2024-02-08 20:25:10 +01:00
|
|
|
class heisenberg_form:
|
|
|
|
def __init__(self, C, g):
|
|
|
|
self.curve = C
|
|
|
|
n = C.height
|
|
|
|
F = C.base_ring
|
|
|
|
variable_names = 'x, y'
|
|
|
|
for i in range(n):
|
|
|
|
variable_names += ', z' + str(i)
|
|
|
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
|
|
|
x, y = Rxyz.gens()[:2]
|
|
|
|
z = Rxyz.gens()[2:]
|
|
|
|
RxyzQ = FractionField(Rxyz)
|
|
|
|
self.form = RxyzQ(g)
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return "(" + str(self.form)+") * dx"
|
|
|
|
|
|
|
|
def expansion_at_infty(self, place = 0):
|
|
|
|
C = self.curve
|
|
|
|
delta = C.nb_of_pts_at_infty
|
|
|
|
F = C.base_ring
|
|
|
|
x_series = C.x_series[place]
|
|
|
|
y_series = C.y_series[place]
|
|
|
|
z_series = C.z_series[place]
|
|
|
|
dx_series = C.dx_series[place]
|
|
|
|
n = C.height
|
|
|
|
variable_names = 'x, y'
|
|
|
|
for j in range(n):
|
|
|
|
variable_names += ', z' + str(j)
|
|
|
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
|
|
|
x, y = Rxyz.gens()[:2]
|
|
|
|
z = Rxyz.gens()[2:]
|
|
|
|
RxyzQ = FractionField(Rxyz)
|
|
|
|
prec = C.prec
|
|
|
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
|
|
|
g = self.form
|
|
|
|
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
|
|
|
return g.substitute(sub_list)*dx_series
|
|
|
|
|
|
|
|
def expansion(self, pt = 0):
|
|
|
|
'''Same code as expansion_at_infty.'''
|
|
|
|
C = self.curve
|
|
|
|
F = C.base_ring
|
|
|
|
x_series = C.x_series[pt]
|
|
|
|
y_series = C.y_series[pt]
|
|
|
|
z_series = C.z_series[pt]
|
|
|
|
dx_series = C.dx_series[pt]
|
|
|
|
n = C.height
|
|
|
|
variable_names = 'x, y'
|
|
|
|
for j in range(n):
|
|
|
|
variable_names += ', z' + str(j)
|
|
|
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
|
|
|
x, y = Rxyz.gens()[:2]
|
|
|
|
z = Rxyz.gens()[2:]
|
|
|
|
RxyzQ = FractionField(Rxyz)
|
|
|
|
prec = C.prec
|
|
|
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
|
|
|
g = self.form
|
|
|
|
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
|
|
|
return g.substitute(sub_list)*dx_series
|
|
|
|
|
|
|
|
def __add__(self, other):
|
|
|
|
C = self.curve
|
|
|
|
g1 = self.form
|
|
|
|
g2 = other.form
|
|
|
|
return heisenberg_form(C, g1 + g2)
|
|
|
|
|
|
|
|
def __sub__(self, other):
|
|
|
|
C = self.curve
|
|
|
|
g1 = self.form
|
|
|
|
g2 = other.form
|
|
|
|
return heisenberg_form(C, g1 - g2)
|
|
|
|
|
|
|
|
def __neg__(self):
|
|
|
|
C = self.curve
|
|
|
|
g = self.form
|
|
|
|
return heisenberg_form(C, -g)
|
|
|
|
|
|
|
|
def __rmul__(self, constant):
|
|
|
|
C = self.curve
|
|
|
|
omega = self.form
|
|
|
|
return heisenberg_form(C, constant*omega)
|
|
|
|
|
|
|
|
def group_action(self, elt):
|
|
|
|
AS = self.curve
|
|
|
|
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
|
|
|
if elt == (1, 0, 0):
|
|
|
|
sub_list = {x : x, y : y} | {z[0] : z[0] + 1, z[1] : z[1], z[2]: z[2] + z[1]}
|
|
|
|
g = self.form
|
|
|
|
return heisenberg_form(AS, g.substitute(sub_list))
|
|
|
|
if elt == (0, 1, 0):
|
|
|
|
sub_list = {x : x, y : y} | {z[0] : z[0] + 1, z[1] : z[1] + 1, z[2]: z[2]}
|
|
|
|
g = self.form
|
|
|
|
return heisenberg_form(AS, g.substitute(sub_list))
|
|
|
|
if elt == (0, 0, 1):
|
|
|
|
sub_list = {x : x, y : y} | {z[0] : z[0], z[1] : z[1], z[2]: z[2] - 1}
|
|
|
|
g = self.form
|
|
|
|
return heisenberg_form(AS, g.substitute(sub_list))
|
|
|
|
|
|
|
|
if elt[0] > 0:
|
|
|
|
elt1 = (elt[0] - 1, elt[1], elt[2])
|
|
|
|
return self.group_action(elt1).group_action((1, 0, 0))
|
|
|
|
|
|
|
|
if elt[1] > 0:
|
|
|
|
elt1 = (elt[0], elt[1] - 1, elt[2])
|
|
|
|
return self.group_action(elt1).group_action((0, 1, 0))
|
|
|
|
|
|
|
|
if elt[2] > 0:
|
|
|
|
elt1 = (elt[0], elt[1], elt[2] - 1)
|
|
|
|
return self.group_action(elt1).group_action((0, 0, 1))
|
|
|
|
|
|
|
|
def coordinates(self, basis = 0):
|
|
|
|
"""Find coordinates of the given holomorphic form self in terms of the basis forms in a list holo."""
|
|
|
|
C = self.curve
|
|
|
|
if basis == 0:
|
|
|
|
basis = C.holomorphic_differentials_basis()
|
|
|
|
RxyzQ, Rxyz, x, y, z = C.fct_field
|
|
|
|
# We need to have only polynomials to use monomial_coefficients in linear_representation_polynomials,
|
|
|
|
# and sometimes basis elements have denominators. Thus we multiply by them.
|
|
|
|
fct = heisenberg_function(C, self.form)
|
|
|
|
fct = heisenberg_reduction(C, fct)
|
|
|
|
self = heisenberg_form(C, fct)
|
|
|
|
denom = LCM([denominator(omega.form) for omega in basis])
|
|
|
|
basis = [denom*omega for omega in basis]
|
|
|
|
self_with_no_denominator = denom*self
|
|
|
|
return linear_representation_polynomials(Rxyz(self_with_no_denominator.form), [Rxyz(omega.form) for omega in basis])
|
|
|
|
|
|
|
|
def trace(self):
|
|
|
|
C = self.curve
|
|
|
|
C_super = C.quotient
|
|
|
|
n = C.height
|
|
|
|
F = C.base_ring
|
|
|
|
variable_names = 'x, y'
|
|
|
|
for j in range(n):
|
|
|
|
variable_names += ', z' + str(j)
|
|
|
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
|
|
|
x, y = Rxyz.gens()[:2]
|
|
|
|
z = Rxyz.gens()[2:]
|
|
|
|
RxyzQ = FractionField(Rxyz)
|
|
|
|
result = heisenberg_form(C, 0)
|
|
|
|
G = C.group
|
|
|
|
for a in G:
|
|
|
|
result += self.group_action(a)
|
|
|
|
result = result.form
|
|
|
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
|
|
|
Qxy = FractionField(Rxy)
|
|
|
|
result = heisenberg_reduction(AS, result)
|
|
|
|
return superelliptic_form(C_super, Qxy(result))
|
|
|
|
|
|
|
|
def residue(self, place=0):
|
|
|
|
return self.expansion_at_infty(place = place).residue()
|
|
|
|
|
|
|
|
def valuation(self, place=0):
|
|
|
|
return self.expansion_at_infty(place = place).valuation()
|
|
|
|
|
|
|
|
def serre_duality_pairing(self, fct):
|
|
|
|
AS = self.curve
|
|
|
|
return sum((fct*self).residue(place = _) for _ in range(AS.nb_of_pts_at_infty))
|
|
|
|
|
|
|
|
def cartier(self):
|
|
|
|
C = self.curve
|
|
|
|
F = C.base_ring
|
|
|
|
n = C.height
|
|
|
|
ff = C.functions
|
|
|
|
p = F.characteristic()
|
|
|
|
C_super = C.quotient
|
|
|
|
(RxyzQ, Rxyz, x, y, z) = C.fct_field
|
|
|
|
fct = self.form
|
|
|
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
|
|
|
RxyQ = FractionField(Rxy)
|
|
|
|
x, y = Rxyz.gens()[0], Rxyz.gens()[1]
|
|
|
|
z = Rxyz.gens()[2:]
|
|
|
|
num = Rxyz(fct.numerator())
|
|
|
|
den = Rxyz(fct.denominator())
|
|
|
|
result = RxyzQ(0)
|
|
|
|
#return (num, den, z, fct)
|
|
|
|
if den in Rxy:
|
|
|
|
sub_list = {x : x, y : y} | {z[j] : (z[j]^p - RxyzQ(ff[j].function)) for j in range(n)}
|
|
|
|
num = RxyzQ(num.substitute(sub_list))
|
|
|
|
den1 = Rxyz(num.denominator())
|
|
|
|
num = Rxyz(num*den1^p)
|
|
|
|
for monomial in Rxyz(num).monomials():
|
|
|
|
degrees = [monomial.degree(z[i]) for i in range(n)]
|
|
|
|
product_of_z = prod(z[i]^(degrees[i]) for i in range(n))
|
|
|
|
monomial_divided_by_z = monomial/product_of_z
|
|
|
|
product_of_z_no_p = prod(z[i]^(degrees[i]/p) for i in range(n))
|
|
|
|
aux_form = superelliptic_form(C_super, RxyQ(monomial_divided_by_z/den))
|
|
|
|
aux_form = aux_form.cartier()
|
|
|
|
result += product_of_z_no_p * Rxyz(num).monomial_coefficient(monomial) * aux_form.form/den1
|
|
|
|
return heisenberg_form(C, result)
|
|
|
|
raise ValueError("Please present first your form as sum z^i omega_i, where omega_i are forms on quotient curve.")
|
|
|
|
|
|
|
|
def is_regular_on_U0(self):
|
|
|
|
AS = self.curve
|
|
|
|
C = AS.quotient
|
|
|
|
m = C.exponent
|
|
|
|
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
|
|
|
if y^(m-1)*self.form in Rxyz:
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def artin_schreier_transform(power_series, prec = 10):
|
|
|
|
"""Given a power_series, find correction such that power_series - (correction)^p +correction has valuation
|
|
|
|
-jump non divisible by p. Also, express t (the variable) in terms of the uniformizer at infty on the curve
|
|
|
|
z^p - z = power_series, where z = 1/t_new^(jump) and express z in terms of the new uniformizer."""
|
|
|
|
correction = 0
|
|
|
|
F = power_series.parent().base()
|
|
|
|
p = F.characteristic()
|
|
|
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
|
|
|
RtQ = FractionField(Rt)
|
|
|
|
power_series = RtQ(power_series)
|
|
|
|
if power_series.valuation() == +Infinity:
|
|
|
|
raise ValueError("Precision is too low.")
|
|
|
|
if power_series.valuation() >= 0:
|
|
|
|
# THIS IS WRONG - THERE ARE SEVERAL PLACES OVER THIS PLACE, AND IT DEPENDS
|
|
|
|
aux = t^p - t
|
|
|
|
z = new_reverse(aux, prec = prec)
|
|
|
|
z = z(t = power_series)
|
|
|
|
return(0, 0, t, z)
|
|
|
|
|
|
|
|
while(power_series.valuation() % p == 0 and power_series.valuation() < 0):
|
|
|
|
M = -power_series.valuation()/p
|
|
|
|
coeff = power_series.list()[0] #wspolczynnik a_(-p) w f_AS
|
|
|
|
correction += coeff.nth_root(p)*t^(-M)
|
|
|
|
power_series = power_series - (coeff*t^(-p*M) - coeff.nth_root(p)*t^(-M))
|
|
|
|
jump = max(-(power_series.valuation()), 0)
|
|
|
|
try:
|
2024-02-08 20:45:54 +01:00
|
|
|
if jump != 0:
|
|
|
|
T = nth_root2((power_series)^(-1), jump, prec=prec) #T is defined by power_series = 1/T^m
|
2024-02-08 20:25:10 +01:00
|
|
|
except:
|
|
|
|
print("no ", str(jump), "-th root; divide by", power_series.list()[0])
|
|
|
|
return (jump, power_series.list()[0])
|
2024-02-08 20:45:54 +01:00
|
|
|
if jump != 0:
|
|
|
|
T_rev = new_reverse(T, prec = prec)
|
|
|
|
t_old = T_rev(t^p/nth_root2(1 - t^((p-1)*jump), jump, prec=prec))
|
|
|
|
z = 1/t^(jump) + Rt(correction)(t = t_old)
|
|
|
|
return(jump, correction, t_old, z)
|
|
|
|
if jump == 0:
|
|
|
|
aux = t^p - t
|
|
|
|
z = new_reverse(aux, prec = prec)
|
|
|
|
z = z(t = power_series)
|
|
|
|
return(0, correction, t, z)
|
2024-02-08 20:25:10 +01:00
|
|
|
|
|
|
|
def are_forms_linearly_dependent(set_of_forms):
|
|
|
|
from sage.rings.polynomial.toy_variety import is_linearly_dependent
|
|
|
|
C = set_of_forms[0].curve
|
|
|
|
F = C.base_ring
|
|
|
|
n = C.height
|
|
|
|
variable_names = 'x, y'
|
|
|
|
for i in range(n):
|
|
|
|
variable_names += ', z' + str(i)
|
|
|
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
|
|
|
denominators = prod(denominator(omega.form) for omega in set_of_forms)
|
|
|
|
return is_linearly_dependent([Rxyz(denominators*omega.form) for omega in set_of_forms])
|
|
|
|
|
|
|
|
def holomorphic_combinations_fcts(S, pole_order):
|
|
|
|
'''given a set S of (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt'''
|
|
|
|
C_AS = S[0][0].curve
|
|
|
|
p = C_AS.characteristic
|
|
|
|
F = C_AS.base_ring
|
|
|
|
prec = C_AS.prec
|
|
|
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
|
|
|
RtQ = FractionField(Rt)
|
|
|
|
minimal_valuation = min([Rt(g[1]).valuation() for g in S])
|
|
|
|
if minimal_valuation >= -pole_order:
|
|
|
|
return [s[0] for s in S]
|
|
|
|
list_of_lists = [] #to będzie lista złożona z list współczynników część nieholomorficznych rozwinięcia form z S
|
|
|
|
for eta, eta_exp in S:
|
|
|
|
a = -minimal_valuation + Rt(eta_exp).valuation()
|
|
|
|
list_coeffs = a*[0] + Rt(eta_exp).list() + (-minimal_valuation)*[0]
|
|
|
|
list_coeffs = list_coeffs[:-minimal_valuation - pole_order]
|
|
|
|
list_of_lists += [list_coeffs]
|
|
|
|
M = matrix(F, list_of_lists)
|
|
|
|
V = M.kernel() #chcemy wyzerować części nieholomorficzne, biorąc kombinacje form z S
|
|
|
|
|
|
|
|
|
|
|
|
# Sprawdzamy, jakim formom odpowiadają elementy V.
|
|
|
|
forms = []
|
|
|
|
for vec in V.basis():
|
|
|
|
forma_holo = heisenberg_function(C_AS, 0)
|
|
|
|
forma_holo_power_series = Rt(0)
|
|
|
|
for vec_wspolrzedna, elt_S in zip(vec, S):
|
|
|
|
eta = elt_S[0]
|
|
|
|
#eta_exp = elt_S[1]
|
|
|
|
forma_holo += vec_wspolrzedna*eta
|
|
|
|
#forma_holo_power_series += vec_wspolrzedna*eta_exp
|
|
|
|
forms += [forma_holo]
|
|
|
|
return forms
|
|
|
|
|
|
|
|
#given a set S of (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt
|
|
|
|
def holomorphic_combinations_forms(S, pole_order):
|
|
|
|
C_AS = S[0][0].curve
|
|
|
|
p = C_AS.characteristic
|
|
|
|
F = C_AS.base_ring
|
|
|
|
prec = C_AS.prec
|
|
|
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
|
|
|
RtQ = FractionField(Rt)
|
|
|
|
minimal_valuation = min([Rt(g[1]).valuation() for g in S])
|
|
|
|
if minimal_valuation >= -pole_order:
|
|
|
|
return [s[0] for s in S]
|
|
|
|
list_of_lists = [] #to będzie lista złożona z list współczynników część nieholomorficznych rozwinięcia form z S
|
|
|
|
for eta, eta_exp in S:
|
|
|
|
a = -minimal_valuation + Rt(eta_exp).valuation()
|
|
|
|
list_coeffs = a*[0] + Rt(eta_exp).list() + (-minimal_valuation)*[0]
|
|
|
|
list_coeffs = list_coeffs[:-minimal_valuation - pole_order]
|
|
|
|
list_of_lists += [list_coeffs]
|
|
|
|
M = matrix(F, list_of_lists)
|
|
|
|
V = M.kernel() #chcemy wyzerować części nieholomorficzne, biorąc kombinacje form z S
|
|
|
|
|
|
|
|
|
|
|
|
# Sprawdzamy, jakim formom odpowiadają elementy V.
|
|
|
|
forms = []
|
|
|
|
for vec in V.basis():
|
|
|
|
forma_holo = heisenberg_form(C_AS, 0)
|
|
|
|
forma_holo_power_series = Rt(0)
|
|
|
|
for vec_wspolrzedna, elt_S in zip(vec, S):
|
|
|
|
eta = elt_S[0]
|
|
|
|
#eta_exp = elt_S[1]
|
|
|
|
forma_holo += vec_wspolrzedna*eta
|
|
|
|
#forma_holo_power_series += vec_wspolrzedna*eta_exp
|
|
|
|
forms += [forma_holo]
|
|
|
|
return forms
|
|
|
|
|
|
|
|
#print only forms that are log at the branch pts, but not holomorphic
|
|
|
|
def only_log_forms(C_AS):
|
|
|
|
list1 = AS.at_most_poles_forms(0)
|
|
|
|
list2 = AS.at_most_poles_forms(1)
|
|
|
|
result = []
|
|
|
|
for a in list2:
|
|
|
|
if not(are_forms_linearly_dependent(list1 + result + [a])):
|
|
|
|
result += [a]
|
|
|
|
return result
|