.
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5 Multiresolution Analysisfor Surfaces of Arbitrary Topological Type
(Tony D. DeRose, Michael Lounsbery, Joe Warren)

5.1 Introduction

As explained in previous chapters, the simplest setting for multiresolution analysis and wavelets is for
representing functions defined on IR?, the entire real line. In most practical applications— including curve
modeling — the functions of interest are defined only over abounded interva [a, b] of thereal line, leading
various investigators to formul ate bounded interval wavelets[29, 50, 75].

Two-dimensiona wavelets are important for a variety of applications including image compression. They
are generaly constructed by forming tensor products of univariate wavelets [50], in much the same way
that tensor product B-spline surfaces are formed by products of univariate B-splines. A tensor product of
unbounded univariate wavelets leads to wavelets defined on al of IR?; wavelets on a bounded rectangle
can likewise be created using a tensor products of bounded interval wavelets. It is also possible to create
tensor product wavel ets on cylindersand tori by using periodic univariate wavel etsin one or both parametric
directions.

There also exist non-tensor product constructions for wavelets on IR? [50, 114], but none of these methods
— tensor product or non-tensor product — are applicable to functions defined on more general topol ogical
domains, such as spheres or surfaces of genus larger than one. Thus, existing methods are not well suited
for decomposing and compressing surfaces such as the ones shown in Color Plates 1 and 2, since they are
described by parametric functions on the sphere.

In this chapter we sketch some of the ideas necessary for extending multiresolution analysis and wavel ets
to surfaces of arbitrary topological type.2 (For amore complete description of the work, see Lounsbery et
al. [125].) Our extension is based on the use of subdivision surfaces, the first instances of which were
introduced in 1978 by Catmull and Clark [19] and simultaneously by Doo and Sabin [69, 68].

Thegeneralization of wavel etsto arbitrary topol ogical surfaces considerably extendsthe class of applications
to which multiresolution analysis can be applied, including:

— Continuouslevel-of-detail control. When acomplex shapeisrendered inan animation, afully detailed
representation of the shape contains much more detail than is required for al but the closest view.
Using a compressed wavelet representation of complex objects, it is possible to greatly reduce the
number of polygonsin a scene without significantly impacting the visible detail (see Color Plate 1).
Moreover, it is possible to smoothly vary the detail, avoiding the discontinuous jumps that occur
when suddenly switching between distinct models. This application is discussed in more detail in
Section 5.7.

— Compression of functions defined on surfaces. Consider the situation shown in Color Plate 2 where
a globe (a geometric sphere) is pseudo-colored according to elevation. The pseudo-coloring can be
thought of as a function that maps each point on the sphere to an RGB triple. A straightforward
method for storing the function isto storeits vaue at alarge number of regularly distributed points;
in this case more than one million pointswere used. The methodsin this paper can be used to create
compressed wavelet approximations of varying complexity. (The mesh lines on the original surface
are so dense that the image shown in Color Plate 2(h) isnearly black.)

3The topological type of atwo-dimensional surface refers to its genus, presence of boundary curves, etc.
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Wavelet coefficients Wavelet coefficients

FigureV.11: Decomposition of a polyhedral surface.

— Multiresolution editing of surfaces. Hierarchical B-splines, asintroduced by Forsey and Bartels[82],
provide a powerful mechanism for editing shapes at various levels of detail. However, hierarchical
B-splines can only represent a restricted class of surface topologies. The methods described here
providean aternativeto hierarchical B-splines, and are capabl e of representing smooth multiresolution
surfaces of arbitrary topological type. Editing at fractiona levels of detail can aso be achieved by
using the methods developed by Finkelstein and Salesin [75].

5.2 A preview of themethod

Althoughthemathematica underpinningsof multiresol utionanalysisof surfaces are somewhat involved, the
resulting algorithms are relatively simple. Before diving into the mathematical details, we give here a brief
description of how the method can be applied to decompose the polyhedral object shownin Figure V.11(a).
(Although all our examples use C© surfaces, the theory works equally well for C'* subdivision surfaces.)

As described in previous chapters, a main idea behind multiresolution analysis is the decomposition of a
function (inthiscase apolyhedron expressed as a parametric function on the sphere) into alow resolution part
and a“detail” part. Thelow resolution part of the polyhedron in Figure V.11(a) is shown in Figure V.11(b).
Theverticesin (b) are computed as certain weighted averages of theverticesin (a). Theseweighted averages
essentially implement alow passfilter denoted as A. Thedetail part naturally consistsof acollectionwavel et
coefficients, computed as weighted differences of the vertices in (8). These differencing weights form a
high-pass filter B. The decomposition process (often referred to as analysis), can be used to further split
(b) into an even lower resolution version and corresponding wavelet coefficients, resultingin atypical filter
bank procedure.

The analysisfilters A and B are constructed so that the original polyhedron can be recovered exactly from
the low resolution version and the wavelet coefficients. Recovery (often caled synthesis) proceeds by
refining each triangle of (b) into four subtriangles by introducing new vertices at edge midpoints, followed
by perturbing the resulting collection of vertices according to the wavelet coefficients. The refining and
perturbing steps are described by two synthesisfilters P (the refining filter) and Q (the perturbing filter).

Thetrick isto develop thefour analysisand synthesisfilters so that: (1) thelow resolution versionsare good
approximations to the original object (in a least-squares sense), (2) the magnitude of a wavelet coefficient
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reflects a coefficient’s importance by measuring the error introduced when the coefficient is set to zero, and
(3) andysis and synthesisfilter banks should have time complexity linear in the number of vertices.

5.3 Our view of multiresolution analysis

To formulate multiresol ution analysisfor surfaces of arbitrary topological type, wemust use afairly general,
but unfortunately abstract, view of multiresolution analysis. The bare essence of multiresolution analysisis
contained in two basic ingredients: an infinite chain of nested linear functionspaces VO c Vic v2c ...
and an inner product ( £, ¢) defined on any pair of functions f, g € V7, for somej < oc.

Theinner product is used to define the orthogonal complement or wavel et spaces W/ as
Wi = {feV™* | (f.9)=0VvgeV}.

The following terminology is now standard: scaling functions, denoted by 's, refer to bases for the spaces
V7, and wavelets, denoted by 1’s, refer to bases for the wavelet spaces 17 . Note that we do not require
the scaling functions or wavelets to form orthonormal bases. As shown in Section 5.6.3, the analysis and
synthesis filters are determined by considering various ways of changing bases between scaling functions
and wavelets.

5.4 Nested linear spacesthrough subdivision

When formulating multiresolution analysis on the entire real line, the nested sequence of linear spaces
required by multiresolution analysis are generally obtained by defining a single scaling function ¢ () that
satisfies a refinement equation of the form

plz)= Zpi P(2x — 1)

for some fixed constants p;. The refinement equation (sometimes called a two-scale relation) guarantees
that the spaces defined as 4 4
V7= Span{p(2’z — i) |i = —o0,...,00}

are nested. In other words, the nested spaces are generated by translations and dilations of asinglerefinable
function ¢(z).

To generaize these ideas to domains of arbitrary topological type one could attempt to make definitions for
what it means to dilate and translate a function on an arbitrary topological domain. One could then try to
find arefinable scaling function and proceed as before to define orthogonal complements, wavelets, and so
on. We have instead chosen what appearsto be a simpler approach.

In this section, we use recursive subdivision to define a collection of functions ¢ (x) that are refinable in
the sense that each function with superscript ; liesin the span of the functions with superscript j 4+ 1; the
argument x is a point that ranges over a domain 2-manifold of arbitrary topological type. In one respect,
thisis ageneralization of the approach taken by Daubechiesin that her locally supported orthogonal scaling
functions are aso defined through a recursive subdivision procedure. Although in general the /' *1(x) are
not simple dilates of the ¢’ (x), we can nonethel ess use them to define a sequence of nested spaces.
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Figure V.12: Loop’'s subdivision scheme: (a) the control mesh /9, (b) the mesh M after one subdivision step, (C)
the mesh A2, (d) the limit surface.

5.4.1 Subdivision surfaces

Intuitively speaking, subdivision surfaces are defined by iteratively refining a control polyhedron 4° so
that the sequence of increasingly faceted polyhedra M1, M2, ... converge to some limit surface S = M.
In each subdivision step, the vertices of A7+ are computed as affine combinations of the vertices of A7,
Thus, if V7 isamatrix whose i-th row consists of the z, y, and = coordinates of vertex i of M7, there exists
anon-square matrix of constants P/ such that

Vvitl = pivy, (11)

The matrix P’ therefore characterizes the subdivision method. The beauty of subdivision surface schemes
isthat the entries of P/ depend only on the connectivity of theverticesin M °, not on the geometric positions
of the vertices.

The simplest example of such ascheme is polyhedral subdivision. Given a polyhedron 3/° with triangular
faces, a new polyhedron M? is built by splitting each triangular face of M9 into four subfaces as in
Figure V.13. The matrix PP characterizing the first subdivision step is aso shown in Figure V.13. Running
this subdivision scheme for j stepson an initial triangular mesh 4° producesamesh M7. M7 includesthe
vertices of 1/° together with new vertices introduced through subdivision.

Polyhedral subdivision converges to the origina polyhedron M°, that is, to a C° surface. However, other
schemes have been developed that converge to C'* limit surfaces that either approximate or interpolate the
verticesof M°. Subdivisionschemescan befurther categorized asbeing either primal or dual. A subdivision
scheme is primal if the faces of the mesh are split into subfaces by the refinement procedure. Catmull-
Clark subdivision [19, 100] is a primal scheme based on subdivision of quadrilateral faces. Polyhedral

subdivision, the butterfly scheme of Dyn, Gregory, and Levin [72] and Loop’s method [106, 123] are primal
schemes based on subdivision of triangular faces. A schemeis dual if the structure of the refined mesh is
obtained by doing a primal subdivision followed by taking the polyhedra dual of the result. Doo-Sabin
subdivision[69, 68] isadual scheme based on quadrilaterals. For simplicity we shall restrict the discussion
to primal triangular subdivision schemes, although our results hold more generally for any primal scheme.
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Figure V.13: Polyhedral subdivision of atetrahedron and various associated filters
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5.4.2 Basisfunctions from subdivision

All subdivision schemes we have mentioned converge to either C° or C'* surfaces. In such acasg, it is
possible to show that the resulting limit surface can be parametrized using a function S(x), where x is a
point that ranges over the faces of the initial mesh A° [125]. The initial mesh 3 ° therefore serves as the
parameter domain for thelimit surface. Specifically, it can be shown [125] that for any j > 0, and any point
x on some face of M9, S(x) can be written as

S(x) = Y vlgl(x). (12)

where v/ denotesthe i-th vertex of M7. The scaling functions ¢ (x) depend on the subdivision rules used,
and in genera are defined through alimiting procedure. Although they are well defined and continuous if
the subdivision scheme convergesto a C° surface, they generally cannot be expressed as polynomials, or in
any other closed form.

It is generally helpful to write Equation 12 in matrix form as
S(x) = @/ (x) VI (13)

where ®/(x) denotes the row matrix of scaling functions ¢! (x), and where V7 isasin Equation 11. These
scaling functions can also be shown to satisfy the refinement relation

®/(x) = ®HY(x) PI. (14)

For primal subdivision schemes, it is convenient to express Equation 14 in block matrix form by writing
>l(x) as | | |
O H(x) = (07 (x) NTH(x)) (15)

where 07 +1(x) consistsof all scaling functions ¢! *(x ) associated with the“old” verticesof M7 (theblack

verticesin Figure V.13) and /7 *+1(x) consists of the remaining scaling functions associated with the “ new”
vertices added when obtaining M7+ from M7 (thewhite verticesin Figure V.13). Equation 14 can now be
expressed in block matrix form:

P/ (x) = (O7F(x) NHY(x)) ( gj ) : (16)

The block matrix decomposition of P° for the example tetrahedron appearsin Figure V.13.
5.4.3 Nested linear spaces
Given these relations, a chain of nested linear spaces V7/( M°) associated with a mesh M© can now be

defined as follows: 4 ,
V7(MP) := Span(®’(x))

Equation 14 implies that these spaces are indeed nested; that is,

VoM cvim® .-
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The notation V/(M?) is to emphasize that the linear spaces are adapted to M° in that they consist of
real-valued functions having M ° as the domain.

5.5 Inner productsover subdivision surfaces

Given achain of nested linear spaces, the other necessary ingredient for the creation of a multiresolution
analysis is the existence of an inner product on these spaces. In this section, we define an inner product
and describe at ahigh level asimple method for computing the inner product of functions defined through
subdivision. A detailed trestment is presented in Lounsbery et al. [125].

55.1 Définition

Given two functions f, g € V7/(M©9), j < oo, (with some foresight) we define their inner product to be

)= Y g [ fe0ax)ax

TEN(MDO)

where dx is adifferential area, and where A( M °) denotes the set of triangular faces of M°.

This definition of inner product implies that the faces of M° are weighted equdly; that is, the inner
product is independent of the geometric positions of the vertices of A°. This has an important practical
consequence: the wavelet spaces are invariant of the geometry of the mesh, meaning that a significant
amount of precomputation of inner products and wavel ets can be done.

An dternative definition is to weight the inner product by areas of triangles in A°; however, such an
approach has the practical drawback that much less precomputation is possible.

55.2 Computation

For any given f, ¢, one could estimate the inner product ( f, ¢) using numerical cubature. It turns out,
however, that it is possible to compute ( f, ¢) exactly if f and g are given as expansionsin ¢ :

fx) =3 flelx) Zgz #l(x
Bi-linearity of the inner product allows ( f, ¢) to be written in matrix form as
(f,9) =g Tt, (17)

where f and g are column matrices consisting of the coefficients of f and g, respectively, and where I is
the square matrix whose ¢, ¢'-th entry is (I7), ;» = <c,92, 4,). Theinner product matrix I° for the example
tetrahedron appearsin Figure V.13.

If the subdivision matrices P/ are sparse, the scaling functionsin @’ (x) will be locally supported, meaning
that I’ isal so sparse. We show in Lounsbery et al. [125] that the entries of I/ can be computed exactly simply
by solving a system of linear equations. This result is somewhat surprising since there is no closed form
expression for the scaling functions— they are known only as limit functions defined through subdivision.

Without going too far into the details, the basic idea behind the exact integration procedure is to establish
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the following linear recurrence that relates I to I/ +1:
I =PH'rttpi,  j=0,..

Since P/ is known, the only unknowns in the above equation are the entries of the Is. It turns out that
the infinite chain of recurrences has only afinite number of distinct entries (up to a common scale factor),
meaning that afinite linear system can be solved to determine these entries.

Once the entries of each of the inner product matrices have been determined, an arbitrary integral such as
(f,¢) can be be computed exactly using Equation 17.

5.6 Multiresolution analysis based on subdivision

Having established nested linear spaces and an inner product, we are now inaposition to define our wavel ets
spaces as

WI(MO) = {f e V/THMO) | (f.g9) =0 Vg e V/(MO)}.

and to construct wavelets, that is, sets of functions W/(x) = (¢](x),¥5(x), ...) spanning the spaces
W7 (MP°). (The elements of W (x) we construct are not mutually orthogonal. Some authors, including
Chui [26], refer to such functions as pre-wavel ets.)

5.6.1 The construction

Our construction consists of two steps. First, we build a basis for V/*+1(11°) using the scaling functions
®’(x) and the“new” scaling functions A7 +1(x) in V7+1( MO). Itisstraightforward to show that the ®7 (x)
and A7*1(x) together span V/+1( M) if and only if the matrix O’ isinvertible. Most primal subdivision
methods such as polyhedral subdivision and the butterfly method have this property.* Given a function
57+1(x) in VI+1(MO) expressed as an expansion in the basis (®/(x) A7*1(x)), an approximation in
V(M) can be obtained by restrictionto ®/(x), that i, by setting to zero the coefficients corresponding to
N7*L(x). However, this generally does not produce the best | east-squares approximation.

To ensure the best |east-squares approximation &fter restriction to @’ (x), we orthogonalize the new basis
functions A1 (x) by computingtheir projectioninto 17 ( M°). Theresultingfunctions W/ (x) arewavel ets
since they form abasis for W7 ( M?). Expressed in matrix form,

N x) = Wi(x) + D/ (x) o, (18)

where o’ isamatrix of yet to be determined coefficients. Figure V.14 is a plot of one such wavelet for the
case of polyhedral subdivision. If $7+1(x) is expanded in terms of @ (x) and W/ (x), then the restriction
of $9t1(x) to @’ (x) is guaranteed to be the best approximation to 57+1(x) in V7(M?°) in aleast-squares
sense.

“One notable exception is Catmull-Clark subdivision for vertices with three incident edges. However, the subdivision rule for
such vertices can be easily modified to produce an invertible matrix.
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FigureV.14: A polyhedral wavelet centered on avertex with 6 incident edges.

5.6.2 Computation of wavelets

The coefficients &’ are the solution to the linear system formed by taking the inner product of each side of
Equation 18 with @/ (x):

(@(x),®(x))a’ = (@(x), N (x)),
= (P (@7 (x), N (x)) (19)

where (F, G) stands for the matrix whose 7, i'-th entry is ((F);,(G);). The matrix (®7(x), ®/(x)) is
therefore smply I/, and the matrix (®7*1(x), NV*+1(x)) isasubmatrix of I'+1 consisting of those columns
corresponding to members of A7t1(x). The matrix a® for the example tetrahedron appears in Figure V.13.

Two difficulties arisein solving this system of equations. First, theinner product matrix I’ must be inverted.
Second, the inverse of I’ is dense even though I/ is sparse. As a consequence, the resulting wavelets are
globally supported on A2, implying that straightforward implementations of filter bank decomposition and
reconstruction agorithmswould require quadratic time. We currently do not know of aconstruction leading
to unique locally supported wavelets, nor do we know if such a construction always exists. Our approach
for now, which is relatively common in practice and has worked very well in our level-of-detail control
experiments described in Section 5.7, isto obtain locally supported functions by relaxing the condition that
the o (x)’s lie exactly in W7 (MP9). Instead, we construct them to span a space W that is some (non-
orthogonal) complement of V7 ( M9) in V7+1(M0). We show below that it is possible to make W ( M°)
closeto W7 (M?9), at the expense of increasing the supports of the quasi-wavelets.

Our wavelets are constructed by selecting their supportsa priori. For each 7 (x), those members of @/ (x)
whose supports are sufficiently distant from the support of (A7 +1); have their corresponding coefficientsin
the i-th column of o’ set to zero. The remaining non-zero coefficients can be found by solving a smaller,
local variant of Equation 19. By allowing more of the coefficients of o’ to be non-zero, the supports grow,
and W2(M©) approaches WO( MPO).
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5.6.3 A filter bank algorithm

Analysis and synthesis filters for multiresolution analysis on the infinite real line are spatiadly invariant,
meaning that they can be represented by a convolutionkernel, that is, by a sequence of real numbers. Thisis
not the case for multiresolution analysis on arbitrary topological domains. The filter coefficients in general
must vary over the mesh, so the filters are represented by (hopefully sparse) matrices.

The analysis and synthesisfilters can be conveniently expressed using block matrix equations. Let Wi (x)
denote the row matrix of wavelets spanning W (M°). For any multiresolution analysisthe synthesisfilters
are defined by therelation

(@i(x) Wix)) = tix) (P QF ), (20)
and the anaysisfilters are obtained from theinverse relation
Ad ) oy —1
(BJ‘):(P‘7 Q]) ' (21)

For our construction it is again convenient to write ®'+1(z) in block form as (07+1(x) A7*1(x)). It then
followsfrom Equation 18 that our synthesisfilters can be written in block form as

, , 0O’ —0/df
(P] Q]):(NJ 1_quaj)7 (22)

where 1 denotes the identity matrix. The analysis filters are obtained from Equation 21. Examples are
shown for the tetrahedron in Figure V.13.

From a practical standpoint, it is critical that the analysis and synthesis matrices are sparse. To achieve
linear time decomposition and reconstruction, they must each have a constant number of non-zero entries
in each row. If P/ and o’ are sparse, then Q’ is sparse. Unfortunately, the analysis filters derived from
Equation 21 need not be sparse. For interpolating subdivision schemes such as polyhedral subdivision and
the C'1 “butterfly” scheme of Dyn et. al. [72], the situation is much improved. Such interpolating schemes
have the property that O/ is the identity matrix. Equation 22 in this case simplifies greatly; the resulting

filtersare
S 1 —a’ AJ 1-o’ N/ o
(P Q]):(NJ 1_Nfaf) (BJ‘):( _N 1)‘

If P/ and o’ are sparse, then all four filters are also sparse. The situation is less desirable for methods
related to B-splines, such as Loop’s scheme and Catmull-Clark surfaces. For these subdivision schemes,
the synthesis filters are sparse, but the analysis filters are dense. Making these methods efficient for
multiresolution analysisis atopic of future research.

The analysis filters can be used to decompose a surface S7+%(x) in Vi+1(MO) given by

§7400) = 3l (23)
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into alower resolution part in V¥ ( M°) plus adetail part in W (110)
STH(x) = o wlel(x) + D wlvi(x)

asfollows. Let V'’ beasin Equation 13, and let W7 denote the corresponding matrix of wavel et coefficients
w]. We can rewrite Equation 23 in matrix form and substitute the definition of the analysisfilters:

St (x) = @/tlx)Vvitt
- (cpi(x) Lw'(x)) ( gj )Vj+l
= Oi(x)A7 VIt i(x)BI Vit

and therefore

Vi= AJ Vit Wi = B vitl
Of course, the analysisfilters A7~ and B/~ can now be applied to V7 to yield V/~* and W7~! and so
on. A similar argument shows that V7** can be recovered from V7 and W/ using the synthesisfilters:

Vit = pivi 4 Q] W

5.7 Examples

In this section, we apply our theory to two compression problems: the compression of a polyhedral model
consisting of over 32,000 triangles, and compression of a piecewise linear representation of acolor function
defined on over one million points on the globe.

The input for the first example (shown in Color Plate 1(a)) is a polyhedral mesh consisting of 32,768
triangles created from laser range data provided courtesy of Cyberware, Inc. The triangulation was created
by recursively subdividing an octahedron six times. The octahedron therefore serves as the domain mesh
MO, with theinput triangulation considered asa parametric function 5(x),x € M°lyingin V8(70). More
precisaly, if v denote the vertices of the input mesh, S(x) can be written as

5(x) = PO(x)VE, x e MO

where the scaling functions ®°(x) are the (piecewise linear) functions defined through polyhedral subdivi-
sion.

The wavelets Qb{ (x) for this example are chosen to be supported on 2-discs. (The k-disc around a vertex v
of atriangulation is defined to be the set of all triangles whose vertices are reachable from » by following
k or fewer edges of the triangulation.) The filter bank process outlined in Section 5.6.3 can be applied in
linear time to rewrite S(x) inthe form

5
S(x) = P%x) VO+ 3~ Wi(x) WY,
7=0
The first term describes a base shape as the projection of S(x) into V(4°), which in this case is an
approximating octahedron with vertex positions given by the eight rows of V0.
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Approximationsto the original mesh S(x) can be easily obtained from the wavel et expansion by adding to
the base shape only those wavel et coefficients w! whosesizeis greater than somethreshold e. The accuracy
of the approximations can be controlled by varying ¢, as shown in Color Plate 1(d), (g), and (j). These
model s correspond to compressionsof 99%, 88%, and 70%, respectively. Noticethat thissimplerule causes
the mesh to refine in areas of high detail, while leaving large trianglesin areas of relatively low detail.

Color Plate 1 aso illustrates the use of wavelet approximations for automatic level-of-detail control in
rendering. Images of the full-resolution mesh at various distances are shown in the left column. When
viewing the input polyhedron at these distances, it is inefficient and unnecessary to render al 32,000
triangles. The approximations shown in the second column may instead be used without significantly
degrading image quality.

Suddenly switching between models of different detail in an animation often produces a noticeable jump.
This problem is easily mended by using a wavelet expansion where the wavelet coefficients are treated as
continuousfunctionsof the viewing distance. Thissimpletechniqueallowstheobject geometry to smoothly
change its appearance as the viewing distance changes. The effect of thistype of continuous level-of-detail
control is demonstrated in an accompanying video.

Color Plate 2 demonstrates another application of our method, that of compressing afunction on the sphere.
In this example, elevation and bathymetry data obtained from the U.S. National Geophysical Data Center
was used to create a piecewise linear pseudo-coloring of the sphere. The resulting color function contained
2,097,152 trianglesand 1,048,578 vertices. Thefull resolution pseudo-col oring wastoo large to be rendered
on an SGI Indigo Extreme with 128M B of memory, and is therefore not shown initsentirety in Color Plate
2. An appreciation for the density of the data can be gotten from Color Plate 2(h), where even at close range
the mesh lines are so close that the image is amost completely black.

The approximations shown in Color Plate 2(a)-(f) were produced using our method. Color Plate 2(a) shows
adistant view of the Earth using a 99.9% compressed approximation (the meshis shownin (b)). Likewise,
Color Plates 2(c) and (d) show the result of a 98% compression for a medium-range view. At close range
the 90% compression moddl in (€) is nearly indistinguishable from the full resolution model in (g). A
comparison of the meshes shownin (f) and (h) reved s the striking degree of compression achieved in this
case.

5.8 Summary

In this section we have sketched some of the ideas necessary for extending multiresolution analysis to
surfaces of arbitrary topological type. Subdivision surfaces were shown to play an important role in this
theory, making them an even more attractive method modeling complex surfaces.

Thetheory and constructionswe have described hold for any primal subdivision scheme such as polyhedra
subdivision, the butterfly method [72], Loop’s method [123], and Catmull-Clark surfaces[19]. The results
also hold for piecewise smooth subdivision as described in Hoppe et al. [106], and for open surfaces
possessing boundary curves. While all these subdivision schemes possess linear time synthesisalgorithms,
our analysis algorithms are linear time only for the polyhedral and butterfly schemes.
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There are numerous areas for future work:

— Our surface decomposition retains the topological type of the input surface. When the input is a
relatively simple object with many small holes, it is more often desirable to decompose the input into
a“topologically simpler” surface, that is, one with lower genus, fewer boundary curves, etc.

— Straightforward anaysis agorithms for bounded interval B-spline wavelets [29] require quadratic
time. Quak and Weyrich [159] have recently given a linear time algorithm. It may be possible
to adapt the Quak-Weyrich technigue to produce linear time analysis for Catmull-Clark and Loop’s
surfaces.

— To use our method for level-of-detail control as described in Section 5.7, the object O to be viewed
must first be projected into a space V7 ( M°), for some j, and for some (hopefully simple) mesh 1/°
homeomorphic to O. Stated less abstractly, our filter bank algorithms can only be run on meshes
that result from recursively subdividing asimple base mesh 19, Often one knows a parametrization
F(x)for O, aswasthe case for the two examples presented in Section 5.7. Knowledge of the scaling
function and wavelet and dualsshould allow /'(x) to be efficiently projected into an appropriate space
V7 (MP). We are therefore interested in finding convenient representations for the duals.

— Theimagesin Color Plates 1 and 2 were created by simply adding the wavelet coefficientsin order of
largest to smallest magnitude. We are currently investigating view-dependent error measures designed
to produce improved image quality using even coefficients and hence fewer triangles.
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VI Wavelet Radiosity:
" Wavelet Methodsfor Integral Equations

Peter SCHRODER
Princeton University

1 Introduction

In this chapter we will explain how wavelets can be used to solve integral equations. The example we
use is an important integral equation in graphics, the radiosity equation. The radiosity equation governs
the transport of light between surfaces under the assumption that all reflection occurs isotropically. The
resulting integral equation is linear and can be analyzed as a linear operator. Since wavelets can be used
as bases for function spaces, linear operators can be expressed in them. If these operators satisfy certain
smoothness conditions—as radiosity does—the resulting matrices are approximately sparse and can be
solved asymptotically faster if only finite precision isrequired of the answer.

We devel op this subject by first introducing the Galerkin method which is used to solve integral equations.
Applying the method results in a linear system whose solution approximates the solution of the original
integral equation. This discussion is kept very general. In a subsequent section the realization of linear
operatorsin wavel et basesisdiscussed. Therewewill show why the vanishing moment property of wavelets
results in (approximately) sparse matrix systems for integral operators satisfying certain kernel estimates.
After these foundations we change gears and describe some techniques recently introduced in the radiosity
literature. A technique, known as Hierarchical Radiosity, is shown to be equivalent to the use of the Haar
basis in the context of solving integral equations. Treating this example in more detail allows us to fill
many of the mathematical definitions with geometric intuition. Finally we discuss the implementation of a
particular wavel et radiosity algorithm and the construction of an oracle function which iscrucial for alinear
time algorithm.

In general we will concentrate on the arguments and intuition behind the use of wavelet methods for
integral equations and in particular their application to radiosity. Many of the implementation details will
be deliberately abstracted and they can be found by the interested reader in the references ([166, 94, 102)).
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1.1 A Noteon Dimensionality

Thefinal application of thedevel opmentsin thischapter will beto theproblem of radiosity in3D, i.e., thelight
transport between surfaces in 3D. Consequently all functions will be defined over 2D parameter domains.
Initially we will discuss only 1D parameter domains to simplify the exposition. The chief advantage of
this reduction in dimensionality lies in the fact that many quantities, which we have to manipulate, have
a number of subscripts or superscripts which is directly proportional to the dimensionality of the problem.
It is easy to loose sight of the essentia ideas unless we limit ourselves to the 1D domain case. The 1D
domain case corresponds to what is known as flatland radiosity [103], i.e., the exchange of light between
line segmentsin the plane. Aside from dimensionality there is no essential difference between the integral
equations governing 3D or flatland radiosity. Where appropriate we will be explicit about the changes
necessary to go to 2D domains. In genera the differences are limited to more indices to manipulate, or in
the case of aprogram, more array dimensionsto iterate over.

2 Galerkin Methods

Galerkin methods are a class of algorithms designed to solveintegral equations of a particular kind [54]. In
this section we begin with an introduction to the radiosity equation as a particular example of an integra
equation which can be solved efficiently with a Galerkin method. Thisisfollowed by a detailed description
of the quantities which need to be computed when applying a Galerkin scheme to such an equation.

2.1 TheRadiosity Equation

The computation of radiosity, i.e., power per unit area [%], on a given surface is awidely used technique
in computer graphics to solve for the illumination in an environment. Radiosity is governed by an integral
equation which arises from a more general integral equation known as the rendering equation [115] when
one assumes that all reflection occurs isotropically. Solving the underlying integral equation exactly is not
possible in general. Thus numerical approximations must be employed leading to algorithms which are
generdly very expensive. The fundamental reason for the high cost of humerical approximationsisthat all
surfaces in a given scene can potentially influence al other surfaces viareflection.

Radiosity B(y) isafunction defined over all surfacesM? C R whichmake up agivenscene. Itisgoverned
by a Fredholm integral equation of the second kind

Bly) = B()+ply) [ Glo.y)Bla) da. &

which describes radiosity as a sum of an emitted part (light sources) and the product of irradiance,
computed by the integral, multiplied with the local reflectance p(y), i.e, the fraction of light reemit-
ted. lrradiance accounts for radiosities originating at al other surfaces weighted by a geometry term
G(z,y) = ccosb, coseyr;de(x, y) consisting of the cosines made by the local surface normals with a
vector connecting two points, a normalization constant ¢, the distance r,.,, between the two points, and a
visibility function whose value isin {0, 1} depending whether the line between the two surface points
and y is obscured or unobscured respectively (see Figure VI.1). The points » and y are functions of some
parameter. For flatland radiosity the parameter domain is 1D with ¢ = 1, and the normalization constant
¢ = 1/2. For full 3D radiosity the domain is 2D, d = 2 and the normalization constant isc = 7~*. Inall
the following derivations d, ¢, and » and y will be defined according to their context (1D or 2D).
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Figure VI.1: Geometry for the transport between two surfaces. ¢ denotes the angles that the vector connecting two
points on the surfaces (= and y) makes with the loca surface normals.

In the context of integral equations we refer to the function G as the kernel of the integral operator
G(f)= [ G(z,.)f(z)dz. Using operator notation we can express the equation to be solved as

(I—pG)B = B

This particular integral operator has a number of properties which will be important later on. & issingular
because the r factor in its denominator becomes zero for surfaces that touch. Nonetheless G is a bounded
operator and closed on all L? spaces [7]. We are mostly interested in its action on L2, i.e., the space which
contains al finite energy functions. Since p is strictly less than one for physically realistic environments
we aso know that the spectrd radius of pG is strictly less than one, insuring the convergence of various
iterative schemes. In particular we can compute, at least formally, the solution to the operator equation by
a Neumann series

o0

B=(I-pG)"*B =3 (pG)'B* = B+ (pG)B° + (pG*B" ...,
=0

which gives the solution as the sum of directly emitted light, light that bounced through the environment
once, twice, and so forth. While not a practica prescription for computation as such, it is honetheless a
basis for a number of algorithms to compute the solution to such operator equations. In particular in our
case the physical systemis generally so damped (small p) and the falloff is so quick (2 in 3D) that iterative
schemes need to compute only afew termsin the above series until (numerical) convergence.

The task then is to find an efficient representation of both B and pG which facilitates the computation of
termsin the Neumann series. In what follows we will assume that p is piecewise constant so that we only
have to concentrate on the realization of G. Thisis an often made assumption, but it is not necessary [88].
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Once again we make it to simplify our exposition.

2.2 Projections

A canonica solution technique for integral equations such as the radiosity equation (1) is the weighted
residual method [54], often referred to as finite elements. Historically radiosity algorithms were derived
from power balance arguments[91, 150] and only recently [103] wasthetraditional mathematical framework
brought to bear ontheradiosity problem. However, al previousa gorithmscan be analyzed in theframework
of the weighted residual method. For example, Classical Radiosity (CR) [91, 150] can be analyzed as a
finite element method using piecewise constant basis functions.

A Galerkin method is an instance of aweighted residual method in which the original operator equation is
projected into some subspace. We then seek an approximation B of B in thissubspace such that theresidual

~

rly) = Bly) = B() = p(y) [ Glo.y)Bla) da.
i.e, the difference between the left and right hand sides of the original integral equation with Bin place of
B isorthogonal to the chosen subspace. To understand the projection of our operator G into a subspace we
first consider writing the operator with respect to a basisfor the entire space.

Let {N;},;c7z be some basis for 2. Using this basis the radiosity function B is characterized by a set of
coefficients b; such that B(xz) = >, b;N;(«). The coefficients b; can be found by projecting the function B
with respect to the dua basis { N, };z which is defined by the property

(N;, ) = /Ni(ac)]vj de = 6.

Using thisfact we can write

B(z) = me(m) =Y (B, N;)Ni(x).

K3

Since the dud basisis abasis as well—whose dual isthe original (primal) basis—we can also write

B(x)=>_b;Nj(z) = > (B, N;)N;(x).

J J

From the study of linear operators we know that a linear operator is fully specified if only we know its
action on abasis set. In our case the resulting vectors are {G(NV;)} ;7. These vectors, living in our space,
are subject to being described with respect to our basis as well, leading usto consider

Gij = (G(N)), Ny).

Arranging these coefficientsin atableaux we arrive at an infinite sized matrix equation which represents the
original integral operator
Yi: b, = bf + p; Z Gijb]‘. (2)

J
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The coefficients of this system are integrals of the form

Gij://G(way)Nj(x)Ni(y) du dy. (3)

These coefficients are often called couplings or interactions to remind us that they have the physica
interpretation of measuring how much one basis function physically interacts or coupleswith another across
the integral operator. Note that the well known form factors of CR arise as F;; = G;; when N; = X4, /A
and N; = x4, (xa(z) isthefunction which takes on the value 1 for = € A and O otherwise).

In practice we haveto deal with finite sized matrices. Thiscorrespondstoignoringal but afinite sub-square
of theinfinite matrix, or said differently, the use of afinite basis. Doing thiswe in effect fix some subspace
V' C L? spanned by the corresponding finite basis. There are many choices for V' (and its associated basis).
For example one choice is the space of functions piecewise constant over fixed intervals, and one basis for
that space isthe set of “box” functions. Other examples are spaces spanned by “hat” functions or B-splines
of higher orders. It isimportant to remember the difference between a choice of subspace and a choice of
basis for this subspace. Once we make a choice of subspace, e.g., al functions which are piecewise linear,
we still have considerable freedom in choosing abasis for this space. In particular we will consider wavel et
bases.

When choosing a finite primal basis {N;};-1 .., and associated dua basis {]\72'}2':17,,,@ we need to be
careful asto the spaces specified by these. The subspace span{ N, } is not necessarily the same as the space
span{ N;}. If they are the same we say that { N} and { V;} are semi-orthogonal and in particular they are
orthogonal if N; = N ;. In either of these cases we still have a Galerkin technique. The more general
case arises when we consider biorthogonal bases { V;} and { V;} in which case we have a Petrov-Galerkin
method. In what follows we will quietly ignore this distinction and collectively refer to the resulting
algorithms as Galerkin methods.

Once we have chosen finite subsets {V; };-1,... , and {]\72'}2':17,,,@ of our basis we have in effect restricted
the integral equation to a subspace. To analyze these restrictions further we define the projection operator
for this space by
B=ryB=Y (B, N)N,.
=1
Sincethespan of theprimal basisisnot necessarily the same asthe span of thedual basis, wehave Py, # Py

Limiting the original integral equation to this subspace we arrive at
(I — pPyGPy)B = Py B°,

which is now characterized by afinitelinear system (G; ) j=1,...». Inthisway we have reduced our task to
one of solving afinite linear system in order to find coefficients b, for a function which is an approximation
to the actual solution. The quality of this approximation depends on the approximation properties of the
space V. Generally these spaces contain piecewise polynomial functions up to someorder M — 1. Inthis
caseitiseasy to seethat theerror in our computed answer | B — B| can be! O(hM), where h isthesidelength
of some discretization imposed on the original geometry. There are other sources of error due to imprecise
geometry or boundary conditions for example, which we will not consider here (for a careful analysis of
these see Arvo et al.[7]).

LIt the numerical techniques employed properly account for the singularity in the kernel function.
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Figure VI.2: Two simple environments in flatland, two parallel line segments (left), and two perpendicular line
segments (right), and the resulting matrix of couplings using piecewise constant functions. (Adapted from [166].)

Since wavel ets can be used as bases for function spaces it makes sense to consider them in the context of a
Galerkin method to solvean integral equation. Inthe next section we turn to adetailed study of Py G Py and
the associated coefficients ¢;; in the case that the space V' is some space V; in a multiresolution analysis
and the basisset { N; };—1,..., isawavelet basis.

3 Linear Operatorsin Wavelet Bases

In the previous section we showed why the object Py-G Py is central to our study. This projected version of
the integral operator G has some special properties which wavelets can exploit to yield efficient algorithms.

Consider CR which uses piecewise constant functions at some (finest) level V7, of meshing. Two examples
of theresultingmatrices (G ); ;=1,....32 areillustratedin Figure V1.2. Thefigure showstwo flatland radiosity
scenarios. On the left is the flatland environment of two paralle line segments (upper left hand corner;
denoted E and R). The resulting matrix of (I — pG) has a block diagonal form. The diagonal blocks are
identity matrices while one of the off diagonal blocksis shown enlarged. The size of dotsis proportional
to the magnitude of the coupling coefficient ¢;;. Similarly on the right we see the resulting matrix for an
environment with two line segments meeting in a corner, for which the domain contains the singularity.
Notice how smooth and coherent the resulting matrices are. This is due to the smoothness of the kernel
function itself. Suppose now we treat these matrices as pictures and apply alossy wavelet compression to
them. We can expect a high compression ratio while maintaining a good representation of the matrix, i.e.,
incurring only a small error in our computed answer. This is the essence of the use of wavelet bases for
integral operators with smooth kernels (such as radiosity).

To understand the meaning of a lossy compression scheme in the context of linear algebra computations
we need to connect the wavelet transform of a picture (matrix) to a vector space basis change. Since the
Galerkin method uses projections we define projection operators for a multiresolution hierarchy. For the

space V; we define
-1

Pr= (-, %ik) ik

k=0
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while the wavel et spaces W, have projection operators

2i-1

Qi=Pi1—- P = Zm%m Wi e

k=0

Armed with these we describe—in the context of linear algebra—the first version of a wavelet transform,
which isknown as the standard basis.

3.1 Standard Basis
As we saw earlier there are alternative ways of writing some finest resolution space V7, using wavelets.

Writing Vz, = Vo4 3- %25t W; correspondsto writing the projection operator as P, = Po+ Y23t Q;. Using
thisidentity we have

L1 L1
PLGPL = (Po+ Y Qi)G(Po+ > Qi)
=0 =0

L-1 L-1 L-1
PoGPo+ Y PoGQi+ Y QiGPo+ Y QiGQr.
=0 =0

i,1=0

Thisdecomposition correspondsto aparticul ar two dimensional basi sconstruction. Givenaonedimensional
waveetbasis{yo, ¥ 1},i = 0,..., L—1,k = 0,...,2'—1wecanbuildatwo dimensional basisviaatensor
product construction { o, ¢ } X {©0, Y1m},i,1=0,...,L—1,k=0,...,2 ~1L,andm =0,...,2' - 1.
Thisisoften referred to as the standard realization of theintegral operator [15].

The pyramid a gorithmsthat were mentioned earlier for transforming afunction of asingle variable between
a basis of V7, and the bases in Vg + L1 W; can be applied to matrices (functions of two variables).
In particular the standard decomposition corresponds to applying such a pyramid transform to all rows
(transforming the right hand side P;) followed by a transform of al row transformed columns. This
transformation of the coefficients corresponds exactly to a change of basis as is often done with matrices
for various reasons. The remarkable property of the change to the wavelet basisisthat it can be performed
in time proportional to the number of basis functions, O(n?). In genera expressing amatrix of size O(n?)
with respect to another basis entails a transform of cost O(n3).

Figure V1.3 shows the effects of transforming form factor matrices expressed originally in the piecewise
constant nodal basis (see Figure VI.2) into different wavelet bases. On the left the Haar basis was used,
while on the right the Flatlet basis with two vanishing moments [94] was used. The top row gives matrices
for the example of two parallel line segments, while the bottom row shows the case of two perpendicular
line segments. Notice how many of the coefficients are small in magnitude (small disks). Asthe number of
vanishing moments increases from one to two (left to right) we can observe many more entries becoming
small. Thisdemonstratesfor two particular cases how more vanishing moments|ead to more (approximate)
gparsity in the matrices. In the next section we will explain why vanishing moments are so important for
the compression (sparsification) of matrices which arise from smooth integral operators.
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Figure V1.3: Coupling matrices for two flatland environments (see Figure VV1.2) expressed in wavelet bases. The top
row shows the coupling matrix for two pardlel line segments expressed in the Haar basis (top left) and in the 7>
(Flatlet) basis[94] (top right), which has 2 vanishing moments but remains piecewise constant at the finest level. The
bottom row shows the same bases applied to the form factor matrix for two perpendicular lines segments. (Adapted
from [166].)

3.2 Vanishing Moments

We begin with the definition of vanishing moments. A function ¢ is said to have M vanishing momentsif
its projection against the first A monomials vanishes

($,2Y=04=0,....,M —1.

The Haar wavelet for example has 1 vanishing moment. Other wavelets can be constructed to have more
vanishing moments.

To see why this leads to small coefficients in general consider some function f € 1.2, Suppose we want to
write it with respect to awavelet basis. The coefficients of such an expansion can be found by taking inner
products against the dual basisfunctions

fl@) = 3 big) e

]
We want to show that for smooth f many of the coefficients f; ; = (/. QZZ',]) are small. If f is smooth we
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can apply Taylor’s theorem to expand it about some point zq (for simplicity, let g = 0) to get

M-1 e(i)0y .

|
i=0

for some¢ € [0, »]. Now consider computing f; ;. To simplify the argument we consider the inner product
necessary to compute fo o, i.€., theinner product with +/ (all othersbeing related by transl ationsand scalings).
Suppose that the dual basis functions have vanishing moments, then we can bound the resulting coefficient
asfollows

ool = | [ fla)i(e) do
_ | 199 g
-1/ TQCMWW‘

JM(g)
M!

IN

1 [ |(z) da

IM

A (4)

Cur sup | F ()
Eely

where I isthesize of theinterval of support of . Fromthisbound we can see that the associated coefficient
will be small whenever either I, is small or the M*" derivative of f issmall. Similar arguments can be
made for functions of more than one variable, for example the kernel function of an integral operator.

This bound allows us to argue that many of the entriesin a matrix system arising from an integral operator
will be very small and can be ignored, leading to a sparse matrix system. Recall that integral operators led
to linear systems whose coefficients are integrals of the kernel function against the chosen basis functions
(primal as well as dual). In the case of radiosity this led to the ¢';; (Equation 3). Suppose thét the basis
functionsfor the integral operator are chosen to be wavelets and that these wave ets (both primal and dual)
have vanishing moments. If ¢ issmooth then many of the &&;; will be quite small because of the vanishing
moment property, and can be ignored without incurring too much error. Below we will make this argument
mathematically precise.

3.3 Integral Operatorsand Sparsity

In apaper publishedin 1991 Beylkin et al .[15] showed that for alarge classof integral operatorstheresulting
linear system, when using wavel et bases, is approximately sparse. More specifically they showed that for a
class of integral operators satisfying certain kernel estimates and any € > 0 a §(¢) exists such that all but
O(nlogn) of the matrix entries will be below ¢ and can be ignored without incurring more than an error of
€ in the computed answer.

The requirements on the kernel of the integral operator are given as estimates of “faloff away from the
diagona”

1
|z — y|
Cym

02 K| +10, K| < o g T ®)

[K(z,y)] <
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for some M > 0, and K : R? x R? — R the kerned function of the integral operator in question. Note
that the kernel G of the radiosity integral operator satisfies a falloff property of this type if we replace
|z — y| with r. Since the parameterizations which we use for our surfaces are well behaved (bounded
derivative) thisdistinction from the classical case does not matter. Examining the matricesin Figure VI.3
we can immediately see the O(nlogn) structure. There are approximately logn bands visible, each of
length approximately equal to ». Thisis particularly noticeable in the case of two parallel lines and the
Haar basis (upper left in Figure V1.3). We will not give aproof here, but give a geometric argument for the
case of radiosity later on. The geometric argument is equivalent to the mathematical proof (for the radiosity
operator), but provides moreintuition.

Beylkin et al.[15] proceeded to analyze the logn dependence in the number of non-negligible entries in
the matrix and showed that by decoupling al the scales it is possible to reduce the number of needed
entries to O(n) (for certain classes of operators). It is interesting to note that the original Hierarchical
Radiosity (HR) agorithm [102] (see below) aready gave a proof of the O(n) complexity based purely
on geometric arguments using a construction which does decouple the scales in a way very close to the
Beylkin et al. argument. Thisso called non-standard construction isalso the basis of |ater wavel et radiosity
work [94, 166]. We will describe this construction next.

3.4 Non-Standard Basis

We saw earlier how the decomposition P, = Py + Y173 @, applied to PG P;, on both sides resulted

in aredization of G in the wavelet basis. The resulting sum consisted of terms involving all possible
combinations of subspaces { Fo, );}i=o0,..,r,—1 On €ither side of G. Said differently, the operator was
expressed as a sum of contributions between subspaces at all resolutions. To remove this coupling across
level s we use a telescoping sum argument to write

L-1

PLGPL = PRoGPo+ Y (Pii1GPiy1— PiGP)
=0

L-1 L-1 -1

PoGPo+ Y QiGPi+ > PGQi + > QiGQi,
i=0 i=0 i=0

using the fact that P;11 = P; + (; and rewriting each summand in turn as

Piy1GPia— PGP, = (P +Q)G(P + Q) — PGP,
= PGQ; +Q:GF + Q.:G0;.

The main difference to the earlier decomposition isthe fact that the subspaces occurring on either side of G
in the final sums all have the same index, i.e., only spaces at the same level interact. Thisisreferred to as
the non-standard realization, since it corresponds to a realization of the operator in a basis which requires
an over representation for the functions to which the operator is applied. The over representation occurs
because for each ¢ both P; and (); occur on either side of G. However, the total number of functions that
occur is still only 72, but they cannot be written as a cross product of one dimensional bases. This set of
functions, { Gowo, Bi.m Wi j» Cim@ijs Vimtbij}i=0,...,L—1,andj,m = 0,...,2' — 1, isalso referred
to as the non-standard basis.

FigureV1.4 showsthenon-standard reali zations of theoperatorsfor thetwo flatland environments considered
earlier (Figure V1.2). Each level consists of three blocks. The sets of triples consist of the );G(Q); block
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Non-standard Haar

Non-standard Flatlet 2

Non-standard Haar

Non-standard Flatlet 2

Figure V1.4: Coupling matrices for two flatland environments (see Figure V1.2) expressed in wavelet bases using the
non-standard operator realization. The top row shows the coupling matrix for two paralel line segments expressed
in the Haar basis (top left) and in the 7, basis [94] (top right). The bottom row shows the same bases applied to the
coupling matrix for two perpendicular line ssgments. (Adapted from [166].)

in the lower left, the P;G@); block in the upper left and the Q;G P; block in the lower right. The empty
quadrant would have corresponded to P;G P;, however this is the block that the recursion (telescoping
sum) occurs on. This last observation aso suggests how to transform a matrix from the nodal basis into
the non-standard realization. Instead of performing complete pyramid transforms on each row, followed
by complete transforms on each column, the non-standard realization can be achieved by interleaving the
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Gwi—lﬂm—l Gwi—l,wi—l

Figure V1.5: The 2D non-standard Pyramid Algorithm is applied to coupling coefficients taken from the flatland
radiosity environment consisting of two parale line segments. One step in the transform is shown. (Adapted
from [94].)

individual transforms. First all rows are split into high pass and low pass bands (asinglelevel application of
the two sca e relation), then all columns are subjected to asingle level transform. Now recurse on the low
pass/low passquadrant P;G P; (see Figure V1.5). When writing thisout asamatrix suitablefor matrix/vector
multipliesthe matrices in Figure V1.4 result.

4 Wavelet Radiosity

Wavelet Radiosity (WR) wasfirst introduced by Gortler et al.[94] and Schroder et al .[166]. Their algorithm
unifies the benefits of higher order Galerkin Radiosity (GR) [103, 104, 199, 188] and HR [102]. HR was
the first method to fully exploit a multilevel hierarchy to gain an asymptotic improvement in the efficiency
of radiosity computations. It aso corresponds directly to the use of aHaar wavelet basis for radiosity.

In the next section we first give a quick review of GR to motivate the desire to extend the ideas of HR to
higher order basisfunctions. This latter extension was realized with the use of wavelets. Approaching the
description of thefina agorithmin thisway also alows usto argue the correctness of the method with very
direct geometric means.

4.1 Galerkin Radiosity

GR, first introduced by Heckbert [103, 104] aimsto increase the order of basis functions used in radiosity
algorithms. Inthiscontext CR [91, 150] is seen to be a Galerkin method using piecewise constant functions.
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The origina goal of applying higher order Galerkin methodsto radiosity was to improve the quality of the
answers computed, as well as the efficiency of the computations. In particular using higher order basis
functions allows the use of much coarser meshes than CR required while still meeting a requested error
bound. In his original work Heckbert applied these ideas in aflatland environment using piecewise linear
basis functions. More recently Troutman and Max [188] and Zatz [199] have applied higher order basis
functions to the computation of 3D radiosity. Zatz in particular has pushed the ideas to their extreme by
leaving many surfaces unmeshed. Instead he increased the polynomial order of the basis functions so that
the radiosity even over large surfaces, such as entire walls, could be computed with high accuracy without
any subdivision.

4.2 Hierarchical Radiosity

The first use of hierarchies was made by Cohen et al.[38] who introduced a two level hierarchy known as
sub-structuring. They observed that a fine subdivision was only necessary on the receiver of a transport
of light, while a coarser subdivision was sufficient on the source. Since the roles of receivers and sources
are reversible a two level hierarchy over each geometric primitive resulted. These ideas were developed
further in a paper by Hanrahan et al.[102]. They introduced HR, which applied some arguments from the
n-body literature [6, 98, 11] to CR. In their approach a possibly very deeply nested subdivision hierarchy
was imposed on every primitive. Light transport was allowed to occur throughout these hierarchies. They
showed that to within some user selectable error tolerance a linear number of interactions amongst all
possi bl e interactions was sufficient to compute an accurate answer. Because the algorithms up to that point
always used a quadratic number of interactions HR improved the performance of radiosity computations
considerably.

421 A Noteon Performance Analyses

To put these two techniques and their respective advantages into perspective we need to look at their costs.
Given k input surfaces, say polygons?, any one of the above algorithms will use some number of basis
functions »n defined over the totality of input surfaces. For example in the case of CR the surfaces are
typically subdivided into many elements with each element carrying an associated constant basis function
(whose support is exactly the element itself). In this case n elements correspond to » basis functions.
Similarly for higher order Galerkin methodswe will probably do some meshing into elementsaswell, albeit
not as fine a mesh. Each resulting element will then typically carry some number of basis functions. For
example, if we are using piecewise linear basisfunctions each surface (2D) element will typically have four
basisfunctionsassociated with it. For each parameter axiswe need two basis functions (constant and linear)
and we have two parameter axes for a total of four combinations. In general an M — 1 order piecewise
polynomial basiswill have M2 basis functions defined over each (2D) element. Counting in this manner it
makes sense to talk about » basis functionsin total for /3 ? elements.

Once we have a set of » basis functions the Galerkin method will give rise to a linear system relating all
of these basis functions with each other resulting in a system of size O(n?) (see Equation 2). This linear
system needs to be solved to find the coefficients of all the basis functions. Using some iterative solver the
solution cost is proportional to O(n?). Our linear systems are very well behaved due to the »—¢ falloff in
the kernel of the operator. As aresult, iterative schemes typically converge within very few iterations.

2To simplify our exposition wewill stick to polygons, in particular quadrilaterals. However, thereisno fundamental mathematical
limitation preventing us from using more general parametric surfaces such as bicubic or triangular patches, for example.
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GR, by going to higher order bases, manages to decrease » and thus get efficiency gains. Even though the
number of bases per element increases (M 2) the number of elements necessary for agiven overall accuracy
fals faster for a net gain. To see why this is, we use the fact that a Galerkin method using a piecewise
polynomial basis of order M — 1 will have an accuracy of O(h*)3. Where /. gives the sidelength of the
elementsinthemesh [54, 116]. To makethisconcrete, supposewe arewillingto allow an error proportional
to 1/256. Using piecewise constant basis functions, ~ would have to be on the order of 1/256 to meet
our goal. Now consider piecewise linear functions. In this case ~ would only need to be on the order of
/1/256 = 1/16. So even though the number of basis functions per element goes up, we still come out
ahead. In the case of flatland there are two linear basis functions per element and we go from n = 256 to
n = 2- 16 basestotal. In 3D radiosity where we have 2 - 2 linear basis functions per element »n goes from
2562 downto (2 - 16)? basis functions overall.

We have seen that for n basis functions we have O(n?) interactions in general. It is also immediately
clear on an intuitive leve that not al interactions are equally important. HR makes this statement precise
and takes advantage of it to reduce the number of interactions, which need to be computed, to O(n). For
example, “far” interactions do not need as much subdivision as “close” interactions. The exact argument
astowhy O(n) elements are enough will be given below. However, even if we can make statements about
the number of elements generated during meshing, and how they will interact, we still need to consider at
least one interaction between each pair of the original set of incoming surfaces. Conseguently the work of
an HR agorithm will be O(k? + n). Even though there still is a k? dependence we will often haven >> k
resulting in significant savings. Note that in a case in which the origina set of & surfaces is presented
premeshed as n elements HR will be reduced to CR. Thus it will perform no worse, but in practice often
dramatically better, than CR. We will take up the issue of the k2 dependence in the last section when we
consider clustering.

4.3 Algorithms

All radiosity agorithms have roughly two components for purposes of this discussion. These can be
described as setting up the equations, i.e., computing the entries of the linear system, and solving the
linear system. The latter typically invokes some iterative solution scheme, for example Jacobi or Gauss
Seidd iteration [175], or Southwell relaxation [96]. In actua implementations these two phases are often
intermixed, for example when refining a subdivision mesh (adding basis functions) during successive
iterations. Nonetheless we can distinguish these two fundamental operations in our agorithms. Since
iterating, i.e., performing row updates, or matrix/vector multipliesis conceptualy straightforward we will
first focus on the aspect of setting up the equations.

The simplest version of awavelet radiosity agorithm would compute the initial matrix of coupling coef-
ficients at some finest level V7, (see Figure VI.2), followed by the transformation of this matrix into the
non-standard form (see Figure V1.4). Eliminating al entries less than some threshold would leave us with
asparse system for which O(n) solution techniques exist. The major disadvantage of this algorithm is the
cost of setting up theinitial set of equations. Computing thefull matrix to begin with consumes O (»?) time.
Recall that our eventual goal isan O(n) agorithm. The only way to achieve this goal is to compute only
the entries in the transformed matrix which will be larger than the alowed threshold. The difficulty is that
itisnot apriori clear where these entries are.

3This assumesthat the singularity in the kernel function is treated correctly. If thisis not done the method will have much worse
behavior.
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The HR agorithm addressed this concern in an elegant way which we now turn to. Studying this example
givesusasomewhat unusual approach to the non-standard wavel et basis, sinceonly scaling functions appear
in the formulation of HR. The advantage of this approach is that it has a clear and provably correct way to
enumerate just those interactions which are above the threshold. In the process it provides a constructive,
geometric proof for the O(n) claims of general wavelet methods for certain integral operators. In alater
section we will relate the HR construction back to the more genera theory, but first we give a detailed
exposition of HR.

431 Hierarchical Radiosity

HR considers the possible set of interactions in a recursive enumeration scheme. We want to insure that
every transport, i.e., every surface interacting with other surfaces, is accounted for once and only once.
Physically speaking we want to neither miss power, nor introduce it into the simulation multipletimes. To
do thiswe call the following procedure for every input surface with every other input surface as a second
argument (once again we consider the problem over 1D domains)

ProjectKernel ( Elenment i, Elenment j )
error = OGacle( i, j );
if( Acceptable( error ) || RecursionLimt( i, j ) )
G;;j= Quadrature( i, j );
el se
if( PreferredSubdivision( i, j ) ==1i )

Proj ectKernel ( LeftChild( i ), j );
ProjectKernel ( RightChild( i ), j );

el se
ProjectKernel (i, LeftChild( j ) );
ProjectKernel ( i, RightChild( j ) );

This procedure consists of severa parts which we discussin turn.

First we cal a function O acl e, which is capable of estimating the error across a proposed interaction
between elementsi and j . If this estimated error satisfies the predicate Accept abl e, the required
coefficient is created by calling a quadrature routine which evaluates the integral of Equation 3. We have
in effect created an entry in the matrix system, as well asimplicitly decided on a particular basis function.
Even if theerror is not acceptable yet, resource limitations may require us to terminate the recursion. This
predicate is evaluated by Recur si onLi mit. For example, we may decide that we cannot afford to
subdivide input el ements to a size smaller than some minimum. Of course the hope is that this predicate
will never be the cause of recursion termination.

If the error is too high we recurse by subdividing, i.e., by going to afiner space V;,1 over the particular
element. Typicaly we will find that the benefit in terms of error reduction is not equa for the two
elementsin question. For example, one element might be much larger than the other and it will be more
helpful to subdivide the larger one in order to reduce the overall error. This determination is made by
Pref erredSubdi vi si on and a recursive call is initiated on the child interactions which arise from
splitting one of the parent elements. For 2D elements there would typically be four recursive calls each, not
two. The preferred element would be split into four children (quadrants).
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As mentioned earlier, the process of iterating and subdividingis not typically separated in area implemen-
tation. For example, we could imagine that the predicate Accept abl e takes into account the brightness
of the sender (brightness refinement [102]) and maybe the importance of the receiver (importance refine-
ment [174]) vis-a-vis some global error threshold e. The error threshold may itself become smaller upon
successive iterations (multigridding [102]), creating a fast but inaccurate solution first and using it as the
starting point for successive solutions with lesser error. Any of these techniques we might refer to as
refinement. Thus we will typically reexamine interactions created in an earlier iteration when iterating

again.

In an implementation this is easily done by keeping alist of al G;; created and calling a modified ver-
sion of Proj ect Ker nel on these before the next iteration. If none of the parameters which influence
Accept abl e haschanged, Pr oj ect Ker nel would simply return; otherwiseit would delete the interac-
tion G;; because it has too much error and replace it with a set of finer interactions. Thiswould correspond
to replacing some set of basis functions (and their interactions) with a new and finer set of basis functions
(and their interactions).

From the structure of the recursion, it is clear that every transport will be accounted for once and only
once. The remaining task is to show that for a strictly positive amount of alowable error* we will create
only alinear number of interactions amongst all the (implicit in the subdivision) basis functions created.
Furthermore we need to show that the function Or acl e can be implemented in an efficient way.

4.3.2 Bounding the Error

We proceed by anayzing the function Pr oj ect Ker nel more closely to understand how many recursive
cals it will generate. Again in order to streamline the presentation we first analyze the case of radiosity
defined over 1D domains (flatland radiosity). When we used the name Pr oj ect Ker nel we aready
anticipated one meaning of the ¢¢';; coefficients which we will now use to analyze the relationship between
allowed error and number of interactions necessary.

Recall thedefinition of &;; (Equation 3). We may interpret the GG;; as expansion coefficients of ¢ asfollows

//G

N,

( )dz dy

G(z,y)

4

z,y)
N>

Z Ni(y).
In other words, computing some set of ;; is equivalent to approximating the function G:(z, y) with a
projected version G'(z, y).

Using the fact that the radiosity integral operator is bounded and strictly less than 1 for physically realistic
reflectances [7], the error in our computed solution B can be bound vis-a-visthe actua solution B as

|B - B| < CglG -G,

where the norms are between functions, and ' is some constant associated with the input (geometry,

“Imagine Accept abl e alwaysreturns Fal se. In this case the recursion would always bottom out and in fact all » bases at
the finest level of meshing, as determined by Recur si onLi mi t would interact, resulting in n? interactions.
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reflectances, and right hand side), but independent of the basis functions used. Clearly given a user
selectable ¢ > 0 the error in the computed sol ution can be forced below ¢ by making G sufficiently closeto
G.

So far we only have a global statement on the error. We next need to show that we can keep the global
errar, in some suitable error norm, under control by making local decisions. There are many possible ways
to derive such bounds. We consider only a very simple one, not necessarily the tightest. Observe that the
difference between ¢ and G is simply given by all the terms in the infinite expansion of G which are not
accounted for by the finite number of terms used for G. Inawavelet expansion al the coefficients in this
difference have alevel number associated with them. Now consider the 1-norm of these coefficients within
each level and the sup norm accross levels. We would like to argue that the resulting norm will fall off
as we consider more and more levels. Away from the singularity this follows easily since there even the
2-norm of the coefficients will fall off as 2~*(“+"/2 (5, = 2 inflatland and » = 4 in 3D radiosity), with o
theloca Lipschitz exponent and : the level number. Note that thisis sufficient even for discontiuities due
to visibility where @« = 0. Only the behavior at the singularity actually forces us to use the 1-norm. This
follows from the fact that the form factor will stay constant (« = —d), but the throughput (1-norm), i.e.,
areatimesformfactor, will fall off exponentially with the level number at the singularity. Consequently any
strategy which considers the 1-norm within each level and stops refining, i.e., going deeper, when some
threshold has been undercut (the sup-norm estimateis satisfied) will be capable of insuring that the resulting
error in the solution is below some desirablee.

Now we aready know that the simplest version (no brightness, importance, or multigridding refinements)
of the function Accept abl e isacomparison of er r or against 6.

4.3.3 Bounding the Number of I nteractions

Suppose now that we stay in the framework of CR in so far that we only alow constant basis functions (as
HR does [102]) and that we simply set G = G20, yo) Where zg and yo are the midpoints of the respective
intervals (areas) we are considering. In the language of wavelets our scaling functions are “box” functions
and the associated wavel et is the Haar function. Using the fact that

C
Gyl <

we get, over the support of two elements 1, and I, which do not intersect
G-6l < [ [ 1Go0.40) - Glay)] dody
Yy x

< O 12 <£)d+l

r

through an application of the mean value theorem. I denotes the length of the maximum edge of any of the
involved domains (two 1D domainsin flatland, four 1D domainsin 3D). The bound given above is small
whenever theratio of sizesto distancesis small. In particular it will fall as a second power (even faster in
3D) of theratio of the largest edge length to the distance. From this follow two observations

1. I always needsto be less than r to get the bound below our error threshold;
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2. theinvolved elements should be of comparable size, since nothing is gained by making one smaller
but not the other.

Below we will see that this is enough to argue that for every element /.. there are a constant number of
elements I, which satisfy these criteria.

The bound given above is only useful when » > 0. When the two elements meet, a more careful analysis
must be applied. The difficulty arises because of the »~? nature of the radiosity kerndl. In other words,
the bound given above holds everywhere so long as we exclude an arbitrarily small region around the
intersections of any of the elements. To deal with these remaining regions we need the boundedness of our
original operator. For thissmall region around the intersection set G =0to get

|G~ G| = |G| < CLFy, 1,

(in 3D the factor 1, isreplaced by A,). Since the form factor £}, ;, < 1 we canforce |G — G| below any
desired threshold by making 7, (A, respectively) small enough.

Taking both bounds together we can make the distance between ' and its approximation arbitrarily small
by making the ratio of size to distance small or, when we are at the singularity, by simply making the size
itself small. The region over which we haveto employ the second bound can be made arbitrarily small, and
with it the bound itself. For sake of our argument we allocate €/2 of our total alowed error to the regions
touching the singularity and continue to consider only the case of elementswhich are separated. Their error
must now be kept below ¢/2, for atotal of the given ¢.

Given that we have a remaining error budget of ¢/2 we need to show that for this allowable error any
recursive call will create at most a constant number of callsto the function Quadr at ur e. From the above
error bound we see that an interaction will be created whenever the size to distance ratio is smaller than
some threshold. How many elements can there be for which this is true? To answer this question we
interpret the size to distance ratio geometrically as a measure of angle subtended. In other words, thisratio
is proportional to the angle that one element subtends from the point of view of the other element.

On theinitid call to Pr oj ect Ker nel there can at most be k& elements (the original input surfaces) less
than this threshold (hence the &2 in the overall performance analysis). Suppose that some of those initial
input surfaces are too large, i.e., their angle subtended is above our threshold. These surfaces will result in
recursive calls. How many can there be? Since the total angle subtended above a given element is bounded
there can at most be a constant number of elements larger than some minimum on any given recursive
call. Suppose that at the next recursion level, due to subdivision, al of these e ements have falen below
the threshold. In this case they al interact with our element, i.e., this element interacts with a constant
number of other elements. Suppose instead that not all elements have fallen below the threshold due to the
subdivision. Once again, there can be at most a constant number of such “too-large” elements.

In either case each element—below the top level call to Pr oj ect Ker nel —interacts at most with a
constant number of other elements. This meansthat thetotal number of interactions created dueto recursive
cals is proportional to the total number of elements. The constant of proportionaity is a function of the
problem definition and error requested, but not of the discretization itself.
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434 Oracle

From the above arguments, we have seen that the function Or acl e can be implemented by estimating the
ratio of size to distance, or in the vicinity of the singularity, simply the size itself. In the case of radiosity
with constant basis functions, measuring the ratio is particularly simple since it is given by the point to
finite area form factor, a quantity for whose computation many formulas are known (see for example [171]
or [146]). Thiswas the oracle used in the original HR algorithm [102]. For higher order methods a simple
form factor estimate is sufficient to argue the asymptotic bounds, but does not take full advantage of the
information present. There are other, more direct methods to estimate the quantity |@ — (7] discussed inthe
next section.

435 Higher Orders

Consider again the argument used above to show that HR constructs only a linear number of interactions.
There was nothing particular in the argument which ties it to constant basis functions. Suppose we wish
to employ a Galerkin scheme with higher order basis functions. In this case each interaction between two
elements entails anumber of quadratures. For constant basis functions there was simply one coefficient G';;
for elementsi andj . Wewill continueto usetheindexing ¢;;, but think of the quantity ;; as consisting of
an array of numbers describing all the possible coupling terms over the given elements due to higher order
basis functions. For example, in the case of piecewise linear basis functions we have two basis functions
aong each dimension. Inflatland &;; now consists of 2 - 2 couplings and in 3D G;; has 22 - 22 numbers
associated with it. If M — 1 isthe order of basis functions used we will abstract M - M (flatland) and
M? . M? (3D) couplings respectively into G-

The basic reasoning of the recursion count argument still holds. |G — G| isstill the quantity which needs to
be kept below some §(€), however G isnot constant anymore. The form factor argument to measure angle
subtended does not take full advantage of the power of higher order basis functions. However, it is still
sufficient to argue the asymptotic bound. In practice we will of course want to take advantage of the higher
order nature of the basis functions. One way to do thisis to have the function Or acl e use an estimate
of the (¢;; to construct a polynomial and measure how well this polynomial interpolates the real kernel G
over the support of the two elementsin question. This type of oracle was employed in the case of wavel et
radiosity [94, 166] and estimates the quantity |G — /| directly.

436 Iterative Solvers

As pointed out earlier there are two parts to a complete algorithm, setting up the equations, and solving
them. Above we described how to set up the equations and argued why there are O(k? + n) interactions
total for any given finite accuracy requirement. To complete the algorithm we need the iteration function.
This function corresponds to the matrix/vector multiply in an iterative solver. In HR thiswas referred to as
Gat her , afunction which moves radiosity from element j across &;; to element i , multiplying it with
the factor G;; (the form factor for constant basis functions). Once this has occurred we still need afunction
referred to as PushPul | in[102].

For each input surface (element) i , Pr oj ect Ker nel iscaled with al other input surfaces (elements)
j . Aspointed out above, the choice of interactions G;; actualy created corresponds to an implicit choice
of basis functions. Consequently when Pr oj ect Ker nel wascalledon, sayi andj o, versusi andj 1,
different basis functions may have been constructed oni for those two calls. Put differently, irradiance at
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a surface will be computed at different levels of the hierarchy, due to different sources. These incoming
irradiances need to be consolidated.

Consider the function PushPul | as proposed in Hanrahan et al.[102]. Irradiance of a parent in the
subdivision hierarchy is added to the children on a downward pass, while on an upward pass the radiosity
a aparent isthe area average of the radiosity at the children

PushPul | ( El erment i )
if( 'Leaf( i ) )
i.children.E += i.E;, //Push
ForAll Children( i.c )
PushPul I ( i.c );
i.B = AreaAverage( i.children.B ); //Pull
el se
i.B =1i.Be + ApplyRho( i.E);

where we used the symbols B to denote radiosity, E to denote irradiance, and Be for the emitted part of
radiosity.

The summing of irradiance on the way down followsimmediately from the physical meaning of irradiance.
The irradiance at a given element is the sum of al the irradiances received at the element itself and all
its ancestor elements. The area averaging on the way up follows directly from the definition of constant
radiosity, which is a density quantity per area.

How to extend thisPushPul | reasoning to the higher order hierarchical algorithm briefly outlined above
isnot immediately clear. Thisiswhere wavelets comein sincethey not only generalize the notion of higher
order hierarchical basis sets, but a so the attendant notions of pushing (pyramid down) and pulling (pyramid
up) throughout such a hierarchy.

44 O(n) Sparsity

Theabstract mathematical proof of the O(n) sparsity claimfor certain integral operators given by Beylkin et
al.[15] istheexact analog of the constructive geometric argument we gave above for the O(n) claim of HR.
The main difference is that the abstract proof argues that all but O () entriesin the resulting matrix system
are below the threshold, while HR argues the complement: only O(») entries are above the threshold.

In HR we argued that for a given alowable error of ¢ we can permit some amount of error (6) across each
link and that there would only be alinear number of such links. Infact we used scaling functions (piecewise
polynomial) as basis functions. Saying that thereis an error of § for one such approximation is equivalent
to saying that the associated wavelet coefficient islessthan ¢ (for sufficiently smooth kernels). Recall that
the wavelet coefficient measures the difference between one level of approximation and the next finer level
(recursive splitting) of approximation.

Whilewe used an “ angle subtended” argument to limit the number of coefficientsthusly created theclassica
faloff property (Equation 5) is the abstract analog of this geometric statement. Recall the bound we gave
on the coefficients of « for a smooth function f (Equation 4). It bounds the magnitude by interval (area)
size raised to the M*" power multiplied with the derivative. But for integral operators we have a bound
on these derivatives of the form |z — y|~?=™. In other words the coefficients are bounded by a power
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Figure VI.6: The F, wavelet construction. F, bases have two different wavelet functions. Both of them have two
vanishing moments (from [94]).
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Figure V1.7: The M, wavelet construction whose scaling functions are the first two Legendre polynomias. Both of
the wavel et functions (lower right) have two vanishing moments (from [94]).

of asize (interval or ared) to distance (| — y|) ratio. The same argument we used earlier in the context
of radiosity, except this time made on purely mathematical grounds with no reference to the surrounding
geometry. Inthisway the classical argument of Beylkin et al. generalizes to other integral operators anidea
that is perhaps more obviousin the geometrical context of graphics.

Oneissue remains. The abstract theory of integral operators has us use the scaling and wavelet functions
to construct the sparse linear system. WR [94] (or higher order hierarchica methods) only use the scaling
functions.

Consider again the Haar example. Supposewe are using the Haar basisfor a non-standard realization of our
operator (see Figure V1.4 left column). If we ignore all entries in the matrix less than some threshold we
will be left with some set of entries corresponding to couplings between a mixture of scaling and wavel et
functions. In the Haar case we can transform this set of couplings into a set of couplings involving only
scaling functions by exploiting the two scale relationship. Simply replace all occurrences of ; ; with
27120, 1105 — 27120, 1 5;11. Theremaining set of couplingsinvolves only scaling functions.

The reason the Haar basis allowed us to do this simplification lies in the fact that the scaling functionsin
the Haar system do not overlap. For more general wavel etsthere is overlap between neighboring functions.
Consequently the above substitution, while still possible[92], is not as straightforward. The problem arises
with overlapping basis functions because some regions may be accounted for multiple times, in effect
introducing the same power more than once into the system. The wavelets that were used in the original
WR work [94, 166] did not suffer from this problem because they were tree wavelets. In atree wavelet the
filter sequences do not overlap.

TheHaar basisisatreewavel et basis. When trying to extend theseideasto more vani shingmomentswehave
to alow morethan one wavelet (and scaling) function over agiven interval to keep thefilter sequencesfrom
overlapping. In essence neighboring intervals are decoupled. Thisis not a classical construction because
there are multiplegenerators of the MRA. WR used so called Flatlets, which are still piecewise constant, but
combine more than two box functionsto increase the number of vanishing moments (Figure V1.6 showsthe
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shape of Flatlets with two vanishing moments). Another set of wavelets explored for WR was introduced
by Alpert [2] under the name multi-wavelets. Over each interval a set of Legendre polynomialsup to some
order M — 1lisused and awavelet hierarchy isimposed. Here too, neighboring intervals decouple giving
multi-wavel etsthe tree property as well (see Figure V1.7 for a multi-wavel et with two vanishing moments).
Details regarding these functions in the context of WR can be found in [94, 166].

Using tree wavel ets and the substitution of all wavelet functions by sequences of scaling functionsleads to
an obvious simplification of the code and follows naturally from the historical development. It also results
in astraightforward procedure to enumerate all “important” couplings and circumventsall issues associated
with boundaries. Instead of specializing a wavelet constructed for therea lineto one usable for an interval
the multi-wavel ets and Flatlets have the interval property right from the start.

There are other practical issueswhich are taken up in the original papers and theinterested reader isreferred
to them for more details (|94, 166]). For example, in some wavelet constructions only the primal (or dual)
bases have vanishing moments. Recall that the &;; (Equation 3) had both primal and dual bases under
the integral sign. If only one of these has vanishing moments, say the primal basis, it is desirable to use
aprojection into the dual basis on the left hand side of the original operator, PG Py . Thiswas the case
in[94, 166] for the so called Flatlets. Doing thisrequires a basis change back to the primal basis after each
iteration of the operator. Thisis easily absorbed into the PushPul | procedure, though.

5 Issuesand Directions

In our treatment so far we have deliberately left out anumber of issuesarising in areal implementation for
purposes of aclear exposition of the general principles. We now turn to some of theseissuesaswell asto a
discussion of extensions of the basic ideas.

5.1 Tree Wavdets

Both HR and WR used scaling functions which do not maintain continuity across subdivision boundaries.
While convergence of the computed answersis assured in some weighted error norm, thereis nothing in the
algorithm which will guarantee continuity between adjacent elements. This has undesirable consequences
for purposes of displaying the computed answers. Discontinuitiesin valueor even derivativelead to visually
objectionable artifacts (e.g., Mach bands).

These discontinuitiesarose from adesire to use tree wavelets. Recall that in classical wavel et constructions
with more than 1 vanishing moment the supports of neighboring scaling functions overlap. In this way
continuity between neighboring mesh elements up to some order (depending on the wavelet used) can
be assured. Two difficulties arise if one wants to use such wavelets: (A) They need to be modified at
the boundary of the original patch since overlap onto the outside of the patch is not desirable (it is not
even physically meaningful); (B) sparse representations, i.e., partialy refined subdivisions, are difficult
to build with such wavelets. To appreciate the latter point consider the scaling function associated with
the subdivision child of some element. If the neighboring element does not get subdivided, i.e., does not
have children itself, the former scaling function will again overlap a“niece” element which does not exist.
Tree wavelets avoid both of these issues. Since they inherently live on the interval no overlap outside the
interval or over “niece” elements, which do not exist, can occur. Furthermore every wavelet can be replaced
immediately by alinear combination of its constituent scaling functions, resulting in a much streamlined
program which only needsto deal with scaling functions. Thisconvenience comesat acost of higher storage.
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Figure V1.8: Subdivision around a feature line (bold diagona ling). On the left a restricted quadtree subdivision
bracketing the feature line to within some grid resolution. On theright subdivisionisinduced immediately along the
feature line, representing it perfectly and resulting in far fewer eements.

Whenever an e ement is subdivided we do not just simply add a single new coefficient to the representation
of the kernel, but rather a chunk. Consider 3D radiosity and wavelets with M vanishing moments. In this
case every (+;; actualy consists of (12)? coefficients (one for each possible combination of bases over the
two elements). For cubic bases the refinement of an existing interaction into 4 child interactions resultsin
3 - 256 additional floating point coupling coefficients.

Preliminary experiments with classical wavelets for radiosity have recently been reported by Pattanaik and
Bouatouch [152]. They used Coiflets [52] as well as interpolating scaling functions [63]. However, they
ignored issues associated with the boundary of patches, the singularity, and only gave an agorithm which
does uniform refinement when the error criterion is not met (resulting in an O(r»?) agorithm).

Clearly more research is needed for an agorithm which uses overlapping scaling functions of higher
regularity and properly addresses boundary and adaptive subdivision issues.

52 Visbility

The basi ¢ premise on which the sparsification argumentsfor integral operators rest isthe smoothness of the
kernel function. However, in the case of radiosity the kernel function contains a non-smooth component:
the visibility function V' (z, y). Clearly the kernel is still piecewise smooth so the arguments certainly hold
piecewise. Alternatively, the arguments can be approached with a notion of smoothness as defined in the
Besov space sense. However, the complexity analysisis considerably more complicated. To our knowledge
no such analysis has yet been performed. We hypothesize that the total number of coefficients will have a
component which isin some sense proportiona to the “length” of the discontinuity.

In practi ce two basi c approaches have emerged to address thediscontinuitiesin thekernel function. HR [102]
and WR [166, 94] useregular quadtree subdivisionof quadrilaterals. Thusthey in effect resolvetheresulting
featuresin the computed radiosity function by approximating them with successively smaller rectangles (see
the left side of Figure V1.8). Since the oracle is based on estimating how well the kernel is approximated
by alow order polynomial over the support of the two elementsin question, it will automatically “zoom”
in on these feature boundaries. Thisfollowstrivially from thefact that the discontinuity in the kernel is not
well approximated by a low order polynomial. Another approach has been put forward by Lischinski et
al.[121]. They take the feature lines due to discontinuitiesin the visibility function explicitly into account
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with discontinuity meshing. Instead of using regular subdivision they introduce subdivisions along lines
of discontinuitiesin the computed answer (see the right side of Figure V1.8). Asaresult they generate far
fewer elements and discontinuity features are resolved exactly. The disadvantage of their approach liesin
the considerably more complicated global visibility analysis necessary to find al such featurelines. Another
difficulty arises from the fact that such an approach needs wavelets over irregularly subdivided domains.
Lischinski et al.[121] stayed within the HR, i.e., constant basis function, framework. In this case the filter
coefficientsfor PushPul | are still just simple arearatios. Piecewise polynomial triangular elements could
be accommodated as well in a straightforward extension of the use of multi-waveletsin[94]. Thefeasibility
of thisapproach was recently examined by Bouatouch and Pattanaik [16]. Classical wavel etshowever, have
only recently been adapted to irregular meshes [126, 168] and they have not yet been applied to wavelet
radiosity algorithmswith explicit (or implicit) discontinuity meshing.

5.3 Radiance

The basic ideas behind HR and WR can also be applied to the computation of radiance, i.e., globa
illumination in the presence of reflection which isno longer uniform with respect to direction. In this case
the physical quantity of interest has units [ %] and the basic integral equation to solve becomes

mesr

Liy.2)= Ly)+ [ Fla, 26l L) do.

Here L(y, =) istheunknown radiance function describing theflow of power from yto z, f, isthebidirectional
reflectance distribution function (BRDF), and (' accounts for geometry as before (with ¢ = 1). The BRDF
givestherelation at i between incoming radiance from = and outgoing radiance towards =.

Aupperle and Hanrahan [8] were the first to give a hierarchica finite element algorithm for radiance
computations. They extended their earlier work [102] in a straightforward manner by considering triple
interactions from A, via A, towards A, (as opposed to the case of radiosity with interactions from A,
towards A,). The complexity arguments are similar to the ones we gave for the case of radiosity with the
difference that the overall complexity is now O(k3 4 n) since initialy al triples of surfaces have to be
accounted for. Thiswork was extended to higher order multi-wavel et methodsin [167].

In both of these approaches [8, 167] radiance was parameterized over pairs of surfaces. Christensen et
al.[23] pursued adifferent avenue. They treated radiance as afunction of aspatia and directional argument
given by the corresponding integral equation

Ly, wo) = L(y,ws) + /HZ [r(wisy,w,) cost; Li(y, w;) dw;,

where L;(y,w;) = L(z, —w;) is the incoming radiance at y from direction w;, which isidentical to the
outgoing radiance at some point z visiblefrom y in the direction w;. Theintegration is now performed over
the hemisphere of incoming directions. The chief advantage of this formulation is the fact that recursive
coupling coefficient enumeration needs to consider only all pairs of input surfaces. As abasisthey used
the Haar basis for the spatial support. For the directional part of the domain they constructed a basis by
parametrically mapping the Haar basis over the unit square onto the hemisphere. For a more detailed
discussion of some of the differences between these two approaches the reader isreferred to [167].

Computing solutions to the radiance integral equations is notoriously expensive due to the higher dimen-
sionality of theinvolved quantities, 4D functionsinteracting acrossa6D integral operator with 4D functions.
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Naive finite element methods are hopeless, but even hierarchical methods based on wavelets still require
enormous amounts of space and time and more research is needed before these techniques become truly
practical.

54 Clustering

In all our discussions so far we have only considered the intelligent subdivision of surfaces. Ironically the
historica roots of HR lie in n-body algorithms [98], which are al about clustering, not subdivision. This
difference moves most clearly into focus when considering the complexity analysis we gave earlier. There
we argued that HR and WR have a complexity of O(k? + n) where k is the number of input surfaces and
n the number of elements they are meshed into. In order to remove the &2 dependence the hierarchy of
interactions must be extended “upward”. A number of such clustering algorithms have recently appeared
intheliterature [163, 173, 172, 22].

The main difficulty with clustering in the context of radiosity is due to visibility. For example, the light
emitted by acluster of elementsisnot equal to the sum of the individual emissions. Similarly, the reflective
behavior of acluster isnot uniformin all directions even though each individual reflection isuniform in the
hemi sphere above the respective surface.

Sillion[172] redlizes clustering of surfaces by imposing an octree partition on the entire scene and treating
all surfaces within one of the octree nodes as an approximate volume density. In the limit with surfaces
very small and uniform in each cube of the octree the resulting approximation is correct. The resulting
datastructure can be built in time linear in the number of surfaces and the only modification to an existing
HR solver isthe introduction of volume el ements characterized by their averaged behavior. Asobserved by
Sillion even in the case of purely diffuse reflection the aggregate behavior of any volume is generaly not
diffuse (uniformin all directions). In order to account for this observation a correct system needs to be able
to deal with directionally dependent quantities.

Smitset al.[173] giveaclustering extensionto HR with acomplexity of O(k log k4 n) by introducing higher
level links between clusters of surfaces. The main task isto set up an error estimator usable by the oracle,

which is conservative but tight for such links. They too deal only with isotropic approximations of clusters.

Noting this deficiency Christensen et al.[22] give a clustering a gorithm which addresses the more genera

radiance case. Each cluster is treated as a point source (and receiver) whose behavior is characterized as a
function of direction with a small number of discretized directions. In thisway the resulting algorithm is
more closely related to the multipol e based agorithm of Greengard [98] rather than awavel et method.

All of the above clustering algorithms compute an approximation of the radiosity or radiance at such a
coarse level that afina reconstruction step (also referred to as final gather) needs to be added to produce an
acceptable looking final image. Thisfinal step isgenerally very expensive and better techniques are clearly
desirable.

6 Conclusion

We have seen that the Galerkin method for integral equations gives rise to alinear system which needs to
be solved to find an approximation to the original integral equation solution. The linear system has entries
which are the coefficients of thekernel function itself with respect to some basis (standard or non-standard).
As such they possess properties which derive directly from the kernel function itself. Using wavelets as
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basis functions the resulting matrix system is approximately sparse if the kernel function is smooth. A
wide class of operators whose kernel functions satisfy certain “faling off with distance” estimates have
the right properties. By ignoring all entries below some threshold the resulting linear system has only
O(n) remaining entries leading to fast solution algorithmsfor integral equations of thistype. To realize an
agorithm which isO(n) throughout a function Or acl e is needed to help enumerate the important entries
in the matrix system.

HR was described in this context as an application of the Haar basis to the radiosity integral equation. We
argued that HR needs only alinear number of interactions between elements to achieve an a-priori accuracy
clam. The argument used geometric reasoning which corresponds exactly to the abstract arguments given
by Beylkin et al.[15]. In thisway we in effect gave a constructive, geometric proof of the sparsity claim
for somewhat more benign operators than are treated in the general case. The development of these
arguments led to a WR agorithm which has been shown to perform exceedingly well in practice under
many circumstances [102, 166, 94, 88, 184].

The origina method [166, 94] used tree wavelets (multi-wavelets and Flatlets) which simplify many
implementation issues and are a natural extension from the historical development out of HR. As such the
exploration of interesting basis functions from the wide variety of available wavelet bases has only begun
and we look forward to further developmentsin this area.
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1 Hierarchical Spacetime Control of Linked Figures
(Michael F. Cohen, Zicheng Liu, Steven J. Gortler)

These course notesare excerpted from Hierarchical Spacetime Control, by Zicheng Liu, Steven J. Gortler, and Michael
F. Cohen, SSGGRAPH, 1994.

1.1 Introduction

The spacetime constraint method, proposed in 1988 by Witkin and Kass[195], and extended by Cohen [37],
has been shown to be a useful technique for creating physically based and goa directed motion of linked
figures. Thebasic ideaof thisapproach can beillustrated with athree-link arm and aball (see Figure V11.1).
The problem statement begins with specifying constraints, examples being specifying the position of the
arm at a given time, requiring the ball to be in the hand (end effector) at time ¢o, and that the arm is to
throw the ball at time ¢, to land in a basket at time¢,. In addition, the animator must specify an objective
function, such as to perform the tasks specified by the constraints with minimum energy or some other
style consideration. The solution to such a series of specifications is a set of functions through time (or
trajectories) of each degree of freedom (DOF), which in this case are the joint angles of the arm. Thusthe
unknowns span both space (the joint angles) and time, and have led to the term spacetime constraints.
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FigureVII.1: A planar three-link arm.

Related approaches to the spacetime constraint paradigm are reported in [189, 149]. In each of these papers,
feedback control strategies are the fundamental unknown functions rather than DOF trajectories. The goal
is set, for example, for the creature to move in some direction as far as possible in 10 seconds, and a
score for a particular motion is defined as the distance traveled. An initial control strategy is selected, a
dynamic simulation is run and the results are scored. Iterations change the control strategy, as opposed the
motion curves, producing a simulation that, hopefully, has a higher score. The results of these studies are
encouraging, however, they are distinctly different from that in the previous spacetime constraint work (and
the work described in this paper) in which the aim isto provide the animator with the overall control of the
motion.

The spacetime constraint formulation leads to a non-linear constrained variational problem, that in general,
has no closed form solution. In practice, the solution is carried out by reducing the space of possible
trgj ectoriesto those representable by alinear combination of basisfunctionssuch as cubic B-splines. Finding
the finite number of coefficients for the B-splines involves solving the related constrained optimization
problem, (i.e., finding the coefficients to create motion curves for the DOF that minimizethe objectivewhile
satisfying the constraints). Unfortunately, general solutionsto such a non-linear optimization problem are
also unknown.

Based on this observation, Cohen devel oped an interactive spacetime control system using hybrid symbolic
and numeric processing techniques [37]. In this system, the user can interact with the iterative numerical
optimization and can guide the optimization process to converge to an acceptable solution. One can aso
focus attention on subsets or windowsin spacetime. Thissystem produces physically based and goal directed
motions, but it still suffers from anumber of computational difficulties, most notably as the complexity of
the creature or animation increases.

An important difficulty in the spacetime system is that the user is required to choose the discretization of
the B-spline curves. If not enough control points are selected, there may be no feasible solution (i.e., one
that meetsall constraints), or therestriction to the curveis so severe, that the resulting motion curves have a
much higher objective cost than necessary. If too many control points are selected, then the computational
complexity is increased unnecessarily due to the larger number of unknowns as well as the resulting ill-
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Hierarchical Spacetime Constraints System
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Figure VI1.2: The Hierarchical Spacetime Constraints System. This paper focuses on the Symbolic Differentiation
and Optimizing Equation Compiler, and the Numerical Optimization System

conditioning of the linear subproblemsthat arise in the solution [185]. This complexity issueis addressed
by reformulating the DOF functionsin a hierarchical basis, in particular, in a B-spline wavel et (B-wavel et)
basis. Wavelets provide a natural and elegant means to include the proper amount of local detail in regions
of spacetime that require the extra subdivision without overburdening the computation as a whole.

1.2 System overview

The interactive spacetime control system is shown in Figure VII1.2. Input to the system includes user
defined constraints and objectives and a creature description from which the symbolic equations of motion
are generated automatically. The equations of motion define the torque at each joint as a function of the
position and velocity of all joints aswell as physical properties such as mass and length of thelinks. These
expressionsfor torque are central to the definition of aminimum energy objective. The expressionsare next
symbolically differentiated and compiled to creste concise evaluation trees.

The main focus of the current discussion is on the next section, the numerical process that solves for
the coefficients of the chosen B-spline or hierarchical wavelet basis. Findly, the intermediate and final
animations are displayed graphically. The animator can simply watch the progress of the optimization
procedure or can interact directly with the optimization by creating starting motion curves for the DOF
and/or by modifying intermediate solutions.

1.3 Wavdets

An elegant and concise hierarchical basis, and one that |eads naturally to an adaptive basis, is offered by a
wavel et construction. This section concentrates on the advantages of wavelets and wavelet formulationsin
the spacetime animation problem.
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The wavelet construction results in a non-redundant basis that provides the means to begin with a low
resol ution basisand then adaptively refinethe representation layer by layer when necessary without changing
the representation above. If refinements are required in only part of theinterval, then only those coefficients
whose bases have support in this region need to be added.

Since the wavelet coefficients encode differences, in smooth portions of the trgjectory the coefficients
encoding finer scale detail will be zero. Thus, only those basis functions with resulting coefficients greater
than some ¢ will have a significant influence on the curve and the rest can be ignored. In other words,
given an oracle function [97, 93], that can predict which coefficients will be above a threshold, only the
corresponding subset of wavelets needsto be included.

Solutionsto the non-linear spacetime problem, invol ve a series of quadratic subproblemsfor which the com-
putational complexity depends on the number of unknown coefficients. The smaller number of significant
unknown coefficients in the wavel et basis provide faster iterations. In addition, the wavelet basis provides
a better conditioned system of equations than the uniform B-spline basis, and thus requires less iterations.
The intuition for thisliesin the fact that there is no single basis in the origina B-spline basis that provides
aglobal estimate of thefina trgjectory (i.e., the locality of the B-spline basisis, in this case, a detriment).
Thus, if the constraints and objective do not cause interactions across pointsin time, then information about
changesin one coefficient travelsvery slowly (in O(n ) iterations) to other parts of thetragjectory. In contrast,
the hierarchical wavelet basis provides a shorter (O(log(n))) “communication” distance between any two
basis functions. Thisis the basic insight leading to multigrid methods [185], and the related hierarchical
methods discussed here.

The wavelet representation also allows the user to easily lock in the coarser level solution and only work
on details simply by removing the coarser level basis functions from the optimization. This provides the
means to create small systemsthat solve very rapidly to devel op the finest detailsin the trgjectories.

1.3.1 B-wavdets

In the literature, there are many wavelet constructions, each with its own particular functions ¢ an «, with
varying degrees of orthogonality, compactness, and smoothness. The particular wavel et constructionusedin
thiswork are derived in[26], and were chosen because of the semi-orthogonality of the basis, the associated
@ isacubic B-spline (i.e., C?), and the wavelet function +» is symmetric with compact support.

1.3.2 Wavdetson the Interval

Inaclassica wavelet construction, thedomaingoesfrom —oc . . . co. Inan animation context, only functions
over some fixed finite interval of time need to be expressed, and it is important to only dea with a finite
number of basis functions. Therefore, the function space V7, used here is defined to be the space of
C'? functions defined over theinterval [0. . . 2%] that are piecewise cubic between adjacent integers (simple
knots at the inner integers and quadruple knots at the boundaries). A basisfor 7, is made up of inner basis
functions, which are just those translational B-spline basis functions 7, ; whose support lies completely
within the interval, as well as three specia boundary B-spline basis functions at each end of the interval.
For the boundary basis functions, one may either choose to include the translational basis functions ¢, ;
themselveswhose support intersects the boundaries by just truncating those basis functions at the boundary,
or else one may use the special boundary basis functions that arise from placing quadruple knots at the
boundaries [13]. Thiscomplete set of basisfunctionswill be denoted ¢y, ; with j in {—3...2" — 1}, where
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it isunderstood that thefirst and last three basisfunctions are the special boundary B-spline basis functions.

A two-part basisfor V;, can be constructed with thewider B-splinefunctionsy, 1 ; with jin{-3...2L-1—
1} where again the first and last three basis functions are scaled versions of the specia boundary B-splines
functions. The two-part basis is completed with the wavelet functions 17,1 ; with j in {-3...20=1 — 4},
Here too, the inner wavelet basis functions are just those translational functions vy, _1 ; that do not intersect
the boundaries, while the first three and the last three interval wavelet basis functions must be specially
designed tofit in the interval and still be orthogona to the ¢7,_1 ;. A full description of this construction is
givenin [29, 159].

1.3.3 Completing the Wavelet Basis

The reasoning that was used to construct the two-part basis can now be applied recursively I, — 3 timesto
construct a multilevel wavelet basis. Noting that roughly half of the basis functions in the two-part basis
are themselves B-spline basisfunctions (only twice aswide), to continue the wavel et construction, keep the
basis functions v;,_1 ; and recursively apply the reasoning above to replace the o; ; with {¢;_1 ;, ¥i—2;}.

Each time thisreasoning is applied, the number of B-spline functionsin the hierarchical basisiscut in half
(roughly), and the new basis functions become twice as wide. After I, — 3 applications, the wavelet basis

{pak i} (1)

isobtained, withiin{3...L — 1}, kin{-3...7}andj in {-3...2' — 4}, where theinner basisfunctions
are defined by

eij(t) = @2=Dt— j)
bij(t) = (20— j) %)

Thisbasisismade up of eleven wide B-splines, and translations (index 5) and scales (index 7) of the wavel et
shape (as well as scales of the boundary wavelet basis functions).

Thewavelet basisis an aternate basisfor V7, but unlike the B-spline basis, itisan I, — 3 level hierarchical
basis. At level 3 there are eleven broad B-splines, and eight broad wavelets. These basis functions givethe
coarse description of the function. At each subsequent level going from level 3to I — 1, thebasisincludes
twice as many wavelets, and these wavelets are twice as narrow as the ones on the previous level. Each
level successively adds more degrees of detail to the function.

Since each wavelet coefficients represents the amount of local detail of a particular scale, if the function

is sufficiently smooth in some region, then very few non-zero wavelet coefficients will be required in that
il

region-.

1.34 Scaling

Onefinal issueisthe scaling ratio between the basis functions. Traditionally [26] the wavelet functions are
defined with the following scaling:

YIn this case, non-zero can be defined to be having an absolute value greater than some epsilon without incurring significant
error in the representation.
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pig(t) = 20702 o200 )
Yi(t) = 207R2 2071 — ) 3

This means that at each level up, the basis functions become twice as wide, and are scaled % times as
tall. While in many contexts this normalizing may be desirable, for optimization purposes it is counter
productive. For the optimization procedure to be well conditioned [45] it is advantageous to emphasi ze the
coarser levels and hence use the scaling defined by

pij(t) = 287 (2=t — )
bi(t) = 287t yp2=0 ) (4)

where the wider functions are also taller.

1.4 Implementation

The input to the wavelet spacetime problem includes the creature description, the objective function (i.e.,
symbolic expressions of joint torques generated from the creature description), and user defined constraints
specifying desired actions (throw, catch, etc.), and inequality constraints such asjoint limitson the elbow.

Each trgjectory of aDOF, 6(¢), is represented in the uniform cubic B-spline basis. The unknowns are then
the B-spline coefficients, b, or the equivalent wavelet coefficients, ¢, scaling theindividua basis functions.
This finite set of coefficients provide the information to evaluate the 6(¢), 6-(¢), and 6(¢) at any timet,
that comprise the leaves of the DAGs. Thisfinite representation transforms the variational problem into a
constrained non-linear optimization problem. An unconstrained problem can then be derived by pendizing

violationsto the constraints.

A quasi-Newton method, BFGS [79], is used to solve the resulting non-linear problem. Iterations begin
with a user provided initia guess of wavelet coefficients (that can be derived from B-spline coefficients)
and a guess of the inverse of the Hessian (usualy an identity matrix leading to the first iteration being a
simple gradient descent).

Each subsequent iteration involves finding the gradient of the modified constraint/objective function and
performing a matrix-vector multiply. The newly obtained solution is then transformed into B-spline
coefficients and sent to the graphical user interface for display.

If the initia function space is restricted to a coarse representation consisting of the broad B-splines and a
singleleve of wavelets, after each iteration asimple oraclefunction adds wavel ets at finer levels only when
the wavelet coefficient above exceeds some tolerance. This procedure quickly approximates the optimal
trgjectory and smoothly converges to afina answer with sufficient detail in those regionsthat requireit.

An important feature of the system discussed in [37] is also available in the current implementation. The
user can directly modify the current solution with a simple key frame system to help guide the numerical
process. Thisis critical to alow the user, for example, to move the solution from an underhand to an
overhand throw, both of which represent local minimain the same optimization problem. The next iteration
then begins with these new trajectories as the current guess.
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15 Reaults

A set of experiments was run on the problem of athree-link arm and a ball (see Figure VI11.1). The goad of
thearm isto begin and end in arest position hanging straight down, and to throw the ball into a basket. The

objective function is to minimize energy, where energy is defined as the integral of the sum of the squares
of thejoint torques. Gravity isactive.

Thefour graphsin Figure V11.3 show the convergence of five different test runs of the arm and ball example.
Each plot differs only in the starting tragjectories of the arm DOF. Each run converged to either an underhand
or overhand throw into the basket. Thefull B-spline basis contained 67 basis functionsfor each of the three
DOF, thus there were 201 unknown coefficients to solve for. Iterationstook approximately 7 seconds each
on an SGI workstation with an R4000 processor. Convergence was achieved on each, but only after many
iterations due to theill-conditioning of the B-spline formulation.
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FigureVI1.3: Convergence of Arm and Ball examplefor 4 different starting trgjectories. The first and fourth examples
resulted in underhand throws, and the rest overhand. Timeisin seconds, and the cost is aweighted sum of constraint
violationsand energy above theloca minimum.
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The full wavelet basis also contained 67 basis function per DOF (11 B-splines at the top level and 56
wavelets bel ow), thusiterations also took approximately the same 7 seconds. Figure V11.3 clearly showsthe
improved convergence rates of the wavelet formulations over the B-spline basis, due to better conditioned
linear systems. The adaptive wavelet method with the oracle was the fastest since the number of unknowns
was small in early iterations, leading to a very fast approximation of the final trgectories, in addition to
the better conditioning provided by the hierarchical basis. The final few iterations involved more wavelets
inserted by the oracle to complete the process. Notethat in each case, agood approximation to the complete
animation was achieved in less than a minute of computation.

1.6 Conclusion

The spacetime constraint system first suggested by Witkin and Kass [195] for animating linked figures
has been shown to be an effective means of generating goal based motion. Cohen enhanced this work
by demonstrating how to focus the optimization step on windows of spacetime and methodologies to keep
the user in the optimization loop. These notes discuss extentionsto this paradigm by removing two major
difficulties.

A major improvement lies in the representation of the trgjectories of the DOF in a wavelet basis. This
resulted in faster optimization iterations due to less unknown coefficients needed in smooth regions of the
trajectory. In addition, even with the same number of coefficients, the systems become better conditioned
and thus lessiterations are required to settle to a local minimum. Results are shown for a planar three-link
arm.
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2 Variational Geometric M odeling with Wavelets
(Michael F. Cohen, Steven J. Gortler)

These course notes are excerpted from “Hierarchica and Variational Geometric Modeling with Wavelets’, by Steven
J. Gortler and Michael F. Cohen, 1995 Symposium on Interactive 3D Graphics.

2.1 Abstract

This portion of the notes discusses how wavelet techniques may be applied to a variety of geometric
modeling tools. In particular, wavelet decompositions are shown to be useful for B-spline control point
or least squares editing. In addition, direct curve and surface manipulation methods using an underlying
geometric variationa principlecan be solved more efficiently by using awavelet basis. Because the wavel et
basis is hierarchical, iterative solution methods converge rapidly. Also, since the wavelet coefficients
indicate the degree of detail in the solution, the number of basi s functions needed to express the variational
minimum can be reduced, avoiding unnecessary computation. An implementation of a curve and surface
modeler based on these ideas is discussed and experimental results are reported.
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2.2 Introduction

Wavelet analysis providesa set of toolsfor representing functions hierarchically. Thesetools can be used to
facilitate anumber of geometric modeling operations easily and efficiently. In particular, these notesoutline
three paradigms for free-form curve and surface construction: control point editing, direct manipulation
using least squares, and direct manipulation using variational minimization techniques. For each of these
paradigms, the hierarchical nature of wavel et analysis can be used to either provideamoreintuitivemodeling
interface or to provide more efficient numerical solutions.

In control point editing, the user sculpts a free-form curve or surface by dragging a set of control points.
A better interface alows the user to directly manipulate the curve or surface itself, which defines a set
of constraints. In aleast squares paradigm, given a current curve or surface, the modeling tool returns
the curve or surface that meets the constraints by changing the current control points by the least squares
amount [12, 86].

The behavior of the modeling tool is determined by the type of control points and basis functions used
to describe the curve or surface. With the uniform cubic B-spline basis, for example, the user’s actions
result in local changes at a predetermined scale. Thisis not fully desirable; at times the user may want to
make fine changes of detail, while at other times he may want to easily make broad changes. Hierarchica
B-splinesoffer arepresentation that allows both control point and least squares editing to bedone at multiple
resolutions [80]. Hierarchical B-splines, though, form an over-representation for curves and surface (i.e.,
any curve has multiple representations using hierarchical B-splines). As a result, the same curve may
behave differently to a user depending on the particular underlying representation. In contrast, B-spline
wavelets form a basis for the space of B-spline curves and surfaces in which every object has a unique
representation. Wavelet methods in conjunction with B-splines provide a method for constructing a useful
geometric modeling interface. Thisapproach is similar to the one described by Finkelstein and Salesin [ 76].
In these notes we will discuss some of the variousissuesthat are relevant to building such a modeling tool.

Variational modelingisathird general paradigm for geometric modeling[21, 194, 147]. Inthissetting, auser
alters a curve or surface by directly manipulation, as above, defining a set of constraints. The variationa
modeling paradigm seeks the “best” solution amongst al answers that meet the constraints. The notion of
best, which isformally defined as the solution that minimizes some energy function, is often taken to mean
the smoothest solution.

In theory, the desired solution is the curve or surface that has the minimum energy of all possible curves
or surfaces that meet the constraints. Unfortunately there is little hope to find a closed form solution 2.
Therefore, in practice, the “space”’ of parametric curves or surfaces is restricted to those represented by a
linear combination of afixed set of basis functions such as cubic B-splines. Given aset of n basisfunctions,
the goal of finding the best curve or surface is then reduced to that of finding the best set of » coefficients.
Thisreductionis referred to as the finite e ement method [187].

The genera case requires solving a non-linear optimization problem. In the best case, the energy function
is quadratic and the constraints are linear leading to a single linear system to solve. But even this can be
costly when 7 is large since direct methods for matrix inversion require O(»3) time. To accelerate this
processit istempting to use gradient-type iterative methods to solve the linear system; these methods only
take O(n) time per iteration, due to the O(n) matrix sparsity created by the finite element formulation.
Unfortunately, the linear systems arising from a finite element formulation are often expensive to solve

2But see[141].
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b-splines

wavelets

Figure VII.4: Minimum energy solutions subject to three constraints, found by the B-spline and wavelet methods
after various numbers (0-1024) of iterations. (65 variables, 3 congtraints). Thisillustratestheill conditioning of the
B-spline optimization problem.

using iterative methods. Thisisbecause the systemsare ill-conditioned, and thus require many iterationsto
converge to aminimum [186, 182]. Intuitively speaking this occurs because each basis function represents
avery narrow region of the answer; there is no basis function which can be moved to change the answer
in some broad manner. For example, changing one coefficient in a cubic B-spline curve during an iteration
alters the curvature in aloca region only. In order to produce a broad smooth curve, the coefficients of
the neighboring B-splines will move in next few iterations. Over the next many iterations, the solution
process will affect wider and wider regions, and the effect will spread out slowly like a wave moving along
astring. Theresultisvery slow convergence (see Figure (V11.4)). One method used to combat this problem
ismultigridding [186, 81], where a sequence of problemsat different resolution levels are posed and solved.

An alternative approach, isto use awavelet basis instead of a standard finite element basis [182, 158, 109,
154]. In awavelet basis, the answer isrepresented hierarchically. Thisallows the solution method to alter
the answer at any desired resolution by altering the proper basis function, and thus the ill-conditioning is
avoided. We will show how to use a wavelet construction, which is based on cubic B-splines, to quickly
solve variational modeling problemsin an elegant fashion.

Another problem with the finite element approach is choosing the density of the basis functions. If too few
basis functions (too few B-spline segments or tensor product B-spline patches) are used then the solution
obtained will be far from the actual minimum. If too many basis functions are used then unnecessary
computation will be performed during each iteration (» istoo big). In order to successfully choose a proper
density, one must know how much detail existsin the variational minimum answer. Since, a priori, thisis
unknown, an efficient solver must be able to adaptively change the basis during the solution process [194],
one needs an easy way to detect that too many or too few basis functions are being used. In addition, one
needs a basisfor which adding more detail, (i.e., refinement), is easy. Wavelets offer a basis where thistask
can be accomplished quickly and elegantly.

The work presented here combines the wavelet approaches of [182], [94], and [122]. Like [182], we use
hierarchical basisfunctionsas apre-conditioner, so that fewer iterations are needed for convergence. Similar
to[94] and [122], wavelets are al so used as a method for limiting the solution method to the proper level of
detail.

2.3 Geometric Modeling with Wavelets

The styles of interactive control discussed in the introduction will be revisited in the context of parametric
representations. Multiresolution modeling allows the user to interactively modify the curve or surface at
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different resolution levels. This alows the user to make broad changes while maintaining the details, and
conversely detailed changes while maintaining the overall shape. Two typesof manipulation are considered,
control point dragging and a direct manipulation involving solving aleast squares problem.

In contrast, variational modeling allowsthe user to directly manipulatethe curve or surface with the curve or
surface maintai ning some notion of overall smoothness subject to user imposed constraints. Thisphysically
based paradigm provides an intuitive means for shape control. Each of these paradigms will be explored in
the context of wavelet bases which will be shown to provide the required hooks for such interaction and/or
significant computationa savings.

2.3.1 Multiresolution Modeling

A multiresolution representation such as a B-spline or wavelet representation may be used to implement
a multiresolution modeling system. This section explores the choices that must be made when designing
a multiresolution tool. Two related methods are described; direct control point manipulation and a least
squares solver.

In control point modeling, theuser isallowed to directly alter the coefficient values, by clicking and dragging
on control points. In the least squares scheme [12, 86], the user can click and drag directly on the curve or
surface, defining interpolation and tangent constraints, linear with respect to the control points. The system
returns the curve or surface that satisfies these linear constraints, by changing the coefficients by the least
sgquares amount. Least square solutions can be found very inexpensively using the pseudoinverse [86]. The
least squared problem can a so be posed as a minimization problem [194], whose solution can be found by
solving a sparse, well conditioned, linear system.

In multiresolution versions of these two schemes, the user chooses the resolution level ¢, and then only
the quantities of basis functions on level i are altered. The locality of the effect on the curve or surfaceis
directly tied to the chosen level :. In control point modeling, the control polygon at level 7 is manipulated
by the user. In aleast squares scheme, the user is provided a direct handle on the curve or surface itself,
and the least squares solution isfound only using the basis functionson level i. The least-squares approach
offers amuch moreintuitive interface, and (for curves) works at interactive speeds.

One decision to be made iswhether to expose the user to hierarchical B-splines or to wavelets. It iseasy to
see that manipulating wavel et basi sfunctions does not produce an intuitiveinterface. Moving such a control
point, and thus changing the amount of some wavelet basis function used, changes the solutionin a“wave”
likefashion. In contrast, it is more intuitive to move a B-spline control point which changes the solutionin
a“hump” like fashion. Thus the user in this case should manipulate the hierarchical B-spline functions.

An important tool to implement the ideas in these notesisthe ability to find the closet (in some sense) lower
resolution curve or surface to one constructed at a higher resolution. This processis caled projection. The
inverse process, refinement, takes alow resolution curve or surface and adds additional degrees of freedom,
in genera without changing the shape.

There are many ways to obtain a lower resolution version of some object. For example, given an object at
some resol ution of detail, one could obtain alower resolution version by throwing away every other control
point. Subsampling is not atrue projection; starting with a smooth curve and then expressing that smooth
curve in the higher resolution B-spline basis basis and finally subsampling the control pointswill not return
the original smooth curve we began with.
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Another way of obtaining a smoothed version of the object is by orthogonally projecting the abject from
a space defined by alarger set of basis functions to a smaller (i.e., lower resolution) space spanning linear
combinations of fewer basis functions. The orthogonal projection isthe abject in the lower resolution space
that is closest to object in the higher resol ution space using the 1.2 measure. In general, thisinvolves a sort
of low-pass filtering. Thisis the approach used in [76]. Although thisisavery elegant way of obtaining a
lower resolution version of an object, it has afew drawbacks. The particular filter sequence used isinfinite
in length (although it does decay rapidly from its centers) and so performing this task efficiently can be
troublesome. Also, because these sequences are not local, then a single change to one B-spline coefficient
at some level will dter all of the coefficients of the projection at the next courser level.

One good compromise between these two extremes (subsampling, and orthogonal projection), isto use the
filter sequence given for the non-orthogonal wavelet construction by Cohen et a. [34]. This projection in
non-orthogonal, but it is entirely local. This is the choice we have used in our multiresolution modeling
tool.

When one projects a curve or surface to a lower resolution, the detail may be lost. One can, however,
explicitly storethislost detail, perhaps to be added back in later, or to be added to another curve or surface
togiveit asimilar quality.

What set of basis functions should be used to represent the detail. If awavelet projection is used to define
the lower resolution versions of the object, then the detail can be represented by using the corresponding
wavelet functions. The other option is to represent the detail using hierarchical B-spline functions. The
disadvantage of using hierarchical B-splinesisthat there are roughly 2n B-splinesin the hierarchy, and only
n wavelets.

The advantage of using hierarchical B-splines however is that they maintain the relationship between the
detail and the local orientation (captured by the local tangent, normal, and binormal frame) better. When
the user changes the broad sweep of the curve, changing the orientation, the detail functions are remixed.
If the detail functions are wavelet functions, then changing the normal and tangent frame remixes “wave’
shaped functions introducing non-intuitive wiggles. If the detail functions are B-spline basis functions,
then “hump” shaped functions get remixed, yieding moreintuitive changes. Also if the detail functionsare
B-splines, then because there are twice as many B-splines than wavel ets, the tangent and normal directions
are computed at twice as many sample pointsallowing the detail to follow the orientation with morefidelity.

2.4 Variational Modeling

The variational modeling paradigm generalizes the least squares notion to any objective function mini-
mization, typically one representing minimizing curvature. The variational problem leads to a non-linear
optimization problem over afinite set of variables when cast into a given basis.

There are avariety of objective functions used in geometric modeling [147, 160] In our implementation we
have used the thin-plate measure which is based on minimizing the parametric second derivatives[187, 21,
194]. If the vector of unknown coefficients are denoted by x, and the linear position and tangent constraints
imposed by the user’s action are given by the set of equations Ax = b, then the thin plate minimum may
be found by solving the following linear system [194].

0
b

\ (5)

H AT
A 0
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Where H is the Hessian matrix defined by the thin plate functional, and A are Lagrange variables.
24.1 Hierarchical Conditioning

Wavelets can be used in the context of variational modeling so that the solution may be obtained more
efficiently.

In the B-spline basis, the optimization procedure resulted in the linear system given by Equation (5). In the
wavelet basis, adifferent linear systemresults. If thewavel et filter sequences defining thewavel et transform
are contained in the matrix W, then an equivaent linear systemis given by

0
b

) (6)

H AT
A 0

where the bars signify that the variables are wavel et coefficients, x = Wx, and the Hessian and constraint
matrix are expressed with respect to the wavel et basis. To see the relationship with the B-spline system, the
new system can also be written down as

0
b

‘ w-THw-1 wW-TAT @)

AW-1 0

X
A

Although Equation (5) and Equation (6/7) imply each other, they aretwo distinct linear systemsof equations.
Because the wavel et system (6/7) ishierarchical it will not suffer from the poor condtioning of the B-spline
system of Equation (5). For arigorous discussion of the relevant theory see [46].

The scaling of the basis functions is very significant for the behavior of the optimizing procedures. Tra-
ditionally the wavelet functions are defined with the scaling defined in [135, 154]. At each level moving
up, the basis functions become twice as wide, and are scaled % timesastall. Whilein many contextsthis
normalizing may be desirable, for optimization purposesit is counter productive.

For the optimization procedure to be well conditioned [109, 46] it is essential to emphasize the coarser
levels. The correct theoretical scaling depends on both the energy function used, and the dimension of
problem. For afuller discussion, see the Appendix in [95]. In the experiments described below a different
scaling was used.

As one goes one level down, the basis functions become twice as wide, and 1/2 as tdl. In the pyramid
code, thisisachieved by multiplyingall of the scaling and wavelet filter coefficients by 2, and all of the dual
coefficients by 1/2 The proper scaling is essentia to obtain the quick convergence of the wavelet method
when steepest descent or conjugate gradient iteration is used. Scaling is not important with Gauss-Seidel
iteration, which will perform the same sequence of iterations regardless of scae.

There is now a choice to make. In an iterative conjugate gradient solver, the common operation is
multiplication of a vector times the wavelet matrix given in Equations (6/7). There are two ways to
implement this.

One approach, the explicit approach, is to compute and store the wavelet Hessian matrix H and the
wavelet constraint matrix A (Equation (6)). These can be computed directly from a closed form (piecewise
polynomial) representation of the wavelet functions. Unfortunately, these matrices are not as sparse as the
B-spline Hessian and constraint matrices.
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Alternatively, there is the implicit approach [198, 182] which only computes and stores the entries of the
B-splinematricesH and A (Equation (7)). Multiplication by the W matricesisaccomplished using alinear
time pyramid transform procedure.

The advantage of this approach is that the whole multiply remains O(n) in both time and space, since
the pyramid procedures run in linear time, and the matrices H and A are O(n) sparse. Even though one
of the methods explicitly uses wavelet terms while the other uses B-spline terms, these two methods are
mathematically equivalent, and so both will have the same condition properties.

2.4.2 Adaptive Oracle

By limiting the possible surfaces to only thosethat can be expressed as alinear combination of afixed set of
basi sfunctions, one obtainsan approximation of thetrue optimal surface. Asmore basisfunctionsare added,
the space of possibl e solutions becomes richer and a closer approximationto the true optimal surface can be
made. Unfortunately, as the space becomes richer, the number of unknown coefficients increases, and thus
the amount of computation required per iteration grows. A priori, it is unknown how many basis functions
are needed. Thus, it is desirable to have a solution method that adaptively chooses the appropriate basis
functions. Thisapproach wasapplied using hierarchical B-splinesin[194]. When refinement was necessary,
“thinner” B-splinesbasisfunctionswere added, and theredundant original “wider” B-splineswere removed.
With wavelets, al that must be done isto add in new “thinner” wavelets wherever refinement is deemed
necessary. Since the wavelets coefficients correspond directly to loca detail, al previously computed
coefficients are till valid.

The decision process of what particular wavelets to add and removeis governed by an or acl e procedure
whichiscalled after every fixed number of iterations. The oracle must decidewhat level of detail isrequired
in each region of the curve or surface.

When some region of the solution does not need fine detail, the corresponding wavel et coefficients are near
zero, and sothefirst thingtheor acl e doesisto deactivate thewavel et basi sfunctionswhose corresponding
coefficients are below somesmall threshold. Theor acl e then activates new wavel et basisfunctionswhere
it feels more detail may be needed. There are two criteria used. If a constraint is not being met, then the
oracle addsin finer wavelet functionsin theregion that is closest in parameter space to the unmet constraint.
Even if all the constraints are being met, it is possible that more basis functions would allow the freedom to
find a solution with lower energy. Thisis accomplished by activating finer basis functions near those with
coefficients above some maximum threshold.

To avoid cycles, abasisfunctionis marked as being dor mant when it is removed from consideration. Of
course, it is possible that later on the solution may really need this basis function, and so periodically there
isarevi val phase, wherethedor mant marks are removed.

243 User Interface

A user of the system is first presented with a default curve or surface. Constraints can then be introduced
by clicking on the curve or surface with the mouse. The location of the mouse click defines a parametric
position ¢ (and s) on the curve (or surface). The user can then drag this point to a new location to define an
interpolation constraint. Tangent constraintsat a point can aso be defined by orienting “arrow” icons at the
point. Once the constraint is set, the solver is called to compute the minimum energy solution that satisfies
the constraints placed so far and the result is displayed.
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Figure VII.5: Error per time. Curvewith 65 control points, 3, 7, and 13 constraints.

When the solution is completed, the result provides information for not only the curve or surface satisfying
the specific value of the new constraint, but for all curves or surfaces with respect to any vaue of this
constraint. Once the linear system (Equation (6/7)) with the newest constraint has been solved, the solver

stores the delta vector
AX

Abw (8)
where m is the index of the newest constraint, and b,,, is the constraint value (i.e., the position or tangent
specified by the user). Thisvector storesthe change of the coefficient vector dueto aunit changein the new
constraint Ab,y,, essentialy acolumn of the inverse matrix. The user isnow free to interactively movethe
target location of the constraint without having to resolve the system since, as long as the parameters s, and
t of the constraints do not change, the matrix of the system, and thus itsinverse, do not change. However,
as soon as a hew constraint is added (or a change to the parameters s and ¢ is made) there is fresh linear
system that must be solved, and all of the deltavectors are invalidated. The ability to interactively change
the value of a constraint isindicated to the user by coloring the constraint icon.

244 Variational Modeling Results

A series of experiments were conducted to examine the performance of the wavel et based system compared
to aB-spline basis. In the curve experiments, the number of levels of the hierarchy, I, was fixed to 6, and
in the surface experiments, I, was fixed as 5. The optimization process was then run on problems with
different numbers of constraints. The results of these tests are shown in Figures VI1.5 and VI1.6. These
graphs show the convergence behavior of three different methods, solving with the complete B-splinebasis,
solving with the complete wavelet basis, and solving with an adaptive wavelet basis that uses an oracle.
(The wavelet results shown here are using the implicit implementation). If x(™) js the computed solution
expressed as B-spline coefficients at time m, and x* is the correct solution of the complete linear system 3

3computed numerically to high accuracy
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Figure VI11.6: Error per time. Surface with 1089 control points, 11,23,64 evenly space constraints, and 62 constraints
along the boundary.

(i.e., the complete system with 2/ + 1 variables, and no adaptive oracle being used) then the error at time
m isdefined as

vy —al™|
Zilas—a)”

(9)

To obtain the starting condition x(?), two constraints were initialized at the ends of the curve, and the
minimal thin plate solution (which in this case is a straight line) was computed. (For surfaces, the four
corners were constrained.) All times were taken from runs on an SGI R4000 redlity engine. 4

When there are large gaps between the constraints, the B-spline method is very poorly conditioned, and
converges quite slowly while the wavelet method converges dramatically faster. In these problems, the
oracle decides that it needs only a very small active set of wavelets and so the adaptive method converges
even faster. Asthe number of constraintsis increased, the solution becomes more tightly constrained, and
the condition of the B-spline system improves. (Just by satisfying the constraints, the B-spline solution is
very close to minimal energy). Meanwhile the oracle requires alarger active set of wavelets. Eventually,
when enough constraints are present, the wavelet methods no longer offer an advantage over B-splines.

Experiments were also run where all the constraints were aong the boundary of the surface. In these
experiments there are many constraints, but the since the constraints are along the boundary, much of the
surface is “distant” from any constraint. In these problems, the wavelets aso performed much better than
the B-spline method.

*In the curve experiments, each B-spline iteration took 0.0035 seconds, while each iteration of the implicit wavelet method took
0.011 seconds. For the surface experiments, each B-spline iteration took 0.68 seconds while each iteration of the implicit wavelet
method took 0.85 seconds. (The wavelet iterations using the explicit representation took about 10 times as long).
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2.5 Conclusion

These notes have explored the use of wavelet analysisin avariety of modeling settings. It has shown how
wavelets can be used to obtain multiresolution control point and least squares control. It has shown how
wavelets can be used to solve variationa problems more efficiently.

Future work will be required to explore the use of higher order functionals like those given in [147, 160].
Because the optimization problems resulting from those functiona's are non-linear, they are much more
computationally expensive, and it is even more important to find efficient methods. It is also important to
study optimization modeling methods where constraint changes only have local effects.

Many of these concepts can be extended beyond the realm of tensor product uniform B-splines. Just asone
can create aladder of nested function spaces using uniform cubic B-splines of various resolutions, one can
also create a nested ladder using non-uniform B-splines [128].

Subdivision surfaces are a powerful technique for describing surfaces with arbitrary topology [101]. A
subdivision surface is defined by iteratively refining an input control mesh. As explained by Lounsbery et
al. [124], one can develop a wavelet decomposition of such surfaces. Thus, many of the ideas devel oped
above may be applicableto that representation as well.
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3 Waveletsand Integral and Differential Equations (Wim Sweldens)

3.1 Integral equations

Interest in wavelets historically grew out of the fact that they are effective tools for studying problems
in partial differential equations and operator theory. More specifically, they are useful for understanding
properties of so-called Calderbn-Zygmund operators.

Let usfirst makeageneral observation about the representation of alinear operator 7" and wavel ets. Suppose
that f has the representation
f(@) = Y (fdie) vin(e).
jik
Then,
Tf(x) = > (foin) Tjk(),
jik

and, using the wavelet representation of the function 7'¢; 1.(« ), this equals

STFin) D AT i) big(x) = > (Z (Tjr,via) ([, %‘,H) Vi)

7,k 1,1 1,1 7,k

In other words, the action of the operator T' on the function f is directly trandlated into the action of the
infinite matrix A7 = { (T; %, %i1) }i1,5,% ON the sequence { ( f,4; %) };%. This representation of T as
the matrix Ar isoften referred to as the “ standard representation” of 7" [15]. Thereis aso a “nhonstandard
representation”. For virtualy all linear operators there is a function (or, more generally, a distribution) i
such that

Tf(e) = [ Klw.) i) dy.

The nonstandard representation of T is now simply the decomposition one gets by considering K as an
image and calculate the 2D wavel et transform.

Let us briefly discuss the connection with Calderén-Zygmund operators. Consider atypical example. Let
H bethe Hilbert transform,
L R (C)

Afe) =2 T4
The basic idea now is that the wavelets ; ;. are approximate eigenfunctions for this, as well as for many
other related (Calderon-Zygmund) operators. We notethat if +; ;, were exact eigenfunctions, then we would
have H; 1(z) = s; 1, x(z), for some number s; ;, and the standard representation would be a diagonal
“matrix”:

Ag = {(HYip i)} = {sii{anie) b = {sipbicij—r)

Thisis unfortunately not the case. However, it turns out that A7 isin fact an amost diagona operator, in
the appropriate, technical sense, with the off diagona elements quickly becoming small. To get some idea
why thisisthe case, notethat for large |z|, we have, at least heuristicaly,

1
Hjp(e) = — / Vik(y) dy.
A priori, the decay of the right-hand side would thusbe O(1/z), which of courseisfar from the rapid decay
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of awavelet v; . (remember that some wavelets are even zero outside a finite set). Recall, however, that
1; 1, has at least one vanishing moment so the decay isin fact much faster than just O(1/z), and the shape
of H; () resemblesthat of ¢; 1(z). By expanding the kernel as a Taylor series,

1 1 s s2
= = ]__|___|__2... ,
r—8 x r

we see that the more vanishing moments + has, the faster the decay of H1); ;. is.

Thus for a large class of operators, the matrix representation, either the standard or the nonstandard, has
a rather precise structure with many small elements. In this representation, we then expect to be able to
compress the operator by simply omitting small elements. In fact, note that this is essentialy the same
situation as in the case of image compression with the “image” now being thekerndl K'(z, y). Hence, if we
could do basic operations, such as inversion and multiplication, with compressed matrices rather than with
the discretized versions of 7', then we may significantly speed up the numerical treatment. This program
of using the wavelet representations for the efficient numerical treatment of operators was initiated in [15].
We dso refer to [3, 2] for related material and many more details.

3.2 Differential equations

In adifferent direction, because of the close similarities between the scaling function and finite el ements, it
seems natura to try wavelets where traditionally finite element methods are used, e.g. for solving boundary
value problems [108]. There are interesting results showing that this might be fruitful; for example, it has
been shown [15, 45] that for many problems the condition number of the N x N stiffness matrix remains
bounded asthe dimension N goesto infinity. Thisisin contrast with the situation for regular finite elements
where the condition number in general tends to infinity.

One of thefirst problemswe have to address when discussing boundary problemson domainsis how to take
care of the boundary values and the fact that the problem is defined on afinite set rather than on the entire
Euclidean plane. Thisissimilar to the problem we discussed with wavelets on an interval, and, indeed, the
techniques discussed there can be often used to handle these two problems|[4, 9].

Wavelets have a so been used in the solution of evolution equations [90, 129]. A typical test problem here
isBurgers' equation:

Ou ou d%u

o o T Vo
The time discretization is obtained here using standard schemes such as Crank-Nicholson or Adams-
Moulton. Wavelets are used in the space discretization. Adaptivity can be used both in time and space
[10].

One of the nice features of wavel ets and finite el ementsisthat they allow usto treat alarge class of operators
or partia differential equationsin aunified way, allowing for example general PDE solvers to be designed.
In specific instances, though, it is possible to find particular wavelets, adapted to the operator or problem
at hand. In some cases one can construct functions that diagonalize a 1D differential operator [112]. This
leads to a fast, non-iterative algorithm for the solution of ordinary differentia equations with various kinds
of boundary values.
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4 Light Flux Representations (Alain Fournier)

Since the introduction of global illumination computations in computer graphics in 1984 [91] most such
computations have been based on radiosity computations[39]. While very successful and still intensively
investigated, it has serious limitations. Most of the drawbacks of radiosity come from the fact that it is
patch-driven, and introducesthe light only after the form factors have been computed (even though that has
been addressed recently), and from the fact it really works only for separable sources and reflectors. Itisa
global illumination solution which critically depends on a limiting assumption about the local behaviour of
light. Hybrid solutionsaso invariably have problems because there is no neat dichotomy between specular
and diffuse reflection, and real reflection/refraction is a continuum between these two extremes.

An dternative is a light-driven approach, where the global illumination problem is solved by propagating
the light from sources (we use “source” in the broadest sense of anything radiating light) to other parts of
the environment to the eye. Another important criterion isthat the amount of effort spent on each part of the
sceneis somehow related to how much light will come from it. Thereisno need to compute much about the
whole content of a closet whose door remains closed, even less need to compute anything if al the lights
are off. That leads therefore, to alight-driven, volume-oriented approach.

The essentia paradigm is as follows. Consider a volume V within the environment to render, with a
boundary surface 5. If we know for every point of .5 the flux of light crossing it in any direction, then we
can study separately theilluminationinside and outside of V. Furthermore, even if we do not know the true
situation at the boundary, but only some amount of light emitted inside VV and the amount of light coming
intoV, and if we know how to solvetheglobal illumination probleminsideV, then we can assign to pointsof
S the correct amounts of outgoing light. The outside of V' can then be treated without considering V unless
it is found that more light comes into V from outside. In this case we can solve the global illumination
problem inside V again independently of the previous solution if we assume (and it is the only serious
restriction) the linearity of the light effects. After dealing with a volume, all the incoming light energy
has been accounted for, being transmitted to the neighbours or absorbed within the volume. If we cannot
solve the global illumination problem for V, we can partition it into two or more sub-volumes, and so on
recursively until each section is simple enough so that we can dea with it.

Once a volume has been dealt with, the result is a description of the flux of light coming through 5 to the
outside. Adjacent volumesare then assigned that flux (added to any already incoming) asincoming flux. An
untreated volume will be unbalanced in energy, since it receives light energy not yet accounted for inside.
The basic algorithm is then to examine the unbal anced volumes and treat them. In theinitial state no power
is exchanged between volumes, and the only unbalanced volumes are the ones containing a light source.
After balancing any of these volumes, new volumes will become unbalanced because their energy balance
will become positive. If when dealing with a volume we are careful not to “create” energy, that iswe have
alocal illumination and transmission model with some physical credibility, then a“treated” volumewill be
balanced, and remain so until new light is transmitted into it from an adjacent volume. Thisamount of light
cannot be morethan its neighbour received (in power), and infact will beless after any reflection/refraction,
so we are guaranteed to eventually reach a state where all volumes are balanced. In particular we will not
become trapped in local minima, and general global optimization algorithms are not necessary.

Thefirst implementation of this approach was described in [84] and a parallel versionin [70].

The second implementation of this paradigm is in progress, the work of Bob Lewis and Alain Fournier.
There are of course many interesting issues, dealing with space subdivision, local illumination and propa-
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gation in particular, but the one especialy relevant to this course is light flux representation. The crucia
implementation decision is how to represent light as it enters and leaves the cell. If we examine the re-
quirements for the light flux representation, we find that at each point on the surface of the volume (for the
nonce we will assume that this surface is a rectangle, which isthe case in our current implementation since
we use an octree subdivision of the space) we need to know the radiance going through for every direction.
Thismeans that we need a four-variable function in the continuous case (two spatial, two directiona). This
function can be very smooth (for instance when the whole flux comes from a point light source), smooth
gpatially but not directionally (for instanceif the whole flux comes from a directional light source; itisaé
function in direction), or highly discontinuousin every way (after being blocked, reflected and refracted by
thousands of objects. We need a coarse description sometimes or some places, a detailed description some
other times, and the ability to simplify the representation as the light propagates from volume to volume.
Another way to look at it is to consider that in a given direction the light flux representation is essentialy
a picture description, and we want a compact, multi-resolution representation of such. Clearly a wavelet
representation seemsindicated, and that iswhat we are currently implementing. The practical questionsare:

which wavel et basis to choose

istherelatively high dimensionality a problem

which data structure to choose to bal ance compactness and efficiency of computation

can the wavel et representation be used directly to propagate the light

can the wavelet representation be used directly to compute the local illumination, possibly using a
similar representation for the BRDF and/or the object surface description.

To test our representation, and as an interesting application in its own right, we can use the representation
so obtained as a compact multiresolution storage of a set of views of an object. For a simple example, if
we consider al the orthographic projections of a given object on planes not intersecting it, they constitute
only scalings and tranglations of a canonical 4-D array of radiance values, which is exactly what our light
flux representation is. In a context of so-called fish tank virtual reality [193], where the head position of a
user istracked to display the appropriate view of objects on the screen (with or without stereo), this can be
used to precompute and display the views of objects which otherwise would be too expensive to display by
conventional methods (such as volumetric data) or whose models are not available (such as red objects).
For rea objects the datais obtained by digitizing multiple views (in our case taken by a camera held by a
robot arm programmed to sample the sphere of directions). We are exploring the more interesting aspects
of this approach. The built-in multiresolutionis especially useful to give coarse images while the viewer’s
head is moving fast, or motion-blurred images (there is a difference).
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5 Fractalsand Wavelets (Alain Fournier)

5.1 Fractal Modes

Theterm and most of the concepts and methods of fractal were introduced by Benoit Mandelbrot during the
last 20 years. Theuniverseof fractalsisby now very large, but for our purposes herethey can be divided into
deterministicfractals, from Koch curves to the ubiquitous Mandel brot set, and stochastic fractals, where the
fractal properties apply to the various characteristics of random variables. We will only consider here one
such stochastic fractal process, fractional Brownian motion (fBm). It has been introduced by Mandelbrot
and Van Ness [137] as a generalization of Brownian motion, which itself has fractal properties. It has been
of interest in graphics because as afirst approximation it is a useful model for terrain.

5.2 Fractional Brownian Motion

Fractional Brownian motion, as a stochastic process By (t) has one parameter 0 < H < 1) and can be
characterized by its self-similarity. If we consider ascale parameter « > 0, theprocess (B (t+a7)—Br(t))
has the same moments than («*’ By (7)). 1t is anon-stationary process, that is its covariance function isa
function of ¢

E[Bu(t)Bu(s)] = (Vi /2)[|t27 + [s|*T — [t — s7]

cost H

Vi = T(1-2H)—

The variance of the process isthen:
Var[Bp (1)] = Vit|*

Even though fBm does not have a spectrum in the usual sense, one can define an average spectrum [78]:

-
Su(f) = Wigﬂ

Themain advantage of fBm asamodel of terrain isaremarkable compactness of representation. Depending
on how much deterministic data is included, the data base can be from two numbers to a few hundreds, to
represent terrain that ultimately contains thousands or million of polygons. The second big advantage, due
toitsfracta nature, isthat unlimited amountsof detailscan be generated. The disadvantagesincludethefact
that to generate a surface pure recursive subdivisionis not sufficient, and that will complicate somehow the
subdivision algorithms, and that it has limited flexibility, with basically only one parameter to be adjusted
to generate different terrains.
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5.3 Stochastic Interpolation to Approximate fBm

There have been numerous methods published for stochastic subdivisions. The criteria to evaluate them
have to depend on what they claim to accomplish and their intended use. The techniques to approximate
specifically fractional Brownian motion [85] [191] have been well described. The paper by Fournier, Fussell
and Carpenter [85] putstheir methods into the context of computer graphics, and emphasizes the problems
of integrating the generation of approximationsto fBm with traditional graphics modelling.

The methods used in this paper are al based on stochastic interpolation, that is an interpolation method
where stochastic variables are used to approximate samples of a known stochastic process. They use
recur sive subdivision, which has the advantage of being aknown and common method in computer graphics,
especially in conjunction with parametric surfaces. Since in the case of fBm, the expected position of the
mid-point between two existing sample points is the arithmetic mean of these points, the only problem
is to determine the variance. But the influence of scale (and therefore of level of subdivision) on the
variance is given directly by the definition of fBm. As a function of one variable this gives directly an
acceptable algorithm to generate fBm. Note that it has most of the required properties: it is adaptive, it
is fast, and the cost is proportiona to the number of sample points actualy generated. When applied to
the two-variable case, that is surfaces, we have to deal with the non-Markovian property of fBm. Straight
recursive subdivision, especially on triangles has been used extensively. The obviousattraction isthat most
hardware/firmware/software rendering systemsdeal efficiently with triangles. The possibleartefacts created
by the non-stationarity of the samples generated (usually seen as “creases’, that is boundaries where the
slope changes is higher than in the neighbourhood) can be controlled. The easiest way is to reduce the
scale factor applied to the displacement value abtained. Thisishowever conceptually unsatisfactory. Inthe
same paper an dternative, aform of interwoven quadrilateral subdivision, was proposed and illustrated. In
this scheme, the subdivision scheme proceeds by using information not only from the boundaries, but from
neighbours across it, and the distribution information is spread in anon-Markovian fashion. It isinteresting
to note that it is quite close to the quincunx subdivision scheme [50] used for two-dimensiona wavel et
transforms.

For many applications it is important to realize a true stochastic “interpolation”, that is a constraint is not
to modify the points already computed at later stages of subdivision. Methods recently proposed by Voss
[153], Saupe [153] and Musgrave, Kolb and Mace [148] do not respect that constraint, while trying to be
more flexible or more faithful to the process simulated (generally fBm). The latter is especially interesting
as it uses noise synthesis in the spatial domain with Perlin type noise functions. An interesting work by
Szeliski and Terzopoulos [183] describes how to use constrained splines to fit an initial discrete set of
points, and then use the energy function used for minimization to derive the probability distribution of the
stochastic eement. This, when properly implemented, generates constrained fractal surfaces, and seems a
very useful modelling tool. Depending on the modalities of implementation, one can obtain varying level
of details through a multi-grid approach, and true interpolation by sacrificing some of data-fitting aspect
of the method. To go back to stochastic interpolation proper, a paper by Miller [144] proposes a solution
which can be interpreted as smoothing over the already generated values with a small filter.

5.4 Generalized Stochastic Subdivision

The most comprehensive answer to the problem of stochastic interpolation is generalized stochastic subdi-
vision by J. Lewis[120]. In his method each new interpolated value is computed by adding noise of known
variance to the weighted sum of the current values in a neighbourhood of size 25"
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Vit

Nl

s
= > apVigr
k=15

Note the difference between this and the method in [85], where the value used is just the average of V; and
Vit1. Inother words, S = 1and ap = a1 = % The correct coefficients a; are those which make VH% the

best estimation of theinterpolated value. It can be shown that if the auto-correlation function:
R(t)=E[V(t)V(t + 7)]

is known, then the a;. can be computed from the relation:
s
R(m—Z)= Z agR(m —Fk) for 1-5<m<g S

The computation of the a; requires a matrix inversion (the above formulais of course a shorthand for 25
equations with 25 unknowns) but only has to be done once for a stationary process. The method permits
the approximation of awiderange of processes, Markovian aswell as hon-Markovian, and even oscillatory.
The choice of the correct size of neighbourhood isrelated to the process to be approximated.

55 Wavelet Synthesisof fBm

Since the main characteristics of fBm is to be non-stationary (even though its increments are stationary)
and sdf-similar, wavelet analysis seems to be an appropriate tool to study it. Non-stationarity requires
a time-dependent anaysis, and self-similarity requires a scale-dependent analysis, two features wavelet
analysis possesses.

Indeed we can easily recouch the basic recursive subdivision approach to fBm synthesis as a wavelet
reconstruction. At level j in the process, if a;41(¢) are the values aready computed and d;41(¢) the
mid-point displacements, then the new vaues are;

aj(1) = a;y1(i/2)
when ¢ iseven, and
aj(i) = 1/2(a;11((1 — 1)/2) + aj41((v + 1)/2)) + djza((i + 1)/2)

when 7 isodd. This correspondsto the wavelet reconstruction:

aj(i) =Y lajpa(k) h[—i + 2k] + djqa(k) g[—i + 2K] ]
k

with for filter coefficients 2(—1) = k(1) = 1/2, 1(0) = 1, ¢(1) = 1 and al other coefficients 0, and the
detail values generated as uncorrel ated Gaussian variables with variance Vi (27 )2H+1.

It is now easier to examine the characteristics of such a construction from the wavelet analysis standpoint.
There is by now alarge literature on wavelet analysis and synthesis of fractals, but the following is based
mainly on papers by P. Flandrin [77] [78] and G. W. Wornell [196] [197].
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If we conduct an orthonormal wavel et decomposition of some sample B () of fBm, the detail coefficients
d;(k) areequal to:

di(k) = 279/ /OO Bu(t) 2t — k) dt

— 00

The smooth, or average coefficients are similarly equal to:

a;(k) = 27902 /OO Bu(t) o(277t — k) dt

— 00

Asused many timesin earlier chapters, thisisnot in practice the way the coefficients are computed. Instead
they are computed recursively from the coefficients of the discrete filters associated with the two functions,
hli] with (t) and g[¢] with ().

a;j(i) =Y ajra(k) h[—i + 2k]
k

dj(i) =Y ajya(k) g[—i + 2K]
K

with the reconstruction formula given above. The reconstruction formula will provide us with a way to
synthesize fBm, if we can obtain information about the statistics of the coefficients and they are easy to
approximate. The central result, showedin [78] isthat

1. Thetimesequence of detail coefficientsat thesamelevel d;(¢) and d;(k) isself-similar and stationary;
the covariance of the coefficients properly scaled is a unique function of (k — ¢).

2. The scale sequence of detail coefficients for the same “time”, d;(¢) and d;(k), such that & = 2/~
suitably scaled is stationary as well; the covariance of the coefficients is aunique function of (; — {).

The non-stationarity of fBm is therefore not present in the detail coefficients. It can be shown that it is
indeed in the smooth coefficients «;(¢), which are self similar and time dependent, as predictable, sincethey
constitute an approximation of the whole process.

Theidea casefor constructionwould beif the detail coefficients are all uncorrelated (covariance = 0). Then
we would only have to generate coefficients with the right variance to obtain an approximation to fBm.

The variance of the detail coefficientsis given by
Var[d;(i)] = Vi /2 Vy(H )22+ (10)
where Vi, ( H ) isafunction of H characteristic of the wavelet used.

In genera it can be shown that the correlation between detail coefficients decays quiterapidly asafunction
of the time distance (same level) and the level distance. For example in the case of the Haar wavelet and
H = 1/2 (ordinary Brownian motion), the correlation at the same level is O, with:

_Vu 1l

Vald;(i)] = - & 22
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and the correlation between levelsfor synchronous positionsis:

E[d](l)dk(zj_kl)] _ VTH% 22j 25(k—])/2
Itisalso 0 outside a specific time-scaledomain. When H takes different values, the situation becomes more
complex, and the interested reader should consult [78] for details.

When considering wavelets other than Haar, it turns out that the crucial factor is the number of vanishing
moments N (see chapter I for adefinition of V). Asymptotically the correlation is given by:

E[d;(i)di(1)] = O(J1 = s|211=7)

So the larger the number of vanishing moment the wavelet has, the more uncorrelated the coefficients are,
both between and within levels.

It follows[196] that for the purpose of approximation, one can generate the detail coefficients asuncorrelated
Gaussian samples with the variance given in (10) and be guaranteed that at the limit the process obtained
has atime-averaged spectrum S ( f) such that:

Vi Vi

where v; and v, are constant depending on the wavelet.

Since the filter coefficients used in the original midpoint displacement scheme are far from the desirable
propertiesfor such filters (see section 1 in Chapter 11), one can try better filters without sacrificing too much
of the convenience of the method. A good choice is to keep the values for i(): h(—1) = h(1) = 1/2,
h(0) = 1and choosefor ¢(-): ¢(0) = ¢(2) = 1/2, g(1) = —1, and dl other coefficients 0. These of course
correspond to the linear B-spline (the hat smoothing function. They have al the properties required except
orthogonality to their tranglates. In this application, however, we only need the reconstruction filters, and a
biorthogonal schemeis sufficient (we do hot even have to know the dud filters). The filters now means that
at each stage all the new smooth values are modified, and we have | ost the interpol ating property.

If the correlation function between detail coefficientsisknown, and if therangefor whichitisnon-negligible
is rather small (as would be the case with a wavelet with high number of vanishing moments) then using
Lewis generalized stochastic subdivision to generate coefficients with the right correlation is appropriate.
The great simplification that the wavelet analysis allows is that since the detail coefficients are stationary
and self-similar, the matrix inversion involved in computing the best estimate of the variance has to be
computed only once.

To conclude this section we should stress that the trade-off between interpolation and and approximation
also involvesthe question of what process we assumeto sample the coarse values. Interpolation correspond
to point-sampling, while most wavelet schemes correspond to some form of filtering. The latter is good
for smooth transitions between the levels. It is problematic, however, it we do not pay close attention to
the fact that the rendering process is not a linear operation, and the averages obtained might be grossly
unrepresentative under some conditions.
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VIII: Pointers and Conclusions

1 Sourcesfor Wavelets

Obvioudly thisfieldisrapidly expanding. Therateof apparition of new resultsand applicationsisastounding.
The bibliography that followsis not meant to be exhaustive. The must-have books are by Daubechies [50]
and Chui [26]. Good survey articles are by Strang [177], Chui [25], Rioul and Vetterli [162], Devore
and Lucier [61] and Jaworth and Sweldens [113]. A recent tutorial by Stollnitz, DeRose and Salesin is
concerned specifically about applications in computer graphics [176]. All of these references are pointers
to considerably more.

An important source of information available on the internet is the Wavel et Digest, from the University of
South Carolina. To quote fromit:

Subscriptions for Wavelet Digest: E-mail to wavelet@math.scarolina.edu with “ subscribe” as subject. To
unsubscribe, e-mail with “ unsubscribe” followed by your e-mail address as subject. To change address,
unsubscribe and resubscribe.

Archive site, preprints, references and back issues: Anonymous ftp to maxwell.math.scarolina.edu
(129.252.12.3), directories /pub/wavel et and /pub/imi _93.

Gopher and Xmosaic server: bigcheese.math.scarolina.edu.

2 Codefor Wavdets

The Wavelet Digest and the sources mentioned above contain numerous pointers to sources of code. An
interesting package from Yale, originally from V. Wickerhause and R.R Coifman, is the Wavelet Packet
Laboratory, available as an X version as XWPL from pascal.math.yale.edu. A commercial version of such
also exists, running among other things under PC Windows. Other packages are based on MATLAB (Matlab
isatrademark of The MathWorks Inc.) such as WavBox from Carl Taswell (taswell @sccm.stanford.edu).



The latest edition of the popular Numerical Recipesin C [157] has a new section on wavelets, and contains
many useful routines.

The CD-ROM version of these notesincludesthe code for the UBC Wavelet Library (version 1.3) asashar
file, by Bob Lewis. It isalean but useful library of functionsto compute multi-dimensional transforms with
awide variety of wavelet bases. To quote from the accompanying blurb:

Announcing wvt: The Imager Wavelet Library — Release 1.3

| am putting in the public domain Release 1.3 of "wwit", the Imager Wavelet Library. Thisisa small library
of wavelet-related functionsin C that perform forward and inver se transforms and refinement. Support for
15 popular wavelet bases isincluded, and it's easy to add more.

The package al so includes source for a couple of shell-level programsto do wavel et stuff on ASCI| filesand
some demo scripts. (The demos require "gnuplot™ and "perl” to be installed on your system.) The code has
been compiled and tested under IBM RSY6000 Al X, Sun SPARC SunOS, and SGI IRIX, and should port to
other systems with few problems.

The package is available as a shell archive ("shar" file) either by ftp (node: ft p. cs. ubc. ca, file
/ pub/ | ocal / bobl /wvl t/wlt_r1_3. shar) or the World Wide Web via the Imager Home Page
(http://ww. cs. ubc. cal/ nest/inmager/imager.htm ). Thereis also a link to it from the
Wavelet Digest (ht t p: / / www. mat h. scar ol i na. edu: 80/ wavel et/ ) pagesaswell.

Future releases are under development and will include both speedups and increased functionality. They
will be available by the same mechanisms.

| produced this package and hereby release it to the public domain. Neither | nor the University of British
Columbia will be held responsible for its use, misuse, abuse, or any damages arising from same. Any
comments regarding this package may, nevertheless, be sent to: Bob Lewis (bobl @s. ubc. ca.

3 Conclusions

Nobody should walk out of this course thinking that they became an expert on wavelets. What we hope you
will carry out is the certainty that wavelets are worth knowing, and that on many occasions (not always)
they are worth using. Many of the concepts associated with wavelets, such as multiresolution, hierarchical
analysis, recursive subdivision, spatio-temporal analysis, have been known and used before, some of them
for decades if not centuries. Wavelets brought us a formal framework and a powerful analytical tool to
understand the possibilitiesand limitations. It is not often than we in computer graphics are presented with
such a gift and we should be thankful.
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adaptive scaling coefficients, 134, 135

Adelson basis, 2

basic wavelet, 12
Battle-Lemarié wavelets, 58
Battle-L emarié wavelets, 66
biorthogona wavelets, 66
biorthogonality, 130
Burgers' equation, 201

Calderén-Zygmund operators, 200
Canny edge detection, 119
cascade algorithm, 48
Catmull-Clark subdivision, 144
coiflets, 127

compact support, 57

compression, 64

constant-Q analysis, 12
constraints, 183

correlation, 108

Daubechies wavelets, 58, 59
detail filter, 14, 37

dilation, 12

dilation equation, 46

dyadic wavel et transform, 15

edge detection, 19
encoding, 115
error box, 137

filter bank algorithm, 150

fish tank virtual reality, 203
fractional Brownian motion, 204
frequency, 7
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Gaussian, 42
Haar transform, 13

image enhancement, 120

image pyramid, 5

interpolating scaling functions, 124, 128
interpolation operator, 19

JPEG compression, 111
Karhunen-Loéve basis, 108

light-driven illumination, 202
Lipschitz continuity, 64

Loop subdivision, 144
lossless compression, 108
lossy compression, 108

MIP map, 5

mirror filter, 38

modul ated filter bank, 10
multi-dimensional wavelets, 20
multiresolution analysis, 17

non-standard basis, 20
non-standard decomposition, 20

oracle function, 186
orthonormal, 42

parametric curves, 123

path planning, 137
polyhedron, 144

prewavelet, 54
pseudocoiflets, 124, 128, 131
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pyramid scheme, 38, 40

guantization, 113
guincunx, 21

refinement equation, 46
restriction operator, 19
root mean square error, 110

scaling coefficients, 40
self-similarity, 204
semiorthogonal wavelet, 54
semiorthogona wavel ets, 68
sequency, 8

short-time Fourier transform, 10
smoothing filter, 14, 37
spacetime constraints, 183
spline wavelets, 68

standard basis, 20

standard decomposition, 20
stationarity of coefficients, 207
stationary, 7

subband coding, 14
subdivision surfaces, 144

vanishing moment, 18, 58, 61
video sequence, 117

Walsh transform, 8

wavelet coefficients, 40

wavelet filter, 37

wavelet probing, 119

wavelet property, 45

wavelet transform, 12

wavelets on intervals, 69, 186
windowed Fourier transform, 10
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