superelliptic_alpha; kxi jako quo
This commit is contained in:
parent
9794e9e45b
commit
78aa092433
@ -2,12 +2,22 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Exiting Sage (CPU time 0m6.48s, Wall time 11m10.64s).\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"def basis_holomorphic_differentials_degree(f, m, p):\n",
|
||||
" kxi.<xi> = PolynomialRing(GF(p))\n",
|
||||
" kxi1.<xi1> = PolynomialRing(GF(p))\n",
|
||||
" kxi = kxi.quotient(xi1^p)\n",
|
||||
" xi = kxi(xi1)\n",
|
||||
" r = f.degree()\n",
|
||||
" delta = GCD(r, m)\n",
|
||||
" Rx.<x> = PolynomialRing(kxi)\n",
|
||||
@ -39,7 +49,9 @@
|
||||
"def basis_de_rham_degrees(f, m, p):\n",
|
||||
" r = f.degree()\n",
|
||||
" delta = GCD(r, m)\n",
|
||||
" kxi.<xi> = PolynomialRing(GF(p))\n",
|
||||
" kxi1.<xi1> = PolynomialRing(GF(p))\n",
|
||||
" kxi = kxi.quotient(xi1^p)\n",
|
||||
" xi = kxi(xi1)\n",
|
||||
" Rx.<x> = PolynomialRing(kxi)\n",
|
||||
" Rxy.<x, y> = PolynomialRing(kxi, 2)\n",
|
||||
" Fxy = FractionField(Rxy)\n",
|
||||
@ -79,7 +91,9 @@
|
||||
"class superelliptic:\n",
|
||||
" \n",
|
||||
" def __init__(self, f, m, p):\n",
|
||||
" kxi.<xi> = PolynomialRing(GF(p))\n",
|
||||
" kxi1.<xi1> = PolynomialRing(GF(p))\n",
|
||||
" kxi = kxi.quotient(xi1^p)\n",
|
||||
" xi = kxi(xi1)\n",
|
||||
" Rx.<x> = PolynomialRing(kxi)\n",
|
||||
" Rxy.<x, y> = PolynomialRing(kxi, 2)\n",
|
||||
" Fxy = FractionField(Rxy)\n",
|
||||
@ -153,7 +167,9 @@
|
||||
" basis = self.basis_holomorphic_differentials\n",
|
||||
" g = self.genus()\n",
|
||||
" p = self.characteristic\n",
|
||||
" kxi.<xi> = PolynomialRing(GF(p))\n",
|
||||
" kxi1.<xi1> = PolynomialRing(GF(p))\n",
|
||||
" kxi = kxi.quotient(xi1^p)\n",
|
||||
" xi = kxi(xi1)\n",
|
||||
" M = matrix(kxi, g, g)\n",
|
||||
" for i in range(0, len(basis)):\n",
|
||||
" w = basis[i]\n",
|
||||
@ -172,7 +188,9 @@
|
||||
" \n",
|
||||
"def reduction(C, g):\n",
|
||||
" p = C.characteristic\n",
|
||||
" kxi.<xi> = PolynomialRing(GF(p))\n",
|
||||
" kxi1.<xi1> = PolynomialRing(GF(p))\n",
|
||||
" kxi = kxi.quotient(xi1^p)\n",
|
||||
" xi = kxi(xi1)\n",
|
||||
" Rxy.<x, y> = PolynomialRing(kxi, 2)\n",
|
||||
" Fxy = FractionField(Rxy)\n",
|
||||
" f = C.polynomial\n",
|
||||
@ -198,7 +216,10 @@
|
||||
"\n",
|
||||
"def reduction_form(C, g):\n",
|
||||
" p = C.characteristic\n",
|
||||
" Rxy.<x, y> = PolynomialRing(GF(p), 2)\n",
|
||||
" kxi1.<xi1> = PolynomialRing(GF(p))\n",
|
||||
" kxi = kxi.quotient(xi1^p)\n",
|
||||
" xi = kxi(xi1)\n",
|
||||
" Rxy.<x, y> = PolynomialRing(kxi, 2)\n",
|
||||
" Fxy = FractionField(Rxy)\n",
|
||||
" f = C.polynomial\n",
|
||||
" r = f.degree()\n",
|
||||
@ -206,7 +227,7 @@
|
||||
" g = reduction(C, g)\n",
|
||||
"\n",
|
||||
" g1 = Rxy(0)\n",
|
||||
" Rx.<x> = PolynomialRing(GF(p))\n",
|
||||
" Rx.<x> = PolynomialRing(kxi)\n",
|
||||
" Fx = FractionField(Rx)\n",
|
||||
" FxRy.<y> = PolynomialRing(Fx)\n",
|
||||
" \n",
|
||||
@ -223,7 +244,10 @@
|
||||
"class superelliptic_function:\n",
|
||||
" def __init__(self, C, g):\n",
|
||||
" p = C.characteristic\n",
|
||||
" Rxy.<x, y> = PolynomialRing(GF(p), 2)\n",
|
||||
" kxi1.<xi1> = PolynomialRing(GF(p))\n",
|
||||
" kxi = kxi.quotient(xi1^p)\n",
|
||||
" xi = kxi(xi1)\n",
|
||||
" Rxy.<x, y> = PolynomialRing(kxi, 2)\n",
|
||||
" Fxy = FractionField(Rxy)\n",
|
||||
" f = C.polynomial\n",
|
||||
" r = f.degree()\n",
|
||||
@ -565,7 +589,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@ -654,7 +678,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@ -663,19 +687,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Current Time = 18:11:00\n",
|
||||
"[1, 2, 3, 4, 5, 6]\n",
|
||||
"Current Time = 18:11:21\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"now = datetime.now()\n",
|
||||
"\n",
|
||||
@ -1923,6 +1937,115 @@
|
||||
"print(\"Current Time =\", current_time)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"kxi1.<xi1> = PolynomialRing(GF(p))\n",
|
||||
"kxi = kxi.quotient(xi1^p)\n",
|
||||
"xi = kxi(xi1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Univariate Quotient Polynomial Ring in xibar over Finite Field of size 5 with modulus xi^5"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"kxi2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s = kxi2(xi)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"xibar"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"s"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"0"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"s^6"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"a = 1+2*s+s^2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[1, 2, 1, 0, 0]"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"list(a)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
Loading…
Reference in New Issue
Block a user