1
0

jth_component of form; poczatek bazy de Rhama

This commit is contained in:
jgarnek 2021-08-20 11:21:50 +02:00
parent 8778f1f84b
commit 200e3a1990

View File

@ -2,9 +2,22 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 219, "execution_count": 87,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"ename": "NameError",
"evalue": "name 'holo' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-87-fb238ae380ad>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mclass\u001b[0m \u001b[0msuperelliptic\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mm\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mR\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPolynomialRing\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mGF\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnames\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'x'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m;\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mR\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_first_ngens\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpolynomial\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mR\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexponent\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m<ipython-input-87-fb238ae380ad>\u001b[0m in \u001b[0;36msuperelliptic\u001b[0;34m()\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mm\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0mholo\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbaza_holo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mholo\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0mbaza\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mholo\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'holo' is not defined"
]
}
],
"source": [ "source": [
"class superelliptic:\n", "class superelliptic:\n",
" def __init__(self, f, m, p):\n", " def __init__(self, f, m, p):\n",
@ -13,7 +26,6 @@
" self.exponent = m\n", " self.exponent = m\n",
" self.characteristic = p\n", " self.characteristic = p\n",
" \n", " \n",
" \n",
" def __repr__(self):\n", " def __repr__(self):\n",
" f = self.polynomial\n", " f = self.polynomial\n",
" m = self.exponent\n", " m = self.exponent\n",
@ -36,8 +48,8 @@
" basis = {}\n", " basis = {}\n",
" if j == 'all':\n", " if j == 'all':\n",
" k = 0\n", " k = 0\n",
" for i in range(1, r):\n", " for j in range(1, m):\n",
" for j in range(1, m):\n", " for i in range(1, r):\n",
" if (r*j - m*i >= delta):\n", " if (r*j - m*i >= delta):\n",
" basis[k] = superelliptic_form(C, x^(i-1)/y^j)\n", " basis[k] = superelliptic_form(C, x^(i-1)/y^j)\n",
" k = k+1\n", " k = k+1\n",
@ -49,7 +61,21 @@
" basis[k] = superelliptic_form(C, x^(i-1)/y^j)\n", " basis[k] = superelliptic_form(C, x^(i-1)/y^j)\n",
" k = k+1\n", " k = k+1\n",
" return basis\n", " return basis\n",
" \n", " \n",
" def basis_de_rham(self, j = 'all'):\n",
" f = self.polynomial\n",
" m = self.exponent\n",
" p = self.characteristic\n",
" r = f.degree()\n",
" delta = GCD(r, m)\n",
" #?????\n",
" basis = {}\n",
" if j == 'all':\n",
" for j in range(1, m):\n",
" holo = baza_holo(m, f, j, p)\n",
" for k in range(0, len(holo)):\n",
" baza[k] = holo[k]\n",
" \n",
"def reduction(C, g):\n", "def reduction(C, g):\n",
" p = C.characteristic\n", " p = C.characteristic\n",
" R.<x, y> = PolynomialRing(GF(p), 2)\n", " R.<x, y> = PolynomialRing(GF(p), 2)\n",
@ -69,7 +95,7 @@
" \n", " \n",
" while(g.degree(R(y)) >= m):\n", " while(g.degree(R(y)) >= m):\n",
" d = g.degree(R(y))\n", " d = g.degree(R(y))\n",
" G = g.coefficient(R(y^d))\n", " G = coff(g, d)\n",
" i = floor(d/m)\n", " i = floor(d/m)\n",
" g = g - G*y^d + f^i * y^(d%m) *G\n", " g = g - G*y^d + f^i * y^(d%m) *G\n",
" \n", " \n",
@ -91,9 +117,12 @@
" \n", " \n",
" g = R3(g)\n", " g = R3(g)\n",
" for j in range(0, m):\n", " for j in range(0, m):\n",
" G = g.coefficients(sparse = false)[j]\n", " if j==0:\n",
" g1 += RR(y^(j-m)*f*G)\n", " G = coff(g, 0)\n",
" \n", " g1 += G\n",
" else:\n",
" G = coff(g, j)\n",
" g1 += RR(y^(j-m)*f*G)\n",
" return(g1)\n", " return(g1)\n",
" \n", " \n",
"class superelliptic_function:\n", "class superelliptic_function:\n",
@ -184,55 +213,128 @@
" \n", " \n",
" def jth_component(self, j):\n", " def jth_component(self, j):\n",
" g = self.form\n", " g = self.form\n",
" R.<x, y> = PolynomialRing(GF(p), 2)\n", " R1.<x> = PolynomialRing(GF(p))\n",
" g = R(g)\n", " R2 = FractionField(R1)\n",
" return g.coefficient(y^j)" " R3.<y> = PolynomialRing(R2)\n",
" R4 = FractionField(R3)\n",
" R5.<y_inv> = PolynomialRing(R2)\n",
" g = R4(g)\n",
" g = g(y = 1/y_inv)\n",
" g = R5(g)\n",
" return coff(g, j)\n",
" \n",
" def is_regular_on_U0(self):\n",
" C = self.curve\n",
" p = C.characteristic\n",
" m = C.exponent\n",
" R.<x> = PolynomialRing(GF(p))\n",
" for j in range(1, m):\n",
" if self.jth_component(j) not in R:\n",
" return 0\n",
" return 1\n",
" \n",
" def is_regular_on_Uinfty(self):\n",
" C = self.curve\n",
" p = C.characteristic\n",
" m = C.exponent\n",
" f = C.polynomial\n",
" r = f.degree()\n",
" delta = GCD(m, r)\n",
" M = m/delta\n",
" R = r/delta\n",
" \n",
" for j in range(1, m):\n",
" A = self.jth_component(j)\n",
" d = degree_of_rational_fctn(A)\n",
" if(-d*M + j*R -(M+1)<0):\n",
" return 0\n",
" return 1\n",
" \n",
"class superelliptic_cech:\n",
" def __init__(self, omega, fct):\n",
" self.omega0 = omega\n",
" self.omega8 = omega - diffn(fct)\n",
" self.f = fct\n",
" \n",
"def degree_of_rational_fctn(f):\n",
" R.<x> = PolynomialRing(GF(p))\n",
" RR = FractionField(R)\n",
" f = RR(f)\n",
" f1 = f.numerator()\n",
" f2 = f.denominator()\n",
" d1 = f1.degree()\n",
" d2 = f2.degree()\n",
" return(d1 - d2)\n",
"\n",
"def coff(f, d):\n",
" lista = f.coefficients(sparse = false)\n",
" if len(lista) <= d:\n",
" return 0\n",
" return lista[d]\n",
"\n",
"def cut(f, i):\n",
" coeff = f.coefficients(sparse = false)\n",
" return sum(x^(j-i-1) * coeff[j] for j in range(i+1, f.degree() + 1))"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 220, "execution_count": 80,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"{0: (1/y) dx}" "((-2*x^3*y + x^2 + x)/y) dx"
] ]
}, },
"execution_count": 220, "execution_count": 80,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
], ],
"source": [ "source": [
"C = superelliptic(x^3 + x + 2, 2, 5)\n", "C = superelliptic(x^3 + x + 2, 2, 5)\n",
"C.basis_holomorphic_differentials()" "omega = superelliptic_form(C, (x^2+x)/y + 3*x^3)\n",
"omega"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 179, "execution_count": 81,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "name": "stdout",
"text/plain": [ "output_type": "stream",
"0" "text": [
] "(1/y) dx\n",
}, "1 1\n",
"execution_count": 179, "{0: (1/y) dx}\n"
"metadata": {}, ]
"output_type": "execute_result"
} }
], ],
"source": [ "source": [
"A.degree(y)" "licz = 0\n",
"m = 2\n",
"p = 5\n",
"R1.<x> = PolynomialRing(GF(p))\n",
"f = R1(x^3 + x + 4)\n",
"r = f.degree()\n",
"C = superelliptic(f, m, p)\n",
"for i in range(0, r):\n",
" for j in range(1, m):\n",
" omega = superelliptic_form(C, x^i/y^j)\n",
" if (omega.is_regular_on_U0() and omega.is_regular_on_Uinfty()):\n",
" print(omega)\n",
" licz += 1\n",
"print(licz, C.genus())\n",
"print(C.basis_holomorphic_differentials())"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 180, "execution_count": 82,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -243,7 +345,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 181, "execution_count": 83,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -252,16 +354,16 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 183, "execution_count": 84,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"-2*x^2 + 1" "3*x^2 + 1"
] ]
}, },
"execution_count": 183, "execution_count": 84,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -272,7 +374,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 33, "execution_count": 85,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -281,7 +383,7 @@
"y" "y"
] ]
}, },
"execution_count": 33, "execution_count": 85,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -299,7 +401,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 39, "execution_count": 86,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -357,34 +459,81 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 213, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"p = 5\n",
"R1.<x> = PolynomialRing(GF(p))\n", "R1.<x> = PolynomialRing(GF(p))\n",
"R2 = FractionField(R1)\n", "R2 = FractionField(R1)\n",
"R3.<y> = PolynomialRing(R2)\n", "R3.<y> = PolynomialRing(R2)\n",
"g = y^2/x + y/(x+1) " "g = y^2/x + y/(x+1) \n",
"g = 1/y+x/y^2"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 218, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"[0, 1/(x + 1), 1/x]" "x*z^2 + z"
] ]
}, },
"execution_count": 218, "execution_count": 4,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
], ],
"source": [ "source": [
"g.coefficients(sparse = false)" "R3.<z> = PolynomialRing(R2)\n",
"g(y = 1/z)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"x^3 + x + 4"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint' object has no attribute 'coefficient'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-62-e054c182ec1a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcoefficient\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/opt/sagemath-9.1/local/lib/python3.7/site-packages/sage/structure/element.pyx\u001b[0m in \u001b[0;36msage.structure.element.Element.__getattr__ (build/cythonized/sage/structure/element.c:4614)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 485\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m'LeftZeroSemigroup_with_category.element_class'\u001b[0m \u001b[0mobject\u001b[0m \u001b[0mhas\u001b[0m \u001b[0mno\u001b[0m \u001b[0mattribute\u001b[0m \u001b[0;34m'blah_blah'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 486\u001b[0m \"\"\"\n\u001b[0;32m--> 487\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetattr_from_category\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 488\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 489\u001b[0m \u001b[0mcdef\u001b[0m \u001b[0mgetattr_from_category\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/sagemath-9.1/local/lib/python3.7/site-packages/sage/structure/element.pyx\u001b[0m in \u001b[0;36msage.structure.element.Element.getattr_from_category (build/cythonized/sage/structure/element.c:4723)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 498\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 499\u001b[0m \u001b[0mcls\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mP\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_abstract_element_class\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 500\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mgetattr_from_other_class\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 501\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 502\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__dir__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/sagemath-9.1/local/lib/python3.7/site-packages/sage/cpython/getattr.pyx\u001b[0m in \u001b[0;36msage.cpython.getattr.getattr_from_other_class (build/cythonized/sage/cpython/getattr.c:2614)\u001b[0;34m()\u001b[0m\n\u001b[1;32m 392\u001b[0m \u001b[0mdummy_error_message\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcls\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 393\u001b[0m \u001b[0mdummy_error_message\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 394\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdummy_error_message\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 395\u001b[0m \u001b[0mattribute\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m<\u001b[0m\u001b[0mobject\u001b[0m\u001b[0;34m>\u001b[0m\u001b[0mattr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 396\u001b[0m \u001b[0;31m# Check for a descriptor (__get__ in Python)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mAttributeError\u001b[0m: 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint' object has no attribute 'coefficient'"
]
}
],
"source": [
"f.coefficient()"
] ]
}, },
{ {