166 lines
5.3 KiB
Python
166 lines
5.3 KiB
Python
|
def mumford_gp(p):
|
||
|
'''We want m | p-1 and b to be of order m in F_p.'''
|
||
|
name = "Mumford group (Z/"+str(p)+")^2⋊ D"+str(p-1)
|
||
|
short_name = "(Z/"+str(p)+")^2 ⋊ D"+str(p-1)
|
||
|
elts = [(i, j, s, t) for i in range(p) for j in range(p) for s in range(1) for t in range(p-1)]
|
||
|
mult = lambda elt1, elt2: (0, 0, 0, 0)
|
||
|
inv = lambda elt1 : (0, 0, 0, 0)
|
||
|
gens = [(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0,0,0,1)]
|
||
|
one = (0, 0, 0, 0)
|
||
|
gp = group(name, short_name, elts, one, mult, inv, gens)
|
||
|
return gp
|
||
|
|
||
|
def mumford_template(p):
|
||
|
group = mumford_gp(p)
|
||
|
field = GF(p)
|
||
|
n = 2
|
||
|
variable_names = ''
|
||
|
for i in range(n):
|
||
|
variable_names += 'z'+str(i)+','
|
||
|
for i in range(n):
|
||
|
variable_names += 'f'+str(i) + ','
|
||
|
variable_names += 'x, y'
|
||
|
R = PolynomialRing(field, 2*n+2, variable_names)
|
||
|
z = R.gens()[:n]
|
||
|
f = R.gens()[n:]
|
||
|
x = R.gens()[-2]
|
||
|
y = R.gens()[-1]
|
||
|
height = n
|
||
|
fcts = [x + y, x - y]
|
||
|
gp_action = [[z[j] + (i == j) for j in range(n)]+[x, y] for i in range(n)]
|
||
|
gp_action += [[z[1], z[0], -x, y]]
|
||
|
d = field(primitive_root(p))
|
||
|
gp_action += [[d*z[0], d^(-1)*z[1], 1/d*(y+x) - d*(y-x), 1/d*(y+x) + d*(y-x)]]
|
||
|
return template(height, field, group, fcts, gp_action)
|
||
|
|
||
|
def mumford_cover(p, prec=10):
|
||
|
field = GF(p)
|
||
|
R.<x> = PolynomialRing(field)
|
||
|
C = superelliptic(x^2 + 1, 2)
|
||
|
return as_cover(C, mumford_template(p), [C.x, C.x], branch_points = [], prec = prec)
|
||
|
|
||
|
ASM = mumford_cover(3, prec = 400)
|
||
|
|
||
|
|
||
|
###############
|
||
|
###############
|
||
|
def metacyclic_gp(p, c):
|
||
|
name = "metacyclic group Z/"+str(p)+"⋊ Z/"+str(c)
|
||
|
short_name = "Z/"+str(p)+" ⋊ Z/"+str(c)
|
||
|
elts = [(i, j) for i in range(p) for j in range(c)]
|
||
|
mult = lambda elt1, elt2: (0, 0)
|
||
|
inv = lambda elt1 : (0, 0)
|
||
|
gens = [(1, 0), (0, 1)]
|
||
|
one = (0, 0)
|
||
|
gp = group(name, short_name, elts, one, mult, inv, gens)
|
||
|
return gp
|
||
|
|
||
|
def metacyclic_template(p, m, nn):
|
||
|
group = metacyclic_gp(p, m*(p-1))
|
||
|
N = Integers(m*(p-1))(p).multiplicative_order()
|
||
|
field.<a> = GF(p^N)
|
||
|
zeta = a^((p^N - 1)/((p-1)*m))
|
||
|
n = 1
|
||
|
variable_names = ''
|
||
|
for i in range(n):
|
||
|
variable_names += 'z'+str(i)+','
|
||
|
for i in range(n):
|
||
|
variable_names += 'f'+str(i) + ','
|
||
|
variable_names += 'x, y'
|
||
|
R = PolynomialRing(field, 2*n+2, variable_names)
|
||
|
z = R.gens()[:n]
|
||
|
f = R.gens()[n:]
|
||
|
x = R.gens()[-2]
|
||
|
y = R.gens()[-1]
|
||
|
height = n
|
||
|
fcts = [x]
|
||
|
gp_action = [[z[j] + (i == j) for j in range(n)]+[x, y] for i in range(n)]
|
||
|
gp_action += [[zeta^m * z[0], zeta^m * x, zeta * y]]
|
||
|
return template(height, field, group, fcts, gp_action)
|
||
|
|
||
|
def metacyclic_cover(p, m, nn, prec=10):
|
||
|
N = Integers(m*(p-1))(p).multiplicative_order()
|
||
|
field.<a> = GF(p^N)
|
||
|
R.<x> = PolynomialRing(field)
|
||
|
C = superelliptic(sum(x^(p^i) for i in range(0, nn)), m)
|
||
|
return as_cover(C, metacyclic_template(p, m, nn), [C.x], branch_points = [], prec = prec)
|
||
|
|
||
|
p = 3
|
||
|
m = 2
|
||
|
nn = 2
|
||
|
N = Integers(m*(p-1))(p).multiplicative_order()
|
||
|
field.<a> = GF(p^N)
|
||
|
zeta = a^((p^N - 1)/((p-1)*m))
|
||
|
AS = metacyclic_cover(p, m, nn, prec=100)
|
||
|
Bh = AS.holomorphic_differentials_basis(threshold = 30)
|
||
|
Bs = AS.cohomology_of_structure_sheaf_basis(threshold = 30)
|
||
|
BdR = AS.de_rham_basis(threshold = 30)
|
||
|
print(Bh[2].group_action((1, 0)).coordinates(basis = Bh))
|
||
|
|
||
|
|
||
|
#H = CyclicPermutationGroup(4)
|
||
|
|
||
|
#alpha = PermutationGroupMorphism(A,A,[A.gens()[0]^3*A.gens()[1],A.gens()[1]])
|
||
|
|
||
|
#phi = [[(1,2)],[alpha]]
|
||
|
|
||
|
p = 3
|
||
|
m = 2
|
||
|
nn = 2
|
||
|
N = Integers(m*(p-1))(p).multiplicative_order()
|
||
|
field.<a> = GF(p^N)
|
||
|
zeta = a^((p^N - 1)/((p-1)*m))
|
||
|
|
||
|
def gp_action(fct, elt):
|
||
|
if elt == (1, 0):
|
||
|
if isinstance(fct, superelliptic_function):
|
||
|
f = fct.function
|
||
|
C = fct.curve
|
||
|
Fxy, Rxy, x, y = C.fct_field
|
||
|
f = f.subs({x: x+1, y: y})
|
||
|
return superelliptic_function(C, f)
|
||
|
|
||
|
if isinstance(fct, superelliptic_form):
|
||
|
f = fct.form
|
||
|
C = fct.curve
|
||
|
Fxy, Rxy, x, y = C.fct_field
|
||
|
f = f.subs({x: x+1, y: y})
|
||
|
return superelliptic_form(C, f)
|
||
|
|
||
|
if isinstance(fct, superelliptic_cech):
|
||
|
omega = fct.omega0
|
||
|
ff = fct.f
|
||
|
C = fct.curve
|
||
|
return superelliptic_cech(C, gp_action(omega, elt), gp_action(ff, elt))
|
||
|
if elt == (0, 1):
|
||
|
if isinstance(fct, superelliptic_function):
|
||
|
f = fct.function
|
||
|
C = fct.curve
|
||
|
Fxy, Rxy, x, y = C.fct_field
|
||
|
f = f.subs({x : zeta^m*x, y:zeta*y})
|
||
|
return superelliptic_function(C, f)
|
||
|
|
||
|
if isinstance(fct, superelliptic_form):
|
||
|
f = fct.form
|
||
|
C = fct.curve
|
||
|
Fxy, Rxy, x, y = C.fct_field
|
||
|
f = f.subs({x : zeta^m*x, y:zeta*y})
|
||
|
return superelliptic_form(C, f*zeta^m)
|
||
|
|
||
|
if isinstance(fct, superelliptic_cech):
|
||
|
omega = fct.omega0
|
||
|
ff = fct.f
|
||
|
C = fct.curve
|
||
|
return superelliptic_cech(C, gp_action(omega, elt), gp_action(ff, elt))
|
||
|
|
||
|
|
||
|
superelliptic_function.group_action = gp_action
|
||
|
superelliptic_form.group_action = gp_action
|
||
|
superelliptic_cech.group_action = gp_action
|
||
|
|
||
|
R.<x> = PolynomialRing(field)
|
||
|
C = superelliptic(x^(p^nn) - x, m)
|
||
|
Bh = C.holomorphic_differentials_basis()
|
||
|
Bs = C.cohomology_of_structure_sheaf_basis()
|
||
|
BdR = C.de_rham_basis()
|
||
|
mat = as_group_action_matrices(field, BdR, [(1, 0), (0, 1)], BdR)
|