fix for algebraic closure
This commit is contained in:
parent
660e21d1d1
commit
2705221dbf
@ -99,9 +99,9 @@ One can check valuation of form/function at given place at infinity, using *valu
|
||||
|
||||
## Abelian covers of superelliptic curves
|
||||
|
||||
This module allows to define $(\mathbb Z/p)^n$-covers of superelliptic curves in characteristic $p$ that
|
||||
This module allows to define $(\mathbb Z/p)^n$\-covers of superelliptic curves in characteristic $p$ that
|
||||
are **ramified over the points of infinity**.
|
||||
We define now a $(\mathbb Z/3)^2$ cover of curve $C : y^2 = x^3 + x$, given by the equations $z_0^3 - z_0 = x^2 * y$,
|
||||
We define now a $(\mathbb Z/3)^2$ cover of curve $C : y^2 = x^3 + x$, given by the equations $z_0^3 - z_0 = x^2 y$,
|
||||
$z_1^3 - z_1 = x^3$.
|
||||
|
||||
```
|
||||
|
@ -1,4 +1,4 @@
|
||||
def magma_module_decomposition(A, B, text = False, prefix="", sufix=""):
|
||||
def magma_module_decomposition(A, B, text = False, prefix="", sufix="", matrices=True):
|
||||
"""Find decomposition of Z/p^2-module given by matrices A, B into indecomposables using magma.
|
||||
If text = True, print the command for Magma. Else - return the output of Magma free."""
|
||||
q = parent(A).base_ring().order()
|
||||
@ -18,7 +18,8 @@ def magma_module_decomposition(A, B, text = False, prefix="", sufix=""):
|
||||
result += ">;"
|
||||
result += "M := RModule(RSpace(GF("+str(q)+")," + str(n) + "), A);"
|
||||
result += "L := IndecomposableSummands(M); L;"
|
||||
result += "for i in [1 .. #L] do print(Generators(Action(L[i]))); end for;"
|
||||
if matrices:
|
||||
result += "for i in [1 .. #L] do print(Generators(Action(L[i]))); end for;"
|
||||
result += sufix
|
||||
if text:
|
||||
return result
|
||||
|
@ -35,6 +35,12 @@ class as_cech:
|
||||
f1 = other.f
|
||||
return as_cech(C, omega - omega1, f - f1)
|
||||
|
||||
def __neg__(self):
|
||||
C = self.curve
|
||||
omega = self.omega0
|
||||
f = self.f
|
||||
return as_cech(C, -omega, -f)
|
||||
|
||||
def __rmul__(self, constant):
|
||||
C = self.curve
|
||||
omega = self.omega0
|
||||
|
@ -71,6 +71,11 @@ class as_form:
|
||||
g2 = other.form
|
||||
return as_form(C, g1 - g2)
|
||||
|
||||
def __neg__(self):
|
||||
C = self.curve
|
||||
g = self.form
|
||||
return as_form(C, -g)
|
||||
|
||||
def __rmul__(self, constant):
|
||||
C = self.curve
|
||||
omega = self.form
|
||||
|
@ -33,6 +33,11 @@ class as_function:
|
||||
g = self.function
|
||||
return as_function(C, constant*g)
|
||||
|
||||
def __neg__(self, other):
|
||||
C = self.curve
|
||||
g = self.function
|
||||
return as_function(C, -g)
|
||||
|
||||
def __mul__(self, other):
|
||||
if isinstance(other, as_function):
|
||||
C = self.curve
|
||||
|
@ -9,14 +9,15 @@ def group_action_matrices(space, list_of_group_elements, basis):
|
||||
A[i][:, j] = vector(v1)
|
||||
return A
|
||||
|
||||
def group_action_matrices_holo(AS):
|
||||
def group_action_matrices_holo(AS, basis=0, threshold=10):
|
||||
n = AS.height
|
||||
generators = []
|
||||
for i in range(n):
|
||||
ei = n*[0]
|
||||
ei[i] = 1
|
||||
generators += [ei]
|
||||
basis = AS.holomorphic_differentials_basis()
|
||||
if basis == 0:
|
||||
basis = AS.holomorphic_differentials_basis(threshold=threshold)
|
||||
return group_action_matrices(basis, generators, basis = basis)
|
||||
|
||||
def group_action_matrices_dR(AS, threshold=8):
|
||||
|
@ -1,8 +1,7 @@
|
||||
p = 5
|
||||
m = 1
|
||||
F = GF(p)
|
||||
Rx.<x> = PolynomialRing(F)
|
||||
f = x
|
||||
C = superelliptic(f, 1)
|
||||
AS1 = as_cover(C, [C.x^3], prec = 200)
|
||||
print(AS1.genus())
|
||||
p = 3
|
||||
F = GF(p^2, 'a')
|
||||
#F1 = F.algebraic_closure('t')
|
||||
a = F.gens()[0]
|
||||
R.<x> = PolynomialRing(F)
|
||||
P1 = superelliptic(x, 1)
|
||||
AS = as_cover(P1, [P1.x^2, a*P1.x^2])
|
||||
|
@ -1,5 +1,18 @@
|
||||
F = GF(2)
|
||||
A = matrix(F, [[1, 1, 1], [0, 0, 1], [0, 1, 0]])
|
||||
B = matrix(F, [[0, 0, 1], [1, 1, 1], [1, 0, 0]])
|
||||
print(A^2 == identity_matrix(3), B^2 == identity_matrix(3), A*B == B*A)
|
||||
print(magmathis(A, B))
|
||||
def reduction(g):
|
||||
F = g.parent().base()
|
||||
x, y = g.parent().gens()
|
||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||
Fxy = FractionField(Rxy)
|
||||
Rx.<x> = PolynomialRing(F)
|
||||
Fx = FractionField(Rx)
|
||||
FxRy.<y> = PolynomialRing(Fx)
|
||||
g = Fxy(g)
|
||||
g1 = g.numerator()
|
||||
g2 = g.denominator()
|
||||
print('aa', FxRy(g2))
|
||||
|
||||
|
||||
F = GF(3).algebraic_closure()
|
||||
R.<x, y> = PolynomialRing(F, 2)
|
||||
g = x
|
||||
reduction(g)
|
@ -238,40 +238,44 @@ class superelliptic:
|
||||
b += M
|
||||
return (C.x)^a/(C.y)^b
|
||||
|
||||
def reduction(C, g):
|
||||
def reduction(curve, g):
|
||||
'''Auxilliary. Given a superelliptic curve C : y^m = f(x) and a polynomial g(x, y)
|
||||
it replaces repeteadly all y^m's in g(x, y) by f(x). As a result
|
||||
you obtain sum_{i = 0}^{m-1} y^i g_i(x).'''
|
||||
p = C.characteristic
|
||||
F = C.base_ring
|
||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||
Fxy = FractionField(Rxy)
|
||||
f = C.polynomial
|
||||
p = curve.characteristic
|
||||
F = curve.base_ring
|
||||
Fxy, Rxy, x, y = curve.fct_field
|
||||
f = curve.polynomial
|
||||
r = f.degree()
|
||||
m = C.exponent
|
||||
m = curve.exponent
|
||||
g = Fxy(g)
|
||||
g1 = g.numerator()
|
||||
g2 = g.denominator()
|
||||
|
||||
Rx.<x> = PolynomialRing(F)
|
||||
Fx = FractionField(Rx)
|
||||
FxRy.<y> = PolynomialRing(Fx)
|
||||
(A, B, C) = xgcd(FxRy(g2), FxRy(y^m - f))
|
||||
g = FxRy(g1*B/A)
|
||||
FxRy1.<y> = PolynomialRing(Fx, 1) #coercion problems from Rxy to FxRy
|
||||
FxRy.<y2> = PolynomialRing(Fx) #coercion problems from Rxy to FxRy
|
||||
(A, B, C) = xgcd(FxRy(FxRy1(g2)(y = y2)), FxRy(FxRy1(y^m - f)(y = y2))) #coercion problems from Rxy to FxRy
|
||||
g = FxRy(FxRy1(g1)(y = y2))*B/A
|
||||
g = FxRy(g)
|
||||
|
||||
while(g.degree(Rxy(y)) >= m):
|
||||
d = g.degree(Rxy(y))
|
||||
while(g.degree(y2) >= m):
|
||||
d = g.degree(y2)
|
||||
G = coff(g, d)
|
||||
i = floor(d/m)
|
||||
g = g - G*y^d + f^i * y^(d%m) *G
|
||||
|
||||
return(FxRy(g))
|
||||
g = g - G*y2^d + f^i * y2^(d%m) *G
|
||||
Rxy1.<x3, y3> = PolynomialRing(F, 2)
|
||||
Fxy1 = FractionField(Rxy1)
|
||||
g = sum(Fxy(y3)^i*Fx(coff(g, i)) for i in range(0, m))
|
||||
g = Fxy(g)
|
||||
return(g)
|
||||
|
||||
#Auxilliary. Given a superelliptic curve C : y^m = f(x) and a polynomial g(x, y)
|
||||
#it replaces repeteadly all y^m's in g(x, y) by f(x). As a result
|
||||
#you obtain \sum_{i = 0}^{m-1} g_i(x)/y^i. This is needed for reduction of
|
||||
#superelliptic forms.
|
||||
def reduction_form(C, g):
|
||||
'''Auxilliary. Given a superelliptic curve C : y^m = f(x) and a polynomial g(x, y)
|
||||
it replaces repeteadly all y^m's in g(x, y) by f(x). As a result
|
||||
you obtain sum_{i = 0}^{m-1} g_i(x)/y^i. This is needed for reduction of
|
||||
superelliptic forms.'''
|
||||
F = C.base_ring
|
||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||
Fxy = FractionField(Rxy)
|
||||
@ -283,14 +287,15 @@ def reduction_form(C, g):
|
||||
g1 = Rxy(0)
|
||||
Rx.<x> = PolynomialRing(F)
|
||||
Fx = FractionField(Rx)
|
||||
FxRy.<y> = PolynomialRing(Fx)
|
||||
FxRy1.<y> = PolynomialRing(Fx, 1)
|
||||
FxRy.<y2> = PolynomialRing(Fx)
|
||||
|
||||
g = FxRy(g)
|
||||
g = FxRy(FxRy1(g)(y = y2))
|
||||
for j in range(0, m):
|
||||
if j==0:
|
||||
G = coff(g, 0)
|
||||
g1 += FxRy(G)
|
||||
g1 += Fxy(Fx(G))
|
||||
else:
|
||||
G = coff(g, j)
|
||||
g1 += Fxy(y^(j-m)*f*G)
|
||||
g1 += Fxy(y)^(j-m)*Fxy(Fx(f*G))
|
||||
return(g1)
|
@ -101,14 +101,17 @@ class superelliptic_form:
|
||||
C = self.curve
|
||||
m = C.exponent
|
||||
F = C.base_ring
|
||||
Fxy, Rxy, x, y = C.fct_field
|
||||
g = reduction(C, y^m*g)
|
||||
Rx.<x> = PolynomialRing(F)
|
||||
Fx = FractionField(Rx)
|
||||
FxRy.<y> = PolynomialRing(Fx)
|
||||
g = reduction(C, y^m*g)
|
||||
g = FxRy(g)
|
||||
FxRy.<y1> = PolynomialRing(Fx, 1)
|
||||
print('a')
|
||||
g = FxRy(g(x = x, y = y1))
|
||||
print('b')
|
||||
if j == 0:
|
||||
return g.monomial_coefficient(y^(0))/C.polynomial
|
||||
return g.monomial_coefficient(y^(m-j))
|
||||
return g.monomial_coefficient(y1^(0))/C.polynomial
|
||||
return g.monomial_coefficient(y1^(m-j))
|
||||
|
||||
def is_regular_on_U0(self):
|
||||
C = self.curve
|
||||
|
16
tests.sage
16
tests.sage
@ -1,16 +1,16 @@
|
||||
#load('init.sage')
|
||||
print("Expansion at infty test:")
|
||||
load('superelliptic/tests/expansion_at_infty.sage')
|
||||
#print("superelliptic form coordinates test:")
|
||||
#load('superelliptic/tests/form_coordinates_test.sage')
|
||||
#print("p-th root test:")
|
||||
#load('superelliptic/tests/pth_root_test.sage')
|
||||
print("superelliptic form coordinates test:")
|
||||
load('superelliptic/tests/form_coordinates_test.sage')
|
||||
print("p-th root test:")
|
||||
load('superelliptic/tests/pth_root_test.sage')
|
||||
#print("not working! superelliptic p rank test:")
|
||||
#load('superelliptic/tests/p_rank_test.sage')
|
||||
#print("a-number test:")
|
||||
#load('superelliptic/tests/a_number_test.sage')
|
||||
#print("as_cover_test:")
|
||||
#load('as_covers/tests/as_cover_test.sage')
|
||||
print("a-number test:")
|
||||
load('superelliptic/tests/a_number_test.sage')
|
||||
print("as_cover_test:")
|
||||
load('as_covers/tests/as_cover_test.sage')
|
||||
#print("group_action_matrices_test:")
|
||||
#load('as_covers/tests/group_action_matrices_test.sage')
|
||||
#print("dual_element_test:")
|
||||
|
Loading…
Reference in New Issue
Block a user