nieudane proby coordinates dla cech_drw
This commit is contained in:
parent
b79484be4f
commit
5f82d7db59
41001
sage/.run.term-0.term
41001
sage/.run.term-0.term
File diff suppressed because one or more lines are too long
@ -1,5 +1,5 @@
|
|||||||
class as_cover:
|
class as_cover:
|
||||||
def __init__(self, C, list_of_fcts, prec = 10):
|
def __init__(self, C, list_of_fcts, branch_points = [], prec = 10):
|
||||||
self.quotient = C
|
self.quotient = C
|
||||||
self.functions = list_of_fcts
|
self.functions = list_of_fcts
|
||||||
self.height = len(list_of_fcts)
|
self.height = len(list_of_fcts)
|
||||||
@ -22,24 +22,25 @@ class as_cover:
|
|||||||
r = f.degree()
|
r = f.degree()
|
||||||
delta = GCD(m, r)
|
delta = GCD(m, r)
|
||||||
self.nb_of_pts_at_infty = delta
|
self.nb_of_pts_at_infty = delta
|
||||||
|
self.branch_points = list(range(delta)) + branch_points
|
||||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||||
|
|
||||||
all_x_series = []
|
all_x_series = {}
|
||||||
all_y_series = []
|
all_y_series = {}
|
||||||
all_z_series = []
|
all_z_series = {}
|
||||||
all_dx_series = []
|
all_dx_series = {}
|
||||||
all_jumps = []
|
all_jumps = {}
|
||||||
|
|
||||||
for i in range(delta):
|
for pt in self.branch_points:
|
||||||
x_series = superelliptic_function(C, x).expansion_at_infty(place = i, prec=prec)
|
x_series = superelliptic_function(C, x).expansion(pt=pt, prec=prec)
|
||||||
y_series = superelliptic_function(C, y).expansion_at_infty(place = i, prec=prec)
|
y_series = superelliptic_function(C, y).expansion(pt=pt, prec=prec)
|
||||||
z_series = []
|
z_series = []
|
||||||
jumps = []
|
jumps = []
|
||||||
n = len(list_of_fcts)
|
n = len(list_of_fcts)
|
||||||
list_of_power_series = [g.expansion_at_infty(place = i, prec=prec) for g in list_of_fcts]
|
list_of_power_series = [g.expansion(pt=pt, prec=prec) for g in list_of_fcts]
|
||||||
for i in range(n):
|
for j in range(n):
|
||||||
power_series = list_of_power_series[i]
|
power_series = list_of_power_series[j]
|
||||||
jump, correction, t_old, z = artin_schreier_transform(power_series, prec = prec)
|
jump, correction, t_old, z = artin_schreier_transform(power_series, prec = prec)
|
||||||
x_series = x_series(t = t_old)
|
x_series = x_series(t = t_old)
|
||||||
y_series = y_series(t = t_old)
|
y_series = y_series(t = t_old)
|
||||||
@ -48,11 +49,11 @@ class as_cover:
|
|||||||
jumps += [jump]
|
jumps += [jump]
|
||||||
list_of_power_series = [g(t = t_old) for g in list_of_power_series]
|
list_of_power_series = [g(t = t_old) for g in list_of_power_series]
|
||||||
|
|
||||||
all_jumps += [jumps]
|
all_jumps[pt] = jumps
|
||||||
all_x_series += [x_series]
|
all_x_series[pt] = x_series
|
||||||
all_y_series += [y_series]
|
all_y_series[pt] = y_series
|
||||||
all_z_series += [z_series]
|
all_z_series[pt] = z_series
|
||||||
all_dx_series += [x_series.derivative()]
|
all_dx_series[pt] = x_series.derivative()
|
||||||
self.jumps = all_jumps
|
self.jumps = all_jumps
|
||||||
self.x_series = all_x_series
|
self.x_series = all_x_series
|
||||||
self.y_series = all_y_series
|
self.y_series = all_y_series
|
||||||
@ -70,8 +71,9 @@ class as_cover:
|
|||||||
self.fct_field = (RxyzQ, Rxyz, x, y, z)
|
self.fct_field = (RxyzQ, Rxyz, x, y, z)
|
||||||
self.x = as_function(self, x)
|
self.x = as_function(self, x)
|
||||||
self.y = as_function(self, y)
|
self.y = as_function(self, y)
|
||||||
self.z = [as_function(self, z[i]) for i in range(n)]
|
self.z = [as_function(self, z[j]) for j in range(n)]
|
||||||
self.dx = as_form(self, 1)
|
self.dx = as_form(self, 1)
|
||||||
|
self.one = as_function(self, 1)
|
||||||
|
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
@ -89,9 +91,9 @@ class as_cover:
|
|||||||
jumps = self.jumps
|
jumps = self.jumps
|
||||||
gY = self.quotient.genus()
|
gY = self.quotient.genus()
|
||||||
n = self.height
|
n = self.height
|
||||||
delta = self.nb_of_pts_at_infty
|
branch_pts = self.branch_points
|
||||||
p = self.characteristic
|
p = self.characteristic
|
||||||
return p^n*gY + (p^n - 1)*(delta - 1) + sum(p^(n-j-1)*(jumps[i][j]-1)*(p-1)/2 for j in range(n) for i in range(delta))
|
return p^n*gY + (p^n - 1)*(len(branch_pts) - 1) + sum(p^(n-j-1)*(jumps[pt][j]-1)*(p-1)/2 for j in range(n) for pt in branch_pts)
|
||||||
|
|
||||||
def exponent_of_different(self, place = 0):
|
def exponent_of_different(self, place = 0):
|
||||||
jumps = self.jumps
|
jumps = self.jumps
|
||||||
@ -130,17 +132,17 @@ class as_cover:
|
|||||||
for j in range(0, m):
|
for j in range(0, m):
|
||||||
for k in product(*pr):
|
for k in product(*pr):
|
||||||
eta = as_form(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))/y^j)
|
eta = as_form(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))/y^j)
|
||||||
eta_exp = eta.expansion_at_infty()
|
eta_exp = eta.expansion(pt=self.branch_points[0])
|
||||||
S += [(eta, eta_exp)]
|
S += [(eta, eta_exp)]
|
||||||
|
|
||||||
forms = holomorphic_combinations(S)
|
forms = holomorphic_combinations(S)
|
||||||
|
|
||||||
for i in range(1, delta):
|
for pt in self.branch_points[1:]:
|
||||||
forms = [(omega, omega.expansion_at_infty(place = i)) for omega in forms]
|
forms = [(omega, omega.expansion(pt=pt)) for omega in forms]
|
||||||
forms = holomorphic_combinations(forms)
|
forms = holomorphic_combinations(forms)
|
||||||
|
|
||||||
if len(forms) < self.genus():
|
if len(forms) < self.genus():
|
||||||
print("I haven't found all forms.")
|
print("I haven't found all forms, only ", len(forms), " of ", self.genus())
|
||||||
return holomorphic_differentials_basis(self, threshold = threshold + 1)
|
return holomorphic_differentials_basis(self, threshold = threshold + 1)
|
||||||
if len(forms) > self.genus():
|
if len(forms) > self.genus():
|
||||||
print("Increase precision.")
|
print("Increase precision.")
|
||||||
@ -236,8 +238,8 @@ class as_cover:
|
|||||||
|
|
||||||
forms = holomorphic_combinations_forms(S, pole_order)
|
forms = holomorphic_combinations_forms(S, pole_order)
|
||||||
|
|
||||||
for i in range(1, delta):
|
for pt in self.branch_points[1:]:
|
||||||
forms = [(omega, omega.expansion_at_infty(place = i)) for omega in forms]
|
forms = [(omega, omega.expansion(pt=pt)) for omega in forms]
|
||||||
forms = holomorphic_combinations_forms(forms, pole_order)
|
forms = holomorphic_combinations_forms(forms, pole_order)
|
||||||
|
|
||||||
return forms
|
return forms
|
||||||
|
@ -37,6 +37,28 @@ class as_form:
|
|||||||
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
||||||
return g.substitute(sub_list)*dx_series
|
return g.substitute(sub_list)*dx_series
|
||||||
|
|
||||||
|
def expansion(self, pt = 0):
|
||||||
|
'''Same code as expansion_at_infty.'''
|
||||||
|
C = self.curve
|
||||||
|
F = C.base_ring
|
||||||
|
x_series = C.x_series[pt]
|
||||||
|
y_series = C.y_series[pt]
|
||||||
|
z_series = C.z_series[pt]
|
||||||
|
dx_series = C.dx_series[pt]
|
||||||
|
n = C.height
|
||||||
|
variable_names = 'x, y'
|
||||||
|
for j in range(n):
|
||||||
|
variable_names += ', z' + str(j)
|
||||||
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||||
|
x, y = Rxyz.gens()[:2]
|
||||||
|
z = Rxyz.gens()[2:]
|
||||||
|
RxyzQ = FractionField(Rxyz)
|
||||||
|
prec = C.prec
|
||||||
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||||
|
g = self.form
|
||||||
|
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
||||||
|
return g.substitute(sub_list)*dx_series
|
||||||
|
|
||||||
def __add__(self, other):
|
def __add__(self, other):
|
||||||
C = self.curve
|
C = self.curve
|
||||||
g1 = self.form
|
g1 = self.form
|
||||||
@ -152,6 +174,13 @@ def artin_schreier_transform(power_series, prec = 10):
|
|||||||
power_series = RtQ(power_series)
|
power_series = RtQ(power_series)
|
||||||
if power_series.valuation() == +Infinity:
|
if power_series.valuation() == +Infinity:
|
||||||
raise ValueError("Precision is too low.")
|
raise ValueError("Precision is too low.")
|
||||||
|
if power_series.valuation() >= 0:
|
||||||
|
# THIS IS WRONG - THERE ARE SEVERAL PLACES OVER THIS PLACE, AND IT DEPENDS
|
||||||
|
aux = t^p - t
|
||||||
|
z = new_reverse(aux, prec = prec)
|
||||||
|
z = z(t = power_series)
|
||||||
|
return(0, 0, t, z)
|
||||||
|
|
||||||
while(power_series.valuation() % p == 0 and power_series.valuation() < 0):
|
while(power_series.valuation() % p == 0 and power_series.valuation() < 0):
|
||||||
M = -power_series.valuation()/p
|
M = -power_series.valuation()/p
|
||||||
coeff = power_series.list()[0] #wspolczynnik a_(-p) w f_AS
|
coeff = power_series.list()[0] #wspolczynnik a_(-p) w f_AS
|
||||||
|
@ -77,6 +77,28 @@ class as_function:
|
|||||||
g = RxyzQ(g)
|
g = RxyzQ(g)
|
||||||
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
||||||
return g.substitute(sub_list)
|
return g.substitute(sub_list)
|
||||||
|
|
||||||
|
def expansion(self, pt = 0):
|
||||||
|
C = self.curve
|
||||||
|
delta = C.nb_of_pts_at_infty
|
||||||
|
F = C.base_ring
|
||||||
|
x_series = C.x_series[pt]
|
||||||
|
y_series = C.y_series[pt]
|
||||||
|
z_series = C.z_series[pt]
|
||||||
|
n = C.height
|
||||||
|
variable_names = 'x, y'
|
||||||
|
for j in range(n):
|
||||||
|
variable_names += ', z' + str(j)
|
||||||
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||||
|
x, y = Rxyz.gens()[:2]
|
||||||
|
z = Rxyz.gens()[2:]
|
||||||
|
RxyzQ = FractionField(Rxyz)
|
||||||
|
prec = C.prec
|
||||||
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||||
|
g = self.function
|
||||||
|
g = RxyzQ(g)
|
||||||
|
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
||||||
|
return g.substitute(sub_list)
|
||||||
|
|
||||||
def group_action(self, ZN_tuple):
|
def group_action(self, ZN_tuple):
|
||||||
C = self.curve
|
C = self.curve
|
||||||
|
@ -2,13 +2,15 @@ p = 3
|
|||||||
m = 2
|
m = 2
|
||||||
F = GF(p)
|
F = GF(p)
|
||||||
Rx.<x> = PolynomialRing(F)
|
Rx.<x> = PolynomialRing(F)
|
||||||
f = x^3 - x + 1
|
f = x^3 - x
|
||||||
C = superelliptic(f, m)
|
C = superelliptic(f, m)
|
||||||
C1 = patch(C)
|
#C1 = patch(C)
|
||||||
#print(C1.crystalline_cohomology_basis())
|
#print(C1.crystalline_cohomology_basis())
|
||||||
g1 = C1.polynomial
|
#g1 = C1.polynomial
|
||||||
g_AS = g1(x^p - x)
|
#g_AS = g1(x^p - x)
|
||||||
C2 = superelliptic(g_AS, 2)
|
#C2 = superelliptic(g_AS, 2)
|
||||||
print(convert_super_into_AS(C2))
|
#print(convert_super_into_AS(C2))
|
||||||
converted = (C2.x)^4 - (C2.x)^2
|
#converted = (C2.x)^4 - (C2.x)^2
|
||||||
print(convert_super_fct_into_AS(converted))
|
#print(convert_super_fct_into_AS(converted))
|
||||||
|
b = C.crystalline_cohomology_basis()
|
||||||
|
print(autom(b[0]).coordinates(basis = b))
|
@ -47,10 +47,11 @@ class superelliptic_witt:
|
|||||||
return other_integer*self
|
return other_integer*self
|
||||||
|
|
||||||
def __mul__(self, other):
|
def __mul__(self, other):
|
||||||
|
C = self.curve
|
||||||
|
p = C.characteristic
|
||||||
if isinstance(other, superelliptic_witt):
|
if isinstance(other, superelliptic_witt):
|
||||||
t1 = self.t
|
t1 = self.t
|
||||||
f1 = self.f
|
f1 = self.f
|
||||||
p = self.curve.characteristic
|
|
||||||
t2 = other.t
|
t2 = other.t
|
||||||
f2 = other.f
|
f2 = other.f
|
||||||
return superelliptic_witt(t1*t2, t1^p*f2 + t2^p*f1)
|
return superelliptic_witt(t1*t2, t1^p*f2 + t2^p*f1)
|
||||||
@ -58,7 +59,6 @@ class superelliptic_witt:
|
|||||||
h1 = other.h1
|
h1 = other.h1
|
||||||
h2 = other.h2
|
h2 = other.h2
|
||||||
omega = other.omega
|
omega = other.omega
|
||||||
p = other.curve.characteristic
|
|
||||||
t = self.t
|
t = self.t
|
||||||
f = self.f
|
f = self.f
|
||||||
aux_form = t^p*omega - h2*t^(p-1)*t.diffn() + f*h1^p*(C.x)^(p-1)*C.dx
|
aux_form = t^p*omega - h2*t^(p-1)*t.diffn() + f*h1^p*(C.x)^(p-1)*C.dx
|
||||||
@ -130,7 +130,7 @@ superelliptic_function.teichmuller = teichmuller
|
|||||||
#d[M] = a*[b x^(a-1)]
|
#d[M] = a*[b x^(a-1)]
|
||||||
|
|
||||||
def auxilliary_derivative(P):
|
def auxilliary_derivative(P):
|
||||||
'''Return "derivative" of P, where P depends only on x. '''
|
'''Return "derivative" of P, where P depends only on x. In other words d[P(x)].'''
|
||||||
P0 = P.t.function
|
P0 = P.t.function
|
||||||
P1 = P.f.function
|
P1 = P.f.function
|
||||||
C = P.curve
|
C = P.curve
|
||||||
@ -156,6 +156,11 @@ class superelliptic_drw_form:
|
|||||||
self.omega = omega
|
self.omega = omega
|
||||||
self.h2 = h2
|
self.h2 = h2
|
||||||
|
|
||||||
|
def r(self):
|
||||||
|
C = self.curve
|
||||||
|
h1 = self.h1
|
||||||
|
return superelliptic_form(C, h1.function)
|
||||||
|
|
||||||
def __eq__(self, other):
|
def __eq__(self, other):
|
||||||
eq1 = (self.h1 == self.h1)
|
eq1 = (self.h1 == self.h1)
|
||||||
try:
|
try:
|
||||||
@ -317,16 +322,29 @@ class superelliptic_drw_cech:
|
|||||||
return superelliptic_cech(C, omega0.h1*C.dx, f.t)
|
return superelliptic_cech(C, omega0.h1*C.dx, f.t)
|
||||||
|
|
||||||
def coordinates(self, basis = 0):
|
def coordinates(self, basis = 0):
|
||||||
|
C = self.curve
|
||||||
|
g = C.genus()
|
||||||
coord_mod_p = self.r().coordinates()
|
coord_mod_p = self.r().coordinates()
|
||||||
print(coord_mod_p)
|
print(coord_mod_p)
|
||||||
coord_lifted = [lift(a) for a in coord_mod_p]
|
coord_lifted = [lift(a) for a in coord_mod_p]
|
||||||
if basis == 0:
|
if basis == 0:
|
||||||
basis = self.curve().crystalline_cohomology_basis()
|
basis = C.crystalline_cohomology_basis()
|
||||||
aux = self
|
aux = self
|
||||||
for i, a in enumerate(basis):
|
for i, a in enumerate(basis):
|
||||||
aux -= coord_lifted[i]*a
|
aux -= coord_lifted[i]*a
|
||||||
aux = aux.reduce()
|
print('aux before reduce', aux)
|
||||||
return aux
|
#aux = aux.reduce() # Now aux = p*cech class.
|
||||||
|
h02 = aux.omega0.h2
|
||||||
|
h82 = aux.omega8.h2
|
||||||
|
aux -= superelliptic_drw_cech(h02.verschiebung().diffn(), (h02 - h82).verschiebung())
|
||||||
|
# Now aux should be of the form (V(smth), V(smth), V(smth))
|
||||||
|
print('aux V(smth)', aux)
|
||||||
|
aux_divided_by_p = superelliptic_cech(C, aux.omega0.omega.cartier(), aux.f.f.pth_root())
|
||||||
|
print('aux.omega0.omega.cartier()', aux.omega0.omega.cartier())
|
||||||
|
coord_aux_divided_by_p = aux_divided_by_p.coordinates()
|
||||||
|
coord_aux_divided_by_p = [ZZ(a) for a in coord_aux_divided_by_p]
|
||||||
|
coordinates = [ (coord_lifted[i] + p*coord_aux_divided_by_p[i])%p^2 for i in range(2*g)]
|
||||||
|
return coordinates
|
||||||
|
|
||||||
|
|
||||||
def de_rham_witt_lift(cech_class, prec = 50):
|
def de_rham_witt_lift(cech_class, prec = 50):
|
||||||
@ -335,19 +353,24 @@ def de_rham_witt_lift(cech_class, prec = 50):
|
|||||||
omega0 = cech_class.omega0
|
omega0 = cech_class.omega0
|
||||||
omega8 = cech_class.omega8
|
omega8 = cech_class.omega8
|
||||||
fct = cech_class.f
|
fct = cech_class.f
|
||||||
omega0_regular = regular_form(omega0)
|
omega0_regular = regular_form(omega0) #Present omega0 in the form P dx + Q dy
|
||||||
|
print(omega0_regular)
|
||||||
omega0_lift = omega0_regular[0].teichmuller()*(C.x.teichmuller().diffn()) + omega0_regular[1].teichmuller()*(C.y.teichmuller().diffn())
|
omega0_lift = omega0_regular[0].teichmuller()*(C.x.teichmuller().diffn()) + omega0_regular[1].teichmuller()*(C.y.teichmuller().diffn())
|
||||||
omega8_regular = regular_form(second_patch(omega8))
|
#Now the obvious lift of omega0 = P dx + Q dy to de Rham-Witt is [P] d[x] + [Q] d[y]
|
||||||
|
omega8_regular = regular_form(second_patch(omega8)) # The same for omega8.
|
||||||
omega8_regular = (second_patch(omega8_regular[0]), second_patch(omega8_regular[1]))
|
omega8_regular = (second_patch(omega8_regular[0]), second_patch(omega8_regular[1]))
|
||||||
u = (C.x)^(-1)
|
u = (C.x)^(-1)
|
||||||
v = (C.y)/(C.x)^(g+1)
|
v = (C.y)/(C.x)^(g+1)
|
||||||
omega8_lift = omega0_regular[0].teichmuller()*(u.teichmuller().diffn()) + omega0_regular[1].teichmuller()*(v.teichmuller().diffn())
|
omega8_lift = omega8_regular[0].teichmuller()*(u.teichmuller().diffn()) + omega8_regular[1].teichmuller()*(v.teichmuller().diffn())
|
||||||
aux = omega0_lift - omega8_lift - fct.teichmuller().diffn()
|
print('omega8_lift.frobenius().expansion_at_infty()', omega8_lift.frobenius().expansion_at_infty())
|
||||||
decom_aux_h2 = decomposition_g0_g8(aux.h2, prec=prec)
|
aux = omega0_lift - omega8_lift - fct.teichmuller().diffn() # now aux is of the form (V(smth) + dV(smth), V(smth))
|
||||||
|
if aux.h1.function != 0:
|
||||||
|
raise ValueError('Something went wrong - aux is not of the form (V(smth) + dV(smth), V(smth)).')
|
||||||
|
decom_aux_h2 = decomposition_g0_g8(aux.h2, prec=prec) #decompose dV(smth) in aux as smth regular on U0 - smth regular on U8.
|
||||||
aux_h2 = decom_aux_h2[0]
|
aux_h2 = decom_aux_h2[0]
|
||||||
aux_f = decom_aux_h2[2]
|
aux_f = decom_aux_h2[2]
|
||||||
aux_omega0 = decomposition_omega0_omega8(aux.omega, prec=prec)[0]
|
aux_omega0 = decomposition_omega0_omega8(aux.omega, prec=prec)[0]
|
||||||
result = superelliptic_drw_cech(omega0_lift + aux_h2.verschiebung().diffn() + aux_omega0.verschiebung(), fct.teichmuller() + aux_f.verschiebung())
|
result = superelliptic_drw_cech(omega0_lift - aux_h2.verschiebung().diffn() - aux_omega0.verschiebung(), fct.teichmuller() + aux_f.verschiebung())
|
||||||
return result.reduce()
|
return result.reduce()
|
||||||
|
|
||||||
def crystalline_cohomology_basis(self, prec = 50):
|
def crystalline_cohomology_basis(self, prec = 50):
|
||||||
|
@ -25,6 +25,7 @@ load('drafty/regular_on_U0.sage')
|
|||||||
load('drafty/lift_to_de_rham.sage')
|
load('drafty/lift_to_de_rham.sage')
|
||||||
#load('drafty/superelliptic_cohomology_class.sage')
|
#load('drafty/superelliptic_cohomology_class.sage')
|
||||||
load('drafty/superelliptic_drw.sage')
|
load('drafty/superelliptic_drw.sage')
|
||||||
|
load('drafty/draft.sage')
|
||||||
#load('drafty/draft_klein_covers.sage')
|
#load('drafty/draft_klein_covers.sage')
|
||||||
load('drafty/2gpcovers.sage')
|
#load('drafty/2gpcovers.sage')
|
||||||
load('drafty/pole_numbers.sage')
|
load('drafty/pole_numbers.sage')
|
@ -1,5 +1,6 @@
|
|||||||
def decomposition_g0_g8(fct, prec = 50):
|
def decomposition_g0_g8(fct, prec = 50):
|
||||||
'''Writes fct as a difference g0 - g8, with g0 regular on the affine patch and g8 at the points in infinity.'''
|
'''Writes fct as a difference g0 - g8 + f, with g0 regular on the affine patch and g8 at the points in infinity
|
||||||
|
and f is combination of basis of H^1(X, OX). Output is (g0, g8, f).'''
|
||||||
C = fct.curve
|
C = fct.curve
|
||||||
g = C.genus()
|
g = C.genus()
|
||||||
coord = fct.coordinates()
|
coord = fct.coordinates()
|
||||||
@ -7,8 +8,6 @@ def decomposition_g0_g8(fct, prec = 50):
|
|||||||
for i, a in enumerate(C.cohomology_of_structure_sheaf_basis()):
|
for i, a in enumerate(C.cohomology_of_structure_sheaf_basis()):
|
||||||
nontrivial_part += coord[i]*a
|
nontrivial_part += coord[i]*a
|
||||||
fct -= nontrivial_part
|
fct -= nontrivial_part
|
||||||
if fct.coordinates(prec=prec) != g*[0]:
|
|
||||||
raise ValueError("The given function cannot be written as g0 - g8.")
|
|
||||||
|
|
||||||
Fxy, Rxy, x, y = C.fct_field
|
Fxy, Rxy, x, y = C.fct_field
|
||||||
fct = Fxy(fct.function)
|
fct = Fxy(fct.function)
|
||||||
@ -20,7 +19,7 @@ def decomposition_g0_g8(fct, prec = 50):
|
|||||||
for monomial in num.monomials():
|
for monomial in num.monomials():
|
||||||
aux = superelliptic_function(C, monomial)
|
aux = superelliptic_function(C, monomial)
|
||||||
if aux.expansion_at_infty().valuation() >= aux_den.expansion_at_infty().valuation():
|
if aux.expansion_at_infty().valuation() >= aux_den.expansion_at_infty().valuation():
|
||||||
g8 += num.monomial_coefficient(monomial)*aux/aux_den
|
g8 -= num.monomial_coefficient(monomial)*aux/aux_den
|
||||||
else:
|
else:
|
||||||
g0 += num.monomial_coefficient(monomial)*aux/aux_den
|
g0 += num.monomial_coefficient(monomial)*aux/aux_den
|
||||||
return (g0, g8, nontrivial_part)
|
return (g0, g8, nontrivial_part)
|
||||||
|
@ -100,6 +100,8 @@ class superelliptic_form:
|
|||||||
FxRy.<y> = PolynomialRing(Fx)
|
FxRy.<y> = PolynomialRing(Fx)
|
||||||
g = reduction(C, y^m*g)
|
g = reduction(C, y^m*g)
|
||||||
g = FxRy(g)
|
g = FxRy(g)
|
||||||
|
if j == 0:
|
||||||
|
return g.monomial_coefficient(y^(0))/C.polynomial
|
||||||
return g.monomial_coefficient(y^(m-j))
|
return g.monomial_coefficient(y^(m-j))
|
||||||
|
|
||||||
def is_regular_on_U0(self):
|
def is_regular_on_U0(self):
|
||||||
@ -107,7 +109,7 @@ class superelliptic_form:
|
|||||||
F = C.base_ring
|
F = C.base_ring
|
||||||
m = C.exponent
|
m = C.exponent
|
||||||
Rx.<x> = PolynomialRing(F)
|
Rx.<x> = PolynomialRing(F)
|
||||||
for j in range(1, m):
|
for j in range(0, m):
|
||||||
if self.jth_component(j) not in Rx:
|
if self.jth_component(j) not in Rx:
|
||||||
return 0
|
return 0
|
||||||
return 1
|
return 1
|
||||||
@ -138,6 +140,15 @@ class superelliptic_form:
|
|||||||
dx_series = x_series.derivative()
|
dx_series = x_series.derivative()
|
||||||
return g*dx_series
|
return g*dx_series
|
||||||
|
|
||||||
|
def expansion(self, pt, prec = 50):
|
||||||
|
'''Expansion in the completed ring of the point pt. If pt is an integer, it means the corresponding place at infinity.'''
|
||||||
|
if pt in ZZ:
|
||||||
|
return self.expansion_at_infty(place=pt, prec=prec)
|
||||||
|
C = self.curve
|
||||||
|
dx_series = C.x.expansion(pt = pt, prec=prec).derivative()
|
||||||
|
aux_fct = superelliptic_function(C, self.form)
|
||||||
|
return aux_fct.expansion(pt=pt, prec=prec)*dx_series
|
||||||
|
|
||||||
def residue(self, place = 0, prec=30):
|
def residue(self, place = 0, prec=30):
|
||||||
return self.expansion_at_infty(place = place, prec=prec)[-1]
|
return self.expansion_at_infty(place = place, prec=prec)[-1]
|
||||||
|
|
||||||
|
@ -135,6 +135,30 @@ class superelliptic_function:
|
|||||||
xx = Rt(1/(t^M*ww^b))
|
xx = Rt(1/(t^M*ww^b))
|
||||||
yy = 1/(t^R*ww^a)
|
yy = 1/(t^R*ww^a)
|
||||||
return Rt(fct(x = Rt(xx), y = Rt(yy)))
|
return Rt(fct(x = Rt(xx), y = Rt(yy)))
|
||||||
|
|
||||||
|
def expansion(self, pt, prec = 50):
|
||||||
|
'''Expansion in the completed ring of the point pt. If pt is an integer, it means the corresponding place at infinity.'''
|
||||||
|
if pt in ZZ:
|
||||||
|
return self.expansion_at_infty(place=pt, prec=prec)
|
||||||
|
x0, y0 = pt[0], pt[1]
|
||||||
|
C = self.curve
|
||||||
|
f = C.polynomial
|
||||||
|
F = C.base_ring
|
||||||
|
m = C.exponent
|
||||||
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||||
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||||
|
Fxy = FractionField(Rxy)
|
||||||
|
if y0 !=0 and f.derivative()(x0) != 0:
|
||||||
|
y_series = f(x = t + x0).nth_root(m)
|
||||||
|
return Rt(self.function(x = t + x0, y = y_series))
|
||||||
|
if f.derivative()(x0) == 0: # then x - x0 is a uniformizer
|
||||||
|
y_series = Rt(f(x = t+x0).nth_root(m))
|
||||||
|
return Rt(self.function(x = t + x0, y = y_series))
|
||||||
|
if y0 == 0: #then y is a uniformizer
|
||||||
|
f1 = f(x = x+x0) - y0
|
||||||
|
x_series = new_reverse(f1(x = t), prec = prec)
|
||||||
|
x_series = x_series(t = t^m - y0) + x0
|
||||||
|
return self.function(x = x_series, y = t)
|
||||||
|
|
||||||
def pth_root(self):
|
def pth_root(self):
|
||||||
'''Compute p-th root of given function. This uses the following fact: if h = H^p, then C(h*dx/x) = H*dx/x.'''
|
'''Compute p-th root of given function. This uses the following fact: if h = H^p, then C(h*dx/x) = H*dx/x.'''
|
||||||
|
Loading…
Reference in New Issue
Block a user