2022-11-18 15:00:34 +01:00
|
|
|
p = 5
|
|
|
|
m = 2
|
2023-11-29 15:41:39 +01:00
|
|
|
F = GF(p^2, 'a')
|
|
|
|
a = F.gens()[0]
|
|
|
|
Rx.<x> = PolynomialRing(F)
|
2022-11-18 15:00:34 +01:00
|
|
|
f = x^3 + x^2 + 1
|
|
|
|
C_super = superelliptic(f, m)
|
|
|
|
Rxy.<x, y> = PolynomialRing(GF(p), 2)
|
|
|
|
fArS1 = superelliptic_function(C_super, y*x)
|
|
|
|
fArS2 = superelliptic_function(C_super, y*x^2)
|
2023-11-29 15:41:39 +01:00
|
|
|
fArS3 = superelliptic_function(C_super, y + x)
|
2024-12-20 12:12:21 +01:00
|
|
|
AS1 = elementary_cover([fArS1, fArS2, fArS3], prec=150)
|
|
|
|
AS2 = elementary_cover([fArS2, fArS3, fArS1], prec=150)
|
2022-11-18 15:00:34 +01:00
|
|
|
print(AS1.genus() == AS2.genus())
|
|
|
|
##################
|
|
|
|
p = 5
|
|
|
|
m = 2
|
|
|
|
Rx.<x> = PolynomialRing(GF(p))
|
|
|
|
f = x^3 + x^2 + 1
|
|
|
|
C_super = superelliptic(f, m)
|
|
|
|
Rxy.<x, y> = PolynomialRing(GF(p), 2)
|
|
|
|
fArS1 = superelliptic_function(C_super, y*x)
|
|
|
|
fArS2 = superelliptic_function(C_super, y*x^2)
|
2024-12-20 12:12:21 +01:00
|
|
|
AS1 = elementary_cover([fArS1, fArS2], prec=1000)
|
2022-11-18 15:00:34 +01:00
|
|
|
omega = as_form(AS1, 1/y)
|
2023-11-29 15:41:39 +01:00
|
|
|
print(omega.expansion_at_infty().valuation()==AS1.exponent_of_different())
|