DeRhamComputation/sage/superelliptic_drw/superelliptic_drw_cech.sage

129 lines
5.1 KiB
Python
Raw Normal View History

class superelliptic_drw_cech:
def __init__(self, omega0, f):
self.curve = omega0.curve
self.omega0 = omega0
self.omega8 = omega0 - f.diffn()
self.f = f
def reduce(self):
C = self.curve
fct = self.f
f_first_comp = fct.t
f_second_comp = fct.f
decomp_first_comp = decomposition_g0_g8(f_first_comp)
decomp_second_comp = decomposition_g0_g8(f_second_comp)
new = superelliptic_drw_cech(0*C.dx.verschiebung(), 0*C.x.verschiebung())
new.omega0 = self.omega0
new.omega8 = self.omega8
new.f = self.f
new.omega0 -= decomposition_g0_g8(f_first_comp)[0].teichmuller().diffn()
new.omega0 -= decomposition_g0_g8(f_second_comp)[0].verschiebung().diffn()
new.f = decomposition_g0_g8(f_first_comp)[2].teichmuller() + decomposition_g0_g8(f_second_comp)[2].verschiebung()
new.omega8 = new.omega0 - new.f.diffn()
return new
def __repr__(self):
return("(" + str(self.omega0) + ", "+ str(self.f) + ", " + str(self.omega8) + ")")
def __add__(self, other):
C = self.curve
omega0 = self.omega0
f = self.f
omega0_1 = other.omega0
f_1 = other.f
return superelliptic_drw_cech(omega0 + omega0_1, f + f_1)
def __sub__(self, other):
C = self.curve
omega0 = self.omega0
f = self.f
omega0_1 = other.omega0
f_1 = other.f
return superelliptic_drw_cech(omega0 - omega0_1, f - f_1)
def __neg__(self):
C = self.curve
omega0 = self.omega0
f = self.f
return superelliptic_drw_cech(-omega0, -f)
def __rmul__(self, other):
omega0 = self.omega0
f = self.f
return superelliptic_drw_cech(other*omega0, other*f)
def r(self):
omega0 = self.omega0
f = self.f
C = self.curve
return superelliptic_cech(C, omega0.h1*C.dx, f.t)
def div_by_p(self, info = 0):
'''Given a regular cocycle of the form (V(omega) + dV(h), [f] + V(t), ...), where [f] = 0 in H^1(X, OX),
find de Rham cocycle (xi0, f, xi8) such that (V(omega) + dV(h), [f] + V(t), ...) = p*(xi0, f, xi8).'''
#
if info: print("Computing " + str(self) + " divided by p.")
#
C = self.curve
aux = self
Fxy, Rxy, x, y = C.fct_field
aux_f_t_0 = decomposition_g0_g8(aux.f.t, prec=50)[0]
#
if info: print("Computed decomposition_g0_g8 of self.f.t.")
#
aux.f.t = 0*C.x
aux.omega0 -= aux_f_t_0.teichmuller().diffn()
aux.omega8 = aux.omega0 - aux.f.diffn()
#
# Now omega = (regular on U0) + h^(p-1) dh, so that Cartier(omega) = (regular on U0) + dh.
# We replace omega by regular on U0
omega = aux.omega0.omega
aux.omega0.omega, fct = decomposition_omega0_hpdh(aux.omega0.omega)
aux.omega0.h2 += fct^p
#
if info: print("Computed decomposition_omega0_hpdh of self.omega0.omega.")
#
# Now we have to ensure that aux.omega0.h2.function in Rxy...
# In other words, we decompose h2 = (regular on U0) + A^p.
# Then we replace h2 by (regular on U0) and omega by omega + inverse Cartier(dA)
aux.omega0.h2, A = decomposition_g0_pth_power(aux.omega0.h2)
aux.omega0.omega += (A.diffn()).inv_cartier()
#
if info: print("Computed decomposition_g0_p2th_power(aux.omega0.h2).")
#
# Now we can reduce: (... + dV(h2), V(f), ...) --> (..., V(f - h2), ...)
aux.f -= aux.omega0.h2.verschiebung()
aux.omega0.h2 = 0*C.x
# Now the same for aux.omega8
aux.omega8.omega, fct = decomposition_omega8_hpdh(aux.omega8.omega)
aux.omega8.h2 += fct^p
aux.omega8.h2 = decomposition_g8_p2th_power(aux.omega8.h2)[0]
aux.f += aux.omega8.h2.verschiebung()
aux.omega8.h2 = 0*C.x
aux_divided_by_p = superelliptic_cech(C, aux.omega0.omega.cartier(), aux.f.f.pth_root())
return aux_divided_by_p
def coordinates(self, basis = 0, prec = 50, info = 0):
if info: print("Computing coordinates of " + str(self))
C = self.curve
g = C.genus()
coord_mod_p = self.r().coordinates()
if info: print("Computed coordinates mod p.")
coord_lifted = [lift(a) for a in coord_mod_p]
if basis == 0:
basis = C.crystalline_cohomology_basis()
aux = self
for i, a in enumerate(basis):
aux -= coord_lifted[i]*a
aux_divided_by_p = aux.div_by_p(info = info)
coord_aux_divided_by_p = aux_divided_by_p.coordinates()
if info: print("Computed coordinates mod p of (self - lift)/p.")
coord_aux_divided_by_p = [ZZ(a) for a in coord_aux_divided_by_p]
coordinates = [ (coord_lifted[i] + p*coord_aux_divided_by_p[i])%p^2 for i in range(2*g)]
return coordinates
def is_regular(self):
eq1 = self.omega0.r().is_regular_on_U0() and self.omega8.r().is_regular_on_Uinfty()
eq2 = self.omega0.frobenius().is_regular_on_U0() and self.omega8.frobenius().is_regular_on_Uinfty()
return eq1 and eq2