rozniczkowanie form drw zrobione (?)
This commit is contained in:
parent
856d74212b
commit
22872e266b
File diff suppressed because one or more lines are too long
@ -1,9 +1,9 @@
|
|||||||
p = 2
|
p = 3
|
||||||
m = 1
|
m = 2
|
||||||
F = GF(p)
|
F = GF(p)
|
||||||
Rx.<x> = PolynomialRing(F)
|
Rx.<x> = PolynomialRing(F)
|
||||||
f = x
|
f = x^3 - x
|
||||||
C = superelliptic(f, m)
|
C = superelliptic(f, m)
|
||||||
xx = C.x
|
a = superelliptic_drw_form(C.one, 0*C.dx, 0*C.x)
|
||||||
AS = as_cover(C, [xx^5, xx^5 + xx^3])
|
b = a+a+a+a+a+a+a+a+a
|
||||||
print(AS.magical_element())
|
print(b)
|
30
sage/drafty/second_patch.sage
Normal file
30
sage/drafty/second_patch.sage
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
def patch(C):
|
||||||
|
if C.exponent != 2:
|
||||||
|
raise ValueError("Not implemented yet!")
|
||||||
|
Fxy, Rxy, x, y = C.fct_field
|
||||||
|
F = C.base_ring
|
||||||
|
Rx.<x> = PolynomialRing(F)
|
||||||
|
f = C.polynomial
|
||||||
|
g = C.genus()
|
||||||
|
f_star = Rx(x^(2*g+2)*f(1/x))
|
||||||
|
return superelliptic(f_star, 2)
|
||||||
|
|
||||||
|
def second_patch(argument):
|
||||||
|
C = argument.curve
|
||||||
|
C1 = patch(C)
|
||||||
|
Fxy, Rxy, x, y = C.fct_field
|
||||||
|
g = C.genus()
|
||||||
|
if isinstance(argument, superelliptic_function):
|
||||||
|
fct = Fxy(argument.function)
|
||||||
|
fct1 = Fxy(fct.subs({x : 1/x, y : y/x^(g+1)}))
|
||||||
|
return superelliptic_function(C1, fct1)
|
||||||
|
if isinstance(argument, superelliptic_form):
|
||||||
|
fct = Fxy(argument.form)
|
||||||
|
fct1 = Fxy(fct.subs({x : 1/x, y : y/x^(g+1)}))
|
||||||
|
fct1 *= -x^(-2)
|
||||||
|
return superelliptic_form(C1, fct1)
|
||||||
|
|
||||||
|
def lift_form_to_drw(omega):
|
||||||
|
A, B = regular_form(omega)
|
||||||
|
A, B = A.change_ring(QQ), B.change_ring(QQ)
|
||||||
|
print("%s dx + %s dy"%(A, B))
|
@ -1,39 +1,105 @@
|
|||||||
class superelliptic_witt:
|
class superelliptic_witt:
|
||||||
def __init__(self, C, t, f0, f1):
|
def __init__(self, t, f):
|
||||||
''' Define Witt function on C of the form [t] + f0([x], [y]) + V(f1). '''
|
''' Define Witt function on C of the form [t] + V(f). '''
|
||||||
self.curve = C
|
self.curve = t.curve
|
||||||
|
C = t.curve
|
||||||
p = C.characteristic
|
p = C.characteristic
|
||||||
self.t = t #superelliptic_function
|
self.t = t #superelliptic_function
|
||||||
self.f0 = reduce_rational_fct(f0, p) #polynomial/rational function over Z/p^2
|
self.f = f #superelliptic_function
|
||||||
self.f1 = f1 #superelliptic_function
|
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
f0 = self.f0
|
f = self.f
|
||||||
f1 = self.f1
|
|
||||||
t = self.t
|
t = self.t
|
||||||
return "[" + str(t) + "] + " + str(f0).replace("x", "[x]").replace("y", "[y]") + " + V(" + str(f1) + ")"
|
if f.function == 0:
|
||||||
|
return "[" + str(t) + "]"
|
||||||
|
if t.function == 0:
|
||||||
|
return "V(" + str(f) + ")"
|
||||||
|
return "[" + str(t) + "] + V(" + str(f) + ")"
|
||||||
|
|
||||||
|
def __neg__(self):
|
||||||
|
f = self.f
|
||||||
|
t = self.t
|
||||||
|
return superelliptic_witt(-t, -f)
|
||||||
|
|
||||||
def __add__(self, other):
|
def __add__(self, other):
|
||||||
C = self.curve
|
C = self.curve
|
||||||
return superelliptic_witt(C, self.t + other.t, self.f0 + other.f0, self.f1 + other.f1)
|
second_coor = 0*C.x
|
||||||
|
X = self.t
|
||||||
|
Y = other.t
|
||||||
|
for i in range(1, p):
|
||||||
|
second_coor -= binomial_prim(p, i)*X^i*Y^(p-i)
|
||||||
|
return superelliptic_witt(self.t + other.t, self.f + other.f + second_coor)
|
||||||
|
|
||||||
def teichmuller_representation(self):
|
def __sub__(self, other):
|
||||||
'''Represents as [f] + V(g), i.e. f0 = 0.'''
|
return self + (-other)
|
||||||
|
|
||||||
|
def __rmul__(self, other):
|
||||||
|
p = self.curve.characteristic
|
||||||
|
if other in ZZ:
|
||||||
|
if other == 0:
|
||||||
|
return superelliptic_witt(0*C.x, 0*C.x)
|
||||||
|
if other > 0:
|
||||||
|
return self + (other-1)*self
|
||||||
|
if other < 0:
|
||||||
|
return (-other)*(-self)
|
||||||
|
if other in QQ:
|
||||||
|
other_integer = Integers(p^2)(other)^(-1)
|
||||||
|
return other_integer*self
|
||||||
|
|
||||||
|
def __mul__(self, other):
|
||||||
|
if isinstance(other, superelliptic_witt):
|
||||||
|
t1 = self.t
|
||||||
|
f1 = self.f
|
||||||
|
p = self.curve.characteristic
|
||||||
|
t2 = other.t
|
||||||
|
f2 = other.f
|
||||||
|
return superelliptic_witt(t1*t2, t1^p*f2 + t2^p*f1)
|
||||||
|
if isinstance(other, superelliptic_drw_form):
|
||||||
|
h1 = other.h1
|
||||||
|
h2 = other.h2
|
||||||
|
omega = other.omega
|
||||||
|
p = other.curve.characteristic
|
||||||
|
t = self.t
|
||||||
|
f = self.f
|
||||||
|
aux_form = t^p*omega - h2*t^(p-1)*t.diffn() + f*h1^p*(C.x)^(p-1)*C.dx
|
||||||
|
return superelliptic_drw_form(t*h1, aux_form, t^p*h2)
|
||||||
|
|
||||||
|
def __eq__(self, other):
|
||||||
|
return self.t == other.t and self.f == other.f
|
||||||
|
|
||||||
|
def diffn(self):
|
||||||
C = self.curve
|
C = self.curve
|
||||||
Fxy, Rxy, x, y = self.fct_field
|
t = self.t
|
||||||
|
f = self.f
|
||||||
|
fC = C.polynomial
|
||||||
F = C.base_ring
|
F = C.base_ring
|
||||||
function = Rxy(self.f0)
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||||
if self.f0 == 0:
|
if t.function == 0:
|
||||||
return self
|
return superelliptic_drw_form(0*C.x, 0*C.dx, f)
|
||||||
M = Rxy(function.monomials()[0])
|
t_polynomial = t.function
|
||||||
a = F(function.monomial_coefficient(M))
|
num = t_polynomial.numerator()
|
||||||
fct1 = fct - superelliptic_function(C, a*M)
|
den = t_polynomial.denominator()
|
||||||
function1 = fct1.function
|
num_t_fct = superelliptic_function(C, num)
|
||||||
return teichmuller(fct1) + superelliptic_witt(C, (a.lift())^p*M.change_ring(QQ), superelliptic_function(C, function1^2*a*M + function1*(a*M)^2))
|
den_t_fct = superelliptic_function(C, den)
|
||||||
|
inv_den_t_fct = superelliptic_function(C, 1/den)
|
||||||
|
if den != 1:
|
||||||
|
# d([N/D] + V(f)) = [1/D]*d([N]) - [N]*[D^(-2)]*d([D]) + dV(f)
|
||||||
|
return ((den_t_fct)^(-1)).teichmuller()*num_t_fct.teichmuller().diffn() - ((den_t_fct)^(-2)).teichmuller()*num_t_fct.teichmuller()*den_t_fct.teichmuller().diffn() + superelliptic_drw_form(0*C.x, 0*C.dx, f)
|
||||||
|
t_polynomial = Rxy(t_polynomial)
|
||||||
|
fC = superelliptic_function(C, fC)
|
||||||
|
fC = fC.teichmuller()
|
||||||
|
dy_w = 1/2* ((C.y)^(-1)).teichmuller()*auxilliary_derivative(fC)
|
||||||
|
M = t_polynomial.monomials()[0]
|
||||||
|
a = t_polynomial.monomial_coefficient(M)
|
||||||
|
#[P] = [aM] + Q, where Q = ([P] - [aM])
|
||||||
|
aM_fct = superelliptic_function(C, a*M)
|
||||||
|
Q = self - aM_fct.teichmuller()
|
||||||
|
exp_x = M.exponents()[0][0]
|
||||||
|
exp_y = M.exponents()[0][1]
|
||||||
|
return Q.diffn() + exp_x*superelliptic_drw_form(aM_fct/C.x, 0*C.dx, 0*C.x) + exp_y*(aM_fct/C.y).teichmuller()*dy_w
|
||||||
|
|
||||||
def antiteichmuller_representation(self):
|
def binomial_prim(p, i):
|
||||||
'''Represents as f([x], [y]) + V(g), i.e. teichmuller part is zero.'''
|
return binomial(p, i)/p
|
||||||
return 0
|
|
||||||
|
|
||||||
def reduce_rational_fct(fct, p):
|
def reduce_rational_fct(fct, p):
|
||||||
Rxy.<x, y> = PolynomialRing(QQ)
|
Rxy.<x, y> = PolynomialRing(QQ)
|
||||||
@ -53,58 +119,127 @@ def reduce_rational_fct(fct, p):
|
|||||||
|
|
||||||
def teichmuller(fct):
|
def teichmuller(fct):
|
||||||
C = fct.curve
|
C = fct.curve
|
||||||
Fxy, Rxy, x, y = C.fct_field
|
return superelliptic_witt(fct, 0*C.x)
|
||||||
|
|
||||||
|
superelliptic_function.teichmuller = teichmuller
|
||||||
|
|
||||||
|
#dy = [f(x)]'/2*y dx
|
||||||
|
#[f1 + M] = [f1] + [M] + V(cos)
|
||||||
|
#d[f1 + M] = d[f1] + d[M] + dV(f1*M)
|
||||||
|
#M = b x^a
|
||||||
|
#d[M] = a*[b x^(a-1)]
|
||||||
|
|
||||||
|
def auxilliary_derivative(P):
|
||||||
|
'''Return "derivative" of P, where P depends only on x. '''
|
||||||
|
P0 = P.t.function
|
||||||
|
P1 = P.f.function
|
||||||
|
C = P.curve
|
||||||
F = C.base_ring
|
F = C.base_ring
|
||||||
function = Rxy(fct.function)
|
Rx.<x> = PolynomialRing(F)
|
||||||
if function == 0:
|
P0 = Rx(P0)
|
||||||
return superelliptic_witt(C, 0, 0*C.x)
|
P1 = Rx(P1)
|
||||||
M = Rxy(function.monomials()[0])
|
if P0 == 0:
|
||||||
a = F(function.monomial_coefficient(M))
|
return superelliptic_drw_form(0*C.x, 0*C.dx, P.f)
|
||||||
fct1 = fct - superelliptic_function(C, a*M)
|
M = P0.monomials()[0]
|
||||||
function1 = fct1.function
|
a = P0.monomial_coefficient(M)
|
||||||
return teichmuller(fct1) + superelliptic_witt(C, (a.lift())^p*M.change_ring(QQ), superelliptic_function(C, function1^2*a*M + function1*(a*M)^2))
|
#[P] = [aM] + Q, where Q = ([P] - [aM])
|
||||||
|
aM_fct = superelliptic_function(C, a*M)
|
||||||
|
Q = P - aM_fct.teichmuller()
|
||||||
|
exp = M.exponents()[0]
|
||||||
|
return auxilliary_derivative(Q) + exp*superelliptic_drw_form(aM_fct/C.x, 0*C.dx, 0*C.x)
|
||||||
|
|
||||||
class superelliptic_drw_form:
|
class superelliptic_drw_form:
|
||||||
def __init__(self, C, omega_x, omega_y, omega, h):
|
def __init__(self, h1, omega, h2):
|
||||||
'''Form [omega_x] d[x] + [omega_y] d[y] + V(omega) + dV([h])'''
|
'''Form [h1] d[x] + V(omega) + dV([h])'''
|
||||||
self.curve = C
|
self.curve = h1.curve
|
||||||
self.omega_x = omega_x
|
self.h1 = h1
|
||||||
self.omega_y = omega_y
|
|
||||||
self.omega = omega
|
self.omega = omega
|
||||||
self.h = h
|
self.h2 = h2
|
||||||
|
|
||||||
def __eq__(self, other):
|
def __eq__(self, other):
|
||||||
eq1 = (self.omega1 == self.omega1)
|
eq1 = (self.h1 == self.h1)
|
||||||
try:
|
try:
|
||||||
H = (self.h - other.h).pthroot()
|
H = (self.h2 - other.h2).pth_root()
|
||||||
except:
|
except:
|
||||||
return False
|
return False
|
||||||
eq2 = (self.omega2 - other.omega2).cartier() - H.diffn()
|
eq2 = (self.omega - other.omega).cartier() - H.diffn()
|
||||||
if eq1 and eq2:
|
if eq1 and eq2:
|
||||||
return True
|
return True
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
C = self.curve
|
C = self.curve
|
||||||
omega_x = self.omega_x
|
h1 = self.h1
|
||||||
omega_y = self.omega_y
|
omega = self.omega
|
||||||
h = self.h
|
h2 = self.h2
|
||||||
return str(omega_x) + "] dx + [" + str(omega_x.form) + "] d[x] " + "+ V(" + str(omega2) + ") + dV([" + str(h) +"])"
|
result = ""
|
||||||
|
if h1.function != 0:
|
||||||
|
result += "[" + str(h1) + "] d[x]"
|
||||||
|
if h1.function !=0 and omega.form != 0:
|
||||||
|
result += " + "
|
||||||
|
if omega.form != 0:
|
||||||
|
result += "V(" + str(omega) + ")"
|
||||||
|
if h2.function !=0 and omega.form != 0:
|
||||||
|
result += " + "
|
||||||
|
if h2.function != 0:
|
||||||
|
result += "dV([" + str(h2) +"])"
|
||||||
|
if result == "":
|
||||||
|
result += "0"
|
||||||
|
return result
|
||||||
|
|
||||||
|
def __rmul__(self, other):
|
||||||
|
h1 = self.h1
|
||||||
|
h2 = self.h2
|
||||||
|
omega = self.omega
|
||||||
|
p = self.curve.characteristic
|
||||||
|
if other in ZZ:
|
||||||
|
if other == 0:
|
||||||
|
return superelliptic_drw_form(0*C.x, 0*C.dx, 0*C.x)
|
||||||
|
if other > 0:
|
||||||
|
return self + (other-1)*self
|
||||||
|
if other < 0:
|
||||||
|
return (-other)*(-self)
|
||||||
|
if other in QQ:
|
||||||
|
other_integer = Integers(p^2)(other)^(-1)
|
||||||
|
return other_integer*self
|
||||||
|
t = other.t
|
||||||
|
f = other.f
|
||||||
|
aux_form = t^p*omega - h2*t^(p-1)*t.diffn() + f*h1^p*(C.x)^(p-1)*C.dx
|
||||||
|
return superelliptic_drw_form(t*h1, aux_form, t^p*h2)
|
||||||
|
|
||||||
|
def __neg__(self):
|
||||||
|
C = self.curve
|
||||||
|
h1 = self.h1
|
||||||
|
h2 = self.h2
|
||||||
|
omega = self.omega
|
||||||
|
return superelliptic_drw_form(-h1, -omega, -h2)
|
||||||
|
|
||||||
|
def __add__(self, other):
|
||||||
|
C = self.curve
|
||||||
|
h1 = self.h1
|
||||||
|
h2 = self.h2
|
||||||
|
omega = self.omega
|
||||||
|
H1 = other.h1
|
||||||
|
H2 = other.h2
|
||||||
|
OMEGA = other.omega
|
||||||
|
aux = (teichmuller(h1) + teichmuller(H1))*superelliptic_drw_form(C.one, 0*C.dx, 0*C.x)
|
||||||
|
h1_aux = aux.h1
|
||||||
|
h2_aux = aux.h2
|
||||||
|
omega_aux = aux.omega
|
||||||
|
return superelliptic_drw_form(h1_aux, omega + OMEGA + omega_aux, h2 + H2 + h2_aux)
|
||||||
|
|
||||||
|
def frobenius(self):
|
||||||
|
C = self.curve
|
||||||
|
h1 = self.h1
|
||||||
|
h2 = self.h2
|
||||||
|
p = C.characteristic
|
||||||
|
return h1^p*C.x^(p-1)*C.dx + h2.diffn()
|
||||||
|
|
||||||
def mult_by_p(omega):
|
def mult_by_p(omega):
|
||||||
C = omega.curve
|
C = omega.curve
|
||||||
fct = omega.form
|
fct = omega.form
|
||||||
Fxy, Rxy, x, y = C.fct_field
|
Fxy, Rxy, x, y = C.fct_field
|
||||||
omega2 = superelliptic_form(C, fct^p * x^(p-1))
|
omega = superelliptic_form(C, fct^p * x^(p-1))
|
||||||
result = superelliptic_drw_form(C, 0*C.dx, omega2, 0*C.x)
|
result = superelliptic_drw_form(C, 0*C.dx, omega, 0*C.x)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def basis_W2Omega(C):
|
|
||||||
basis = C.holomorphic_differentials_basis()
|
|
||||||
result = []
|
|
||||||
for omega in basis:
|
|
||||||
result += [mult_by_p(omega)]
|
|
||||||
|
|
||||||
image_of_cartier = []
|
|
||||||
|
|
||||||
return result
|
|
@ -21,6 +21,11 @@ class superelliptic_form:
|
|||||||
g = reduction(C, g1 - g2)
|
g = reduction(C, g1 - g2)
|
||||||
return superelliptic_form(C, g)
|
return superelliptic_form(C, g)
|
||||||
|
|
||||||
|
def __neg__(self):
|
||||||
|
C = self.curve
|
||||||
|
g = self.form
|
||||||
|
return superelliptic_form(C, -g)
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
g = self.form
|
g = self.form
|
||||||
if len(str(g)) == 1:
|
if len(str(g)) == 1:
|
||||||
@ -32,6 +37,9 @@ class superelliptic_form:
|
|||||||
omega = self.form
|
omega = self.form
|
||||||
return superelliptic_form(C, constant*omega)
|
return superelliptic_form(C, constant*omega)
|
||||||
|
|
||||||
|
def __eq__(self, other):
|
||||||
|
return self.form == other.form
|
||||||
|
|
||||||
def cartier(self):
|
def cartier(self):
|
||||||
'''Computes Cartier operator on the form. Idea: y^m = f(x) -> y^(p^r - 1) = f(x)^M, where r = ord_p(m),
|
'''Computes Cartier operator on the form. Idea: y^m = f(x) -> y^(p^r - 1) = f(x)^M, where r = ord_p(m),
|
||||||
M = (p^r - 1)/m. Thus h(x)/y^j dx = h(x) f(x)^(M*j)/y^(p^r * j) dx. Thus C(h(x)/y^j dx) = 1/y^(p^(r-1)*j) C(h(x) f(x)^(M*j) dx).'''
|
M = (p^r - 1)/m. Thus h(x)/y^j dx = h(x) f(x)^(M*j)/y^(p^r * j) dx. Thus C(h(x)/y^j dx) = 1/y^(p^(r-1)*j) C(h(x) f(x)^(M*j) dx).'''
|
||||||
|
@ -38,6 +38,11 @@ class superelliptic_function:
|
|||||||
g = reduction(C, g1 + g2)
|
g = reduction(C, g1 + g2)
|
||||||
return superelliptic_function(C, g)
|
return superelliptic_function(C, g)
|
||||||
|
|
||||||
|
def __neg__(self):
|
||||||
|
C = self.curve
|
||||||
|
g = self.function
|
||||||
|
return superelliptic_function(C, -g)
|
||||||
|
|
||||||
def __sub__(self, other):
|
def __sub__(self, other):
|
||||||
C = self.curve
|
C = self.curve
|
||||||
g1 = self.function
|
g1 = self.function
|
||||||
|
Loading…
Reference in New Issue
Block a user