uniformizer; skoki filtracji; grupy rozgalezienia
This commit is contained in:
parent
0cccfac7cf
commit
6edd5f9c40
15611
sage/.run.term-0.term
15611
sage/.run.term-0.term
File diff suppressed because one or more lines are too long
0
sage/as_covers/as_cover/uniformizer.sage
Normal file
0
sage/as_covers/as_cover/uniformizer.sage
Normal file
@ -8,6 +8,15 @@ class as_cover:
|
|||||||
p = C.characteristic
|
p = C.characteristic
|
||||||
self.characteristic = p
|
self.characteristic = p
|
||||||
self.prec = prec
|
self.prec = prec
|
||||||
|
#group acting
|
||||||
|
n = self.height
|
||||||
|
from itertools import product
|
||||||
|
pr = [list(GF(p)) for _ in range(n)]
|
||||||
|
group = []
|
||||||
|
for a in product(*pr):
|
||||||
|
group += [a]
|
||||||
|
self.group = group
|
||||||
|
#########
|
||||||
f = C.polynomial
|
f = C.polynomial
|
||||||
m = C.exponent
|
m = C.exponent
|
||||||
r = f.degree()
|
r = f.degree()
|
||||||
@ -228,7 +237,76 @@ class as_cover:
|
|||||||
forms = holomorphic_combinations_forms(forms, pole_order)
|
forms = holomorphic_combinations_forms(forms, pole_order)
|
||||||
|
|
||||||
return forms
|
return forms
|
||||||
|
|
||||||
|
def uniformizer(self, i = 0):
|
||||||
|
'''Return uniformizer of curve self at i-th place at infinity.'''
|
||||||
|
p = self.characteristic
|
||||||
|
n = self.height
|
||||||
|
variable_names = 'x, y'
|
||||||
|
for j in range(n):
|
||||||
|
variable_names += ', z' + str(j)
|
||||||
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||||
|
x, y = Rxyz.gens()[:2]
|
||||||
|
z = Rxyz.gens()[2:]
|
||||||
|
fx = as_function(self, x)
|
||||||
|
z = [as_function(self, zi) for zi in z]
|
||||||
|
# We create a list of functions. We add there all variables...
|
||||||
|
list_of_fcts = [fx]+z
|
||||||
|
vfx = fx.valuation(i)
|
||||||
|
vz = [zi.valuation(i) for zi in z]
|
||||||
|
|
||||||
|
# Then we subtract powers of variables with the same valuation (so that 1/t^(kp) cancels) and add to this list.
|
||||||
|
for j1 in range(n):
|
||||||
|
for j2 in range(n):
|
||||||
|
if j1>j2:
|
||||||
|
a = gcd(vz[j1] , vz[j2])
|
||||||
|
vz1 = vz[j1]/a
|
||||||
|
vz2 = vz[j2]/a
|
||||||
|
for b in GF(p):
|
||||||
|
if (z[j1]^(vz2) - b*z[j2]^(vz1)).valuation(i) > (z[j2]^(vz1)).valuation(i):
|
||||||
|
list_of_fcts += [z[j1]^(vz2) - b*z[j2]^(vz1)]
|
||||||
|
for j1 in range(n):
|
||||||
|
a = gcd(vz[j1], vfx)
|
||||||
|
vzj = vz[j1] /a
|
||||||
|
vfx = vfx/a
|
||||||
|
for b in GF(p):
|
||||||
|
if (fx^(vzj) - b*z[j1]^(vfx)).valuation(i) > (z[j1]^(vfx)).valuation(i):
|
||||||
|
list_of_fcts += [fx^(vzj) - b*z[j1]^(vfx)]
|
||||||
|
#Finally, we check if on the list there are two elements with the same valuation.
|
||||||
|
for f1 in list_of_fcts:
|
||||||
|
for f2 in list_of_fcts:
|
||||||
|
d, a, b = xgcd(f1.valuation(i), f2.valuation(i))
|
||||||
|
if d == 1:
|
||||||
|
return f1^a*f2^b
|
||||||
|
raise ValueError("My method of generating fcts with relatively prime valuation failed.")
|
||||||
|
|
||||||
|
|
||||||
|
def ith_ramification_gp(self, i, place = 0):
|
||||||
|
'''Find ith ramification group at place at infty of nb place.'''
|
||||||
|
G = self.group
|
||||||
|
t = self.uniformizer(place)
|
||||||
|
Gi = [G[0]]
|
||||||
|
for g in G:
|
||||||
|
if g != G[0]:
|
||||||
|
tg = t.group_action(g)
|
||||||
|
v = (tg - t).valuation(place)
|
||||||
|
if v >= i+1:
|
||||||
|
Gi += [g]
|
||||||
|
return Gi
|
||||||
|
|
||||||
|
def ramification_jumps(self, place = 0):
|
||||||
|
'''Return list of lower ramification jumps at at place at infty of nb place.'''
|
||||||
|
G = self.group
|
||||||
|
ramification_jps = []
|
||||||
|
i = 0
|
||||||
|
while len(G) > 1:
|
||||||
|
Gi = self.ith_ramification_gp(i+1, place)
|
||||||
|
if len(Gi) < len(G):
|
||||||
|
ramification_jps += [i]
|
||||||
|
G = Gi
|
||||||
|
i+=1
|
||||||
|
return ramification_jps
|
||||||
|
|
||||||
def holomorphic_combinations(S):
|
def holomorphic_combinations(S):
|
||||||
"""Given a list S of pairs (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt."""
|
"""Given a list S of pairs (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt."""
|
||||||
C_AS = S[0][0].curve
|
C_AS = S[0][0].curve
|
||||||
|
@ -122,9 +122,9 @@ class as_form:
|
|||||||
z = Rxyz.gens()[2:]
|
z = Rxyz.gens()[2:]
|
||||||
RxyzQ = FractionField(Rxyz)
|
RxyzQ = FractionField(Rxyz)
|
||||||
result = as_form(C, 0)
|
result = as_form(C, 0)
|
||||||
for i in range(0, p):
|
G = C.group
|
||||||
for j in range(0, p):
|
for a in G:
|
||||||
result += self.group_action([i, j])
|
result += self.group_action(a)
|
||||||
result = result.form
|
result = result.form
|
||||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||||
Qxy = FractionField(Rxy)
|
Qxy = FractionField(Rxy)
|
||||||
@ -138,11 +138,12 @@ def artin_schreier_transform(power_series, prec = 10):
|
|||||||
z^p - z = power_series, where z = 1/t_new^(jump) and express z in terms of the new uniformizer."""
|
z^p - z = power_series, where z = 1/t_new^(jump) and express z in terms of the new uniformizer."""
|
||||||
correction = 0
|
correction = 0
|
||||||
F = power_series.parent().base()
|
F = power_series.parent().base()
|
||||||
|
p = F.characteristic()
|
||||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||||
RtQ = FractionField(Rt)
|
RtQ = FractionField(Rt)
|
||||||
power_series = RtQ(power_series)
|
power_series = RtQ(power_series)
|
||||||
if power_series.valuation() == +Infinity:
|
if power_series.valuation() == +Infinity:
|
||||||
return(0,0,t,0)
|
raise ValueError("Precision is too low.")
|
||||||
while(power_series.valuation() % p == 0 and power_series.valuation() < 0):
|
while(power_series.valuation() % p == 0 and power_series.valuation() < 0):
|
||||||
M = -power_series.valuation()/p
|
M = -power_series.valuation()/p
|
||||||
coeff = power_series.list()[0] #wspolczynnik a_(-p) w f_AS
|
coeff = power_series.list()[0] #wspolczynnik a_(-p) w f_AS
|
||||||
|
@ -38,7 +38,18 @@ class as_function:
|
|||||||
g1 = self.function
|
g1 = self.function
|
||||||
g2 = other.function
|
g2 = other.function
|
||||||
return as_function(C, g1*g2)
|
return as_function(C, g1*g2)
|
||||||
|
|
||||||
|
def __truediv__(self, other):
|
||||||
|
C = self.curve
|
||||||
|
g1 = self.function
|
||||||
|
g2 = other.function
|
||||||
|
return as_function(C, g1/g2)
|
||||||
|
|
||||||
|
def __pow__(self, exponent):
|
||||||
|
C = self.curve
|
||||||
|
g1 = self.function
|
||||||
|
return as_function(C, g1^(exponent))
|
||||||
|
|
||||||
def expansion_at_infty(self, i = 0):
|
def expansion_at_infty(self, i = 0):
|
||||||
C = self.curve
|
C = self.curve
|
||||||
delta = C.nb_of_pts_at_infty
|
delta = C.nb_of_pts_at_infty
|
||||||
@ -116,10 +127,15 @@ class as_function:
|
|||||||
z = Rxyz.gens()[2:]
|
z = Rxyz.gens()[2:]
|
||||||
RxyzQ = FractionField(Rxyz)
|
RxyzQ = FractionField(Rxyz)
|
||||||
result = as_function(C, 0)
|
result = as_function(C, 0)
|
||||||
for i in range(0, p):
|
G = C.group
|
||||||
for j in range(0, p):
|
for a in G:
|
||||||
result += self.group_action([i, j])
|
result += self.group_action(a)
|
||||||
result = result.function
|
result = result.function
|
||||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||||
Qxy = FractionField(Rxy)
|
Qxy = FractionField(Rxy)
|
||||||
return superelliptic_function(C_super, Qxy(result))
|
return superelliptic_function(C_super, Qxy(result))
|
||||||
|
|
||||||
|
|
||||||
|
def valuation(self, i = 0):
|
||||||
|
'''Return valuation at i-th place at infinity.'''
|
||||||
|
return self.expansion_at_infty(i).valuation()
|
||||||
|
@ -2,7 +2,7 @@ def dual_elt(AS, zmag):
|
|||||||
'''Find the trace dual of a given elt zmag in the function field of an Artin-Schreier cover AS.'''
|
'''Find the trace dual of a given elt zmag in the function field of an Artin-Schreier cover AS.'''
|
||||||
p = AS.characteristic
|
p = AS.characteristic
|
||||||
n = AS.height
|
n = AS.height
|
||||||
group_elts = [(i, j) for i in range(p) for j in range(p)]
|
G = AS.group
|
||||||
variable_names = 'x, y'
|
variable_names = 'x, y'
|
||||||
for i in range(n):
|
for i in range(n):
|
||||||
variable_names += ', z' + str(i)
|
variable_names += ', z' + str(i)
|
||||||
@ -13,12 +13,12 @@ def dual_elt(AS, zmag):
|
|||||||
M = matrix(RxyzQ, p^n, p^n)
|
M = matrix(RxyzQ, p^n, p^n)
|
||||||
for i in range(p^n):
|
for i in range(p^n):
|
||||||
for j in range(p^n):
|
for j in range(p^n):
|
||||||
M[i, j] = (zmag.group_action(group_elts[i])*zmag.group_action(group_elts[j])).trace2()
|
M[i, j] = (zmag.group_action(G[i])*zmag.group_action(G[j])).trace2()
|
||||||
main_det = M.determinant()
|
main_det = M.determinant()
|
||||||
zvee = as_function(AS, 0)
|
zvee = as_function(AS, 0)
|
||||||
for i in range(p^n):
|
for i in range(p^n):
|
||||||
Mprim = matrix(RxyzQ, M)
|
Mprim = matrix(RxyzQ, M)
|
||||||
Mprim[:, i] = vector([(j == 0) for j in range(p^2)])
|
Mprim[:, i] = vector([(j == 0) for j in range(p^n)])
|
||||||
fi = Mprim.determinant()/main_det
|
fi = Mprim.determinant()/main_det
|
||||||
zvee += fi*zmag.group_action(group_elts[i])
|
zvee += fi*zmag.group_action(G[i])
|
||||||
return zvee
|
return zvee
|
@ -1,9 +1,8 @@
|
|||||||
def ith_magical_component(omega, zvee, i):
|
def ith_magical_component(omega, zvee, g):
|
||||||
'''Given a form omega on AS cover and normal basis element zmag, find the decomposition
|
'''Given a form omega on AS cover, element g of group AS.group and normal basis element zmag, find the decomposition
|
||||||
sum_g g(zmag) omega_g and return omega_g, where g is the ith element of the group.'''
|
sum_g g(zmag) omega_g and return omega_g.'''
|
||||||
AS = omega.curve
|
AS = omega.curve
|
||||||
p = AS.characteristic
|
p = AS.characteristic
|
||||||
group_elts = [(j1, j2) for j1 in range(p) for j2 in range(p)]
|
z_vee_fct = zvee.group_action(g).function
|
||||||
z_vee_fct = zvee.group_action(group_elts[i]).function
|
|
||||||
new_form = as_form(AS, z_vee_fct*omega.form)
|
new_form = as_form(AS, z_vee_fct*omega.form)
|
||||||
return new_form.trace2()
|
return new_form.trace2()
|
20
sage/as_covers/tests/ith_ramification_gp_test.sage
Normal file
20
sage/as_covers/tests/ith_ramification_gp_test.sage
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
p = 3
|
||||||
|
m = 1
|
||||||
|
F = GF(p)
|
||||||
|
Rx.<x> = PolynomialRing(F)
|
||||||
|
f = x
|
||||||
|
C_super = superelliptic(f, m)
|
||||||
|
|
||||||
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||||
|
f1 = superelliptic_function(C_super, x^7)
|
||||||
|
f2 = superelliptic_function(C_super, x^4)
|
||||||
|
AS = as_cover(C_super, [f1, f2], prec=1000)
|
||||||
|
n = AS.height
|
||||||
|
d_test = (p^n - 1)
|
||||||
|
Gi = AS.group
|
||||||
|
i = 1
|
||||||
|
while(len(Gi) > 1):
|
||||||
|
Gi = AS.ith_ramification_gp(i)
|
||||||
|
d_test += len(Gi) - 1
|
||||||
|
i+=1
|
||||||
|
print(d_test == AS.exponent_of_different())
|
25
sage/as_covers/tests/ramification_jumps_test.sage
Normal file
25
sage/as_covers/tests/ramification_jumps_test.sage
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
p = 5
|
||||||
|
m = 1
|
||||||
|
F = GF(p)
|
||||||
|
Rx.<x> = PolynomialRing(F)
|
||||||
|
f = x
|
||||||
|
C_super = superelliptic(f, m)
|
||||||
|
|
||||||
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||||
|
f1 = superelliptic_function(C_super, x^2)
|
||||||
|
f2 = superelliptic_function(C_super, x^3)
|
||||||
|
AS = as_cover(C_super, [f1, f2], prec=500)
|
||||||
|
m = AS.jumps[0]
|
||||||
|
m1 = m[0]
|
||||||
|
m2 = m[1]
|
||||||
|
#We compute jumps from jumps in the tower of two Z/p-covers.
|
||||||
|
if m1 >= m2:
|
||||||
|
M1 = m2
|
||||||
|
M2 = m2 + p*(m1 - m2)
|
||||||
|
else:
|
||||||
|
M1 = m1
|
||||||
|
M2 = m2
|
||||||
|
|
||||||
|
theoretical_jumps = [M1, M2]
|
||||||
|
theoretical_jumps.sort()
|
||||||
|
print(theoretical_jumps == AS.ramification_jumps())
|
12
sage/as_covers/tests/uniformizer_test.sage
Normal file
12
sage/as_covers/tests/uniformizer_test.sage
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
p = 3
|
||||||
|
m = 1
|
||||||
|
F = GF(p)
|
||||||
|
Rx.<x> = PolynomialRing(F)
|
||||||
|
f = x
|
||||||
|
C_super = superelliptic(f, m)
|
||||||
|
|
||||||
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||||
|
f1 = superelliptic_function(C_super, x^7)
|
||||||
|
f2 = superelliptic_function(C_super, x^4)
|
||||||
|
AS = as_cover(C_super, [f1, f2], prec=1000)
|
||||||
|
print(AS.unifomizer().valuation() == 1)
|
@ -1,4 +1,4 @@
|
|||||||
p = 5
|
p = 3
|
||||||
m = 1
|
m = 1
|
||||||
F = GF(p)
|
F = GF(p)
|
||||||
Rx.<x> = PolynomialRing(F)
|
Rx.<x> = PolynomialRing(F)
|
||||||
@ -6,14 +6,16 @@ f = x
|
|||||||
C_super = superelliptic(f, m)
|
C_super = superelliptic(f, m)
|
||||||
|
|
||||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||||
f1 = superelliptic_function(C_super, x^3)
|
f1 = superelliptic_function(C_super, x^2)
|
||||||
f2 = superelliptic_function(C_super, x^11)
|
f2 = superelliptic_function(C_super, x^4)
|
||||||
AS = as_cover(C_super, [f1, f2], prec=500)
|
f3 = superelliptic_function(C_super, x^5)
|
||||||
|
AS = as_cover(C_super, [f1, f2, f3], prec=1000)
|
||||||
|
print(AS)
|
||||||
zmag = AS.magical_element(threshold = 20)[0]
|
zmag = AS.magical_element(threshold = 20)[0]
|
||||||
zvee = dual_elt(AS, zmag)
|
zvee = dual_elt(AS, zmag)
|
||||||
|
|
||||||
### DEFINE THE POLYNOMIALS
|
### DEFINE THE POLYNOMIALS
|
||||||
n = 2
|
n = AS.height
|
||||||
variable_names = 'x, y'
|
variable_names = 'x, y'
|
||||||
for i in range(n):
|
for i in range(n):
|
||||||
variable_names += ', z' + str(i)
|
variable_names += ', z' + str(i)
|
||||||
@ -32,26 +34,23 @@ def val_of_components(omega, zvee):
|
|||||||
result += [val]
|
result += [val]
|
||||||
return result
|
return result
|
||||||
#############
|
#############
|
||||||
print(zvee.expansion_at_infty().valuation())
|
G = AS.group
|
||||||
|
|
||||||
g = AS.genus()
|
g = AS.genus()
|
||||||
print(AS.exponent_of_different_prim())
|
print(AS.exponent_of_different_prim())
|
||||||
#for i in range(g):
|
|
||||||
# om = AS.holomorphic_differentials_basis(threshold = 30)[i]
|
|
||||||
# print(AS.exponent_of_different_prim(), val_of_components(om, zvee))
|
|
||||||
|
|
||||||
|
|
||||||
v_x = as_function(AS, x).expansion_at_infty().valuation()
|
v_x = as_function(AS, x).expansion_at_infty().valuation()
|
||||||
v_z0 = as_function(AS, z[0]).expansion_at_infty().valuation()
|
n = AS.height
|
||||||
v_z1 = as_function(AS, z[1]).expansion_at_infty().valuation()
|
v_z = [as_function(AS, z[i]).expansion_at_infty().valuation() for i in range(n)]
|
||||||
n = 2
|
omega = AS.holomorphic_differentials_basis()[-16]
|
||||||
from itertools import product
|
from itertools import product
|
||||||
pr = [list(range(p)) for _ in range(n)]
|
pr = [list(range(p)) for _ in range(n)]
|
||||||
for i in range(0, 30):
|
for i in range(0, 30):
|
||||||
for k in product(*pr):
|
for k in product(*pr):
|
||||||
v_w = i*v_x+k[0]*v_z0+k[1]*v_z1
|
v_w = i*v_x+ sum(k[i]*v_z[i] for i in range(n))
|
||||||
if (v_w < - AS.exponent_of_different_prim() + 10 and v_w > - AS.exponent_of_different_prim()):
|
if (v_w < - AS.exponent_of_different_prim() + 10 and v_w > - AS.exponent_of_different_prim()):
|
||||||
w = as_function(AS, x^i * prod(z[i1]^(k[i1]) for i1 in range(n)))
|
w = as_function(AS, x^i * prod(z[i1]^(k[i1]) for i1 in range(n)))
|
||||||
tr_wz = (zvee*w).trace()
|
result = as_form(AS, 0)
|
||||||
val = tr_wz.expansion_at_infty().valuation()
|
for g in G:
|
||||||
#val *= p^2
|
component = ith_magical_component(omega, zvee, g).form
|
||||||
#print(val)
|
result += as_form(AS, w.group_action(g).function*component)
|
||||||
|
print(result.expansion_at_infty().valuation(), w.expansion_at_infty().valuation() - zmag.expansion_at_infty().valuation())
|
43
sage/drafty/draft2.sage
Normal file
43
sage/drafty/draft2.sage
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
p = 3
|
||||||
|
m = 1
|
||||||
|
F = GF(p)
|
||||||
|
Rx.<x> = PolynomialRing(F)
|
||||||
|
f = x
|
||||||
|
C_super = superelliptic(f, m)
|
||||||
|
|
||||||
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||||
|
f1 = superelliptic_function(C_super, x^7)
|
||||||
|
f2 = superelliptic_function(C_super, x^4)
|
||||||
|
AS = as_cover(C_super, [f1, f2], prec=1000)
|
||||||
|
print(AS.uniformizer())
|
||||||
|
|
||||||
|
def rep_jumps(AS, threshold = 30):
|
||||||
|
ile = 1
|
||||||
|
i = 1
|
||||||
|
result = []
|
||||||
|
flag = 0
|
||||||
|
while(flag == 0):
|
||||||
|
if len(AS.at_most_poles(i, threshold = threshold)) > ile:
|
||||||
|
ile = len(AS.at_most_poles(i, threshold = threshold))
|
||||||
|
result += [i]
|
||||||
|
if i%p != 0:
|
||||||
|
flag = 1
|
||||||
|
i+=1
|
||||||
|
return result
|
||||||
|
|
||||||
|
#print(rep_jumps(AS, threshold = 30))
|
||||||
|
|
||||||
|
def uniformizer(AS, threshold = 30):
|
||||||
|
p = AS.characteristic
|
||||||
|
n = AS.height
|
||||||
|
variable_names = 'x, y'
|
||||||
|
for i in range(n):
|
||||||
|
variable_names += ', z' + str(i)
|
||||||
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||||
|
x, y = Rxyz.gens()[:2]
|
||||||
|
z = Rxyz.gens()[2:]
|
||||||
|
zmag = AS.magical_element()[0]
|
||||||
|
v_x = as_function(AS, x).expansion_at_infty().valuation()
|
||||||
|
dprim = AS.exponent_of_different_prim()
|
||||||
|
d, a, b = xgcd(v_x, -dprim)
|
||||||
|
return as_function(AS, x^a*zmag.function^b)
|
7
sage/drafty/draft3.sage
Normal file
7
sage/drafty/draft3.sage
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
Rx.<x> = PolynomialRing(GF(5))
|
||||||
|
C = superelliptic(x^3 + 1, 2)
|
||||||
|
Rxy.<x, y> = PolynomialRing(GF(5), 2)
|
||||||
|
f1 = superelliptic_function(C, x*y)
|
||||||
|
CAS = as_cover(C, [f1])
|
||||||
|
g = CAS.uniformizer()
|
||||||
|
AA = g
|
@ -11,4 +11,8 @@ load('as_covers/ith_magical_component.sage')
|
|||||||
load('as_covers/combination_components.sage')
|
load('as_covers/combination_components.sage')
|
||||||
load('as_covers/group_action_matrices.sage')
|
load('as_covers/group_action_matrices.sage')
|
||||||
load('auxilliaries/reverse.sage')
|
load('auxilliaries/reverse.sage')
|
||||||
load('auxilliaries/hensel.sage')
|
load('auxilliaries/hensel.sage')
|
||||||
|
##############
|
||||||
|
##############
|
||||||
|
load('drafty/draft2.sage')
|
||||||
|
#load('drafty/draft3.sage')
|
@ -4,5 +4,11 @@
|
|||||||
#load('as_covers/tests/group_action_matrices_test.sage')
|
#load('as_covers/tests/group_action_matrices_test.sage')
|
||||||
#print("dual_element_test:")
|
#print("dual_element_test:")
|
||||||
#load('as_covers/tests/dual_element_test.sage')
|
#load('as_covers/tests/dual_element_test.sage')
|
||||||
print("ith_component_test:")
|
#print("ith_component_test:")
|
||||||
load('as_covers/tests/ith_component_test.sage')
|
#load('as_covers/tests/ith_component_test.sage')
|
||||||
|
#print("ith ramification group test:")
|
||||||
|
#load('as_covers/tests/ith_ramification_gp_test.sage')
|
||||||
|
#print("uniformizer test:")
|
||||||
|
#load('as_covers/tests/uniformizer_test.sage')
|
||||||
|
print("ramification jumps test:")
|
||||||
|
load('as_covers/tests/ramification_jumps_test.sage')
|
Loading…
Reference in New Issue
Block a user