33 lines
1.4 KiB
Python
33 lines
1.4 KiB
Python
|
def heisenberg_reduction(AS, fct):
|
||
|
'''Simplify rational function fct as a function in the function field of AS, so that z[i] appear in powers <p and only in numerator'''
|
||
|
n = AS.height
|
||
|
F = AS.base_ring
|
||
|
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
||
|
p = F.characteristic()
|
||
|
ff = AS.functions
|
||
|
ff = [RxyzQ(F.function) for F in ff]
|
||
|
fct = RxyzQ(fct)
|
||
|
fct1 = numerator(fct)
|
||
|
fct2 = denominator(fct)
|
||
|
denom = heisenberg_function(AS, fct2)
|
||
|
denom_norm = prod(heisenberg_function(AS, fct2).group_action(g) for g in AS.group if list(g) != n*[0])
|
||
|
fct1 = Rxyz(fct1*denom_norm.function)
|
||
|
fct2 = Rxyz(fct2*denom_norm.function)
|
||
|
if fct2 != 1:
|
||
|
return heisenberg_reduction(AS, fct1)/heisenberg_reduction(AS, fct2)
|
||
|
|
||
|
result = RxyzQ(0)
|
||
|
change = 0
|
||
|
for a in fct1.monomials():
|
||
|
degrees_zi = [a.degree(z[i]) for i in range(n)]
|
||
|
d_div = [a.degree(z[i])//p for i in range(n)]
|
||
|
if d_div != n*[0]:
|
||
|
change = 1
|
||
|
d_rem = [a.degree(z[i])%p for i in range(n)]
|
||
|
monomial = fct1.monomial_coefficient(a)*x^(a.degree(x))*y^(a.degree(y))*prod(z[i]^(d_rem[i]) for i in range(n))*prod((z[i] + ff[i])^(d_div[i]) for i in range(n-1))*(z[2] + ff[2] + (z[0] - z[1])*ff[1])^(d_div[2])
|
||
|
result += RxyzQ(monomial)
|
||
|
|
||
|
if change == 0:
|
||
|
return RxyzQ(result)
|
||
|
else:
|
||
|
return heisenberg_reduction(AS, RxyzQ(result))
|