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Abstract

Given a polyhedron, construct a new polyhedron by connecting every edge­
midpoint to its four neighboring edge-midpoints. This refinement rule yields a a1

surface and the surface has a piecewise quadratic parametrization except at finite
number of isolated points. We analyze and improve the construction.
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1 Introduction

Consider an input polyhedron with not necessarily planar facets. The simplest subdivi­
sion scheme connects every edge-midpoint to the four midpoints of the edges that share
both a vertex and a face with the current edge. Once all midpoints are linked, the old
mesh is discarded. Figure 1 shows the process. Each subdivision step can be interpreted
as cutting off all vertices including with each a neighborhood that reaches out to the
midpoints of the emanating edges. The cuts are in general not planar.

Since the subdivision mask consists of only two points and there is only one rule
regardless of the connectivity of the polyhedron, the subdivision scheme is as simple as
it can be. It is called midedge subdivision hereafter. We will show in Section 2 that it
is a factored box-spline subdivision and hence a close relative of the modified box-spline
subdivisions [3], [2], [41 of Doo and Sabiu, Catmull and Clark, and Loop. Section 3 and
the Appendix establish the smoothness of the limit surface and Section 4 specifies a
modified midedge subdivision with improved convergence rate. The complete analysis
of the smoothness of the limit surface is remarkable, because only recently, after 30

·Supported by NSF NY! grant 9457806-CCR
tSupported by BMBF Projekt 03-H07STU-2.

I



---­.---- . .. ..-.-'- ..... _.._.. _..~\-..~~
\,<::... ."...)./. ,-.-.._--- .'

'-/', -' -,
, . ""'-.

'. -'
,

,
, , .

-', /'

Figure 1: Midpoint subdivision at work.

years, the smoothness (and for some parameter choices the lack of smoothness) of the
subdivision surfaces defined by [3] aud [2] has been rigorously established in [6].

2 Quadratic parametrization

At each step, a subdivision algorithm creates a new mesh of points from an old mesh.
A desirable property of any subdivision algorithm is that it generates increasing regions
whose points all have the same valence and whose facets all have the same number
of edges. A submesh of points and facets with this standard valence and number of
edges is called regular. Specific subdivison rules like those of Doa and Sabin or Catmull
and Clark or Loop derive their appeal from the fact that the limit surface is explicitly
known for regular meshes; the limit surfaces are respectively biquadratic tensor-product
spline surfaces, bicubic tensor-product spline surfaces and surfaces formed as a linear
combination of shifts of a 3-direction box spline. In midedge subdivision every new
non-boundary point has exactly four neighbors, and every mesh point is replaced by a
quadrilateral. A regular submesh consists therefore of quadrilaterals and 4-valent points.
On this mesh a surface formed as a linear combination of the shifts of the 4-direction box
spline, called the Zwart-Powell element ([9),[7]), is defined by the following subdivision
process (d. [1]).

2



a

c

b

~~

~~
d

Figure 2: Four-direction box spline subdivision.

At each step replicate each coefficient with index i, j in a new array at positions
2i,2j, 2i + 1, 2j, 2i,2j + 1, and 2i + 1, 2j + 1. Then average in the new array first all
entries i, j with i + 1, j + 1 and then all entries i, j with i-I, j + 1. Figure 2 shows
the result of the averaging process: for each quadrilateral each of fOUf new points is
obtained by taking 1/2 of one point and 1/4 of each of its two neighbors.

Theorem 1 On a regular mesh, midedge subdivision converges to a surface parametrized
by shifts of the 4-direction box-spline.

Proof Two steps of the rnidedge subdivision equal one step of the 4-direction box­
spline subdivision. D

Since we know the limit surface for regular mesh regions, we will in the following always
combine two steps of midedge subdivision and refer to it as a double-step. The double­
step rule is efficiently represented by the mask

'I'
1
2 1

which applies to a vertex and its two neighbors in the same facet. Note that in contrast
to the Doo-Sabin and other subdivision masks, the (double) midedge subdivision mask
is not parametrized by the valence n of the particular point, but is uniform for all
configurations.

For later use, we note that any submesh of 9 coefficients B l , Bt•B lf
, e= 0..3 of the

4-direction box spline control-point mesh defines four polynomials in Bernstein-Bezier
form with coefficents b1j k' i + j + k = 2, e= 0..3. The generic layout of the coefficients
and the algebraic correspondence are shown in Figure 3. In particular, if B l = Be = 0,
for e= 0..3 and E" = 1, we obtain the definition of a single 4-direction box-spline in
terms of the Bernstein-Bezier form (see Figure 4).

3 Smoothness at extraordinary points

Since each midedge subdivision double-step replaces points and edges by quadrilaterals,
the new mesh at each step is regular except for a fixed number of increasingly separated
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Figure 3: Correspondence of box spline coefficients and Bernstein-Bezier coefficients.
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Figure 4: Bernstein-Bezier representation of the four-direction box spline.
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Figure 5: Union of surface layers at an extraordinary point and labeling of control points.

non-four-sided mesh facets. We consider one such facet (d. Figure 5). At each step the
polygon defining the facet contracts, converging towards the average of the points. To
confirm the smoothness at this extraordinary point, we analyze the local subdivision
matrix that maps k layers of old points usrrounding the extraordinary point to k layers
of new points. For almost all inputs, the eigenvalues and eigenvectors of the subdivision
matrix determine the smoothness of the limit surface [8].

The conversion to the Bernstein form in the preceeding section shows that 3 layers
of control points suffice to define a complete new surface layer X m that attaches to
a previous layer Xm_l. The union of all surface layers UmEN X m forms the midedge
subdivision surface y. Each of the n segments (j E Zn = {O, ... ,n - I})

x!,. : [0,21'\[0, I)' --+ R'

(3.1)
(3.2)
(3.3)

that make up the mth surface layer consists of 12 quadratic Bernstein-Bezier patches,
four corresponding to each nine-tupel of control points

B~k, k = 1 : 9,

B i,k k - 1 . 5 9 Bi+1,k k - 1 2 5m' - . , l m l - , , ,

B i,k k - 2 3 5 . 8 Bi- l ,k k - 1 4 9
ml - l l • l m l - , , .

The labeling used here is shown in Figure 5. The vector of control points B m that
define the mth surface layer consists of n blocks of 9 elements, each. The subdivision
matrix A transforms
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Lemma 3.1 The eigenvalues of the subdivision matrix A are real-valued and form a
decreasing sequence starting with

I,A,A,
1 + cos('")

where A:= n .
2

Proof Since the scheme is symmetric, i.e. invariant under a rotation of segment labels,
we can determine the eigenvalues and eigenvectors conveniently with the help of discrete
Fourier transform. Let I be the identity matrix, and W the diagonal matrix consisting
of 9 x 9 matrices Wk defined by

211"
Wn := exp(R-).

n

The transformed matrix

has the same eigenvalues as A and a block-diagonal structure A = diag(Ak ) with 9 x 9
submatrices Ak , k = 0, .. _ ,n - 1 that are nonzero only in the first four columns:

.4.(1: 4,:) =

where p := 1/2, q := 1/4, and

a.
p+wnq

p
p+wnq

q
q
o
q
q

000
q 0 0
q 0 q
o 0 q
p 0 wnq
p q 0
q p q
o q p

wnq 0 P

(3.4)

n-l. 1 + cos(k'<)
A '""' lk nCtk = L.J Wn Cti = .

i~O 2

Evidently the 9 eigenvalues of each submatrix Ak are

and the combined list of eigenvalues of all submatrices starts with the eigenvalues &0 =
1, &1 = &n-l = A. D
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The single maximal eigenvalue 1 assures convergence to an affinely invariant surface.
To verify its smoothness, it suffices to show that the eigenvectors corresponding to the
two subdominant eigenvalues define a regular and injective map, namely the character­
istic map that parametrizes the tangent plane in the limit point. The details of this
proof are in the Appendix.

4 Convergence improvement at irregular points

The need for an improvement in the convergence of the midedge subdivision is illustrated
by Figure 6. The input data form a cylinder by extruding a 16-gon that is regular except
that one of the vertices has been moved above the plane to form a peak. Convergence of
the central 16-edge facet is slow. The subdominant eigenvalue).. = (1+cos(i~))/2 ~ .962
implies that the distance of a vertex to the centroid of the facet shrinks by less than
4%. Conversely the convergence at the peak is so fast that it seems pointed. This
fast convergence of triangular facets is already apparent in Figure 1 where the central
triangle shrinks almost to a point in just 3 double-steps.

,
,

0:. n-2

~

----- lXz

~
"'I

/

regulllr mllsk

0--114

'"n~-I'---"'0 114---112

To even out the speed of convergence, we modify the subdivision mask for n-sided facets
to have weights

n. 2" In-1j
(Xj = 2 L 2-1 cos(ji-) where n:::::: --

i=O n 2

resulting in eigenvalues
" " 2-'ai = a l1-i = , i = a..n

with 0!11/2 = afor n even, consistent with the regular case. Regularity and injectivity of
the characteristic map are evident from the coefficents displayed in Figures 11 and 12.

We conclude with three examples of modified midedge subdivision. To distribute the
change of normal and keep some features sharp, we parametrize the mask in the first
subdivision double-step only as follows (cf. [5]):

1-1
2

'Y
1-1

2

7
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Figure 6: Fast convergence of the midedge subdivision for 3-sided facets and slow con­
vergence for large facets.

Figure 7: Balanced convergence of the modified midedge subdivision.
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Figure 8: Modified midedge subdivision

In the extreme case, setting 'Y = 1 at a vertex results in a sharp point and setting f = 1
for the two vertices of an edge results in a sharp edge. Conversely, setting f = 0.5 at a
point, smoothes maximally. The checker pattern highlights individual triangles on the
surfaces.

References

[1] BOOR, C. D., HOLLIG, K., AND RIEMENSCHNEIDER, S. Box splines. Springer
Verlag, 1994.

[2] CATMULL, E., AND CLARK, J. Recursively generated B-splinesurfaces on arbitrary
topological meshes. Computer Aided Design 10 (1978),350-355.

[3] DOD, D., AND SABIN, M. A. Behaviour of recursive subdivision surfaces near
extraordinary points. Computer Aided Design 10 (1978),356-360.

9



[4] Loop, C. Smooth subdivision for surfaces based on triangles. Master's thesis,
University of Utah, 1987.

[5J PETERS, J. Smooth free-form surfaces over irregular meshes generalizing quadratic
splines. Computer Aided Geometric Design 10 (1993),347-361.

[6] PETERS, J., AND REIF, U. Analysis of generalized B-spline subdivision algorithms.
Tech. rep., University of Stuttgart, Fachbereich Mathematik, 1996.

[7] POWELL, M. Piecewise quadratic surface fitting for contour plotting. In Software
for Numerical Mathematics, D. Evans, Ed. Academic Press, 1969.

[8] REIF, U. A unified approach to sudivision algorithms near extraordinary vertices.
Computer Aided Geometric Design 12 (1995),153-174.

{9] ZWART, P. Multivariate splines with non-degenerate partitions. SIAM J. of Numer.
Analysis 10 (1973), 665~673.

5 Appendix: Regularity and injectivity of the char­
acteristic map

This section completes the proof started in Section 3, of smoothness of the limit surface
at extraordinary points.

Two eigenvalues of the subdivision matrix are subdominant if they are either strictly
larger in modulus than any eigenvalue other than the unique largest fro = lor, if
equal to the fourth largest eigenvalue, their eigenspaces have a strictly higher dimension
than those of any other eigenvalue of the same absolute value. In the case of midedge
subdivision the subdominant eigenvalues belong to Al and An-I and have the value >.
since O'i > O'j for i < j < n/2 and, for n > 3, >. 2: 1/2 > 1/4. If n = 3, then>' = 1/4 is
an 8-fold eigenvalue but the Jordan decomposition of the matrix shows eigenspaces of
multiplicity three for each of Al and An-I'

It remains to show regularity and injectivity of the characteristic map. This task is
generically proportional to the size of the subdivision mask. Fortunately this is minimal
for midedge subdivision. Only recently, in conjunction with the analysis of midedge
subdivision, techniques have been developed to prove sharp results for generalized bi­
quadratic and bicubic subdivision schemes [6].

Lemma 5.1 The characteristic map of midedge subdivision is regular and injective.
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Proof The eigenvector corresponding to the subdominant eigenvalues ...\ is

[

wOv )n

w'v
v), := ~ where v :=

wn-Iv
n

2 0
4+ 2c -2
6+ 2c 0
4+2c 2
6+4c +is -4
8 +3c -2
10 + 4c 0
8+3c 2
6+4c 4

c:= case:)
8 := sine:)

By arranging the entries of the eigenvector according to the labeling in Figure 5 and
interpreting the real part as x and the imaginary part as the y component, we obtain
the box spline control points BOlk with coordinates

(

6+4C 8+3c 10+4C) (4 2
x+iy ~ 4+2c 6+2c 8+3c +is 2 0

2 4+2c 6+4c 0 -2
~2) .
-4

The control points are symmetric with respect to the diagonal since midedge subdivision
is invariant under reflection. The remaining control points are obtained by multiplication
with w~, i.e. rotation by 211"In. To analyze further the map we transform from box spline
to Bernstein form. Figure 9 shows one half of one segment of the characteristic map,
namely the Bernstein coefficients of six CI-connected quadratic pieces. The Jacobian
consists, therefore, of six CO-connected quadratics. Figure 10 displays the evidently
positive coefficents of the Jacobian proving that the characteristic map is regular.

To show injectivity it suffices to show that the boundary of the half-segment is
injective (c.f. [6]). The boundary of a half-segment consists of the images lI, l2, l3
and I, of the segments (1,0), (2, 0), (2,0), (2, 2), (2,2), (1, 1), and (1,1), (1, 0) under the
characteristic map. Both II and l3 are regular line segments, along the x-axis and the
ray with slope (1 + c, -8) respectively, while l2 is a ...\-I-scaled, subdivided copy of the
regular parabolic segment l4' Regular parabolas do not self-intersect. Hence we need
only check for pairwise intersections of the boundary curves. Since all other segments
are confined to the negative y-haifplane l3 does not intersect them. Since the middle
coefficient of l4 lies on the ray (3(1 + c), -8) through the origin between the rays of 11
and l3 neither 12 nor l4 can intersect either II or l3' Lastly, 12 and l4 do not intersect,
because ...\ =I- 1. 0
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s = sin(21rIn)
e = cos(21rln)
a=c+l
b=e-1

""-10e+ 14
o

__--'4"--(2 + e) a
o

""-2a(e+5)
o

2 a' (2 + e)!cr-__ 6 a'
-2as(2+e) -2as

';;;, (1 + e) 4 (2 + er:
-4as -2as

6 a (1 + e) ~2 + er: 2 a (e + 5) 1i:f. e' + 11 e
-6as -s(4+3e) -2as 0

4 (2 + er: i;, (e + 5) 13 + gb +-;;e
-2s{3+2e) -2s(2+e) -s\2+e)

./ ""- ./ ""-4a(2+e) 2a(e+5) 13+ab+11e 10e+14 16+8e
-4s(2+e) 2s(3+e) s(4+e) -2s 0

Figure 9: Characteristic map of midedge subdivision.

8a3b --4 a'b (a + 1)f---- 8 a'b

~ /~
2a'b(5-b) 2b(3a+1)a 4b{3-b)a

~/ ~
4b(a+1)a 2b(a+3)a 2 (3-b)b(a+1)

/~ /~
2b{5-b)a b(b'+3c+7a) b(a+1)(5-b) 4b(3-b)

/ ~/ ~
8ba 2b(3a+1)- 4b(a+1)-- 2b(a+3) 8b

Figure 10: Scaled Jacobian of the characteristic map of rnidedge subdivision.
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"'-10c + 28
o

"'-24+9c
o

"'-20 +8c
o

20+8c
-48

12c+ 12
-128

8+8c 12+4c 16+6c
-88 -- -48 -- 0

"'- /
12+8c 16+6c

-88 -48

"'- /16+9c
-88

/ "'- /
12c+16 20+10c 24+9c

-128 -88 -48
/ "'- /

16c+16 12c+20 24+11c lOc+28 12c+32
-168 ---128 -- -88 -- -48 -- 0

Figure 11: Characteristic map of modified midedge subdivision.

8

8 8+2c ----4c+8

""- /""-8+c 3c+8 3c+8

""-/ ""-8+2c 3c+8 8+2c

/""- /""-
8+c 8+2c 8+2c 3c+8

/ ""'/ ""-8 --8+c 8+2c --3c+8 ----4c+8

Figure 12: Scaled Jacobian of the characteristic map of modified midedge subdivision.
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