diffn for arbitrary template should work
This commit is contained in:
parent
bd1ecfbfae
commit
9aeee4993d
@ -1,6 +1,7 @@
|
||||
class as_cover:
|
||||
def __init__(self, C, cover_template, list_of_fcts, branch_points = [], prec = 10):
|
||||
self.quotient = C
|
||||
self.cover_template = cover_template
|
||||
self.functions = list_of_fcts
|
||||
print('a')
|
||||
self.height = len(list_of_fcts)
|
||||
@ -77,17 +78,38 @@ class as_cover:
|
||||
self.z = [as_function(self, z[j]) for j in range(n)]
|
||||
self.dx = as_form(self, 1)
|
||||
self.one = as_function(self, 1)
|
||||
Rzf, zgen, fgen = cover_template.fct_field
|
||||
subs_fs = {zgen[i] : z[i]}| {fgen[i] : RxyzQ(list_of_fcts[i].function) for i in range(n)}
|
||||
self.rhs = [RxyzQ(cover_template.fcts[i].subs(subs_fs)) for i in range(n)]
|
||||
#####
|
||||
##### We compute now the differentials dz[i]
|
||||
y_super = superelliptic_function(C, y)
|
||||
dy_super = y_super.diffn().form
|
||||
dz = []
|
||||
for i in range(n):
|
||||
aux_fct = self.rhs[i]
|
||||
result = 0
|
||||
for j in range(i):
|
||||
result += aux_fct.derivative(z[j])*dz[j]
|
||||
result += aux_fct.derivative(x)
|
||||
result += aux_fct.derivative(y)*dy_super
|
||||
dz += [-result]
|
||||
self.dz = dz
|
||||
|
||||
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
n = self.height
|
||||
p = self.characteristic
|
||||
if n==1:
|
||||
return "(Z/p)-cover of " + str(self.quotient)+" with the equation:\n z^" + str(p) + " - z = " + str(self.functions[0])
|
||||
|
||||
result = "(Z/p)^"+str(self.height)+ "-cover of " + str(self.quotient)+" with the equations:\n"
|
||||
result = str(self.group)
|
||||
result += "-cover of " + str(self.quotient)+" with the equations: \n"
|
||||
for i in range(n):
|
||||
result += 'z' + str(i) + "^" + str(p) + " - z" + str(i) + " = " + str(self.functions[i]) + "\n"
|
||||
result += 'z'+str(i)+'^p - z'+str(i) + ' = '
|
||||
aux = str(self.cover_template.fcts[i])
|
||||
for t in range(n):
|
||||
aux = aux.replace("f"+str(t), "(" + str(self.functions[t]) + ")")
|
||||
result += aux + '\n'
|
||||
return result
|
||||
|
||||
def genus(self):
|
||||
@ -289,7 +311,7 @@ class as_cover:
|
||||
|
||||
def ith_ramification_gp(self, i, place = 0):
|
||||
'''Find ith ramification group at place at infty of nb place.'''
|
||||
G = self.group
|
||||
G = self.group.elts
|
||||
t = self.uniformizer(place)
|
||||
Gi = [G[0]]
|
||||
for g in G:
|
||||
@ -302,7 +324,7 @@ class as_cover:
|
||||
|
||||
def ramification_jumps(self, place = 0):
|
||||
'''Return list of lower ramification jumps at at place at infty of nb place.'''
|
||||
G = self.group
|
||||
G = self.group.elts
|
||||
ramification_jps = []
|
||||
i = 0
|
||||
while len(G) > 1:
|
||||
|
@ -3,13 +3,7 @@ class as_function:
|
||||
self.curve = C
|
||||
F = C.base_ring
|
||||
n = C.height
|
||||
variable_names = 'x, y'
|
||||
for i in range(n):
|
||||
variable_names += ', z' + str(i)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
RxyzQ, Rxyz, x, y, z = C.fct_field
|
||||
self.function = RxyzQ(g)
|
||||
#self.function = as_reduction(AS, RxyzQ(g))
|
||||
|
||||
@ -81,13 +75,7 @@ class as_function:
|
||||
y_series = C.y_series[place]
|
||||
z_series = C.z_series[place]
|
||||
n = C.height
|
||||
variable_names = 'x, y'
|
||||
for j in range(n):
|
||||
variable_names += ', z' + str(j)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
RxyzQ, Rxyz, x, y, z = C.fct_field
|
||||
prec = C.prec
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
g = self.function
|
||||
@ -103,13 +91,7 @@ class as_function:
|
||||
y_series = C.y_series[pt]
|
||||
z_series = C.z_series[pt]
|
||||
n = C.height
|
||||
variable_names = 'x, y'
|
||||
for j in range(n):
|
||||
variable_names += ', z' + str(j)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
RxyzQ, Rxyz, x, y, z = C.fct_field
|
||||
prec = C.prec
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
g = self.function
|
||||
@ -117,37 +99,39 @@ class as_function:
|
||||
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
||||
return g.substitute(sub_list)
|
||||
|
||||
def group_action(self, ZN_tuple):
|
||||
def group_action(self, elt):
|
||||
C = self.curve
|
||||
n = C.height
|
||||
F = C.base_ring
|
||||
variable_names = 'x, y'
|
||||
for j in range(n):
|
||||
variable_names += ', z' + str(j)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
sub_list = {x : x, y : y} | {z[j] : z[j]+ZN_tuple[j] for j in range(n)}
|
||||
g = self.function
|
||||
return as_function(C, g.substitute(sub_list))
|
||||
RxyzQ, Rxyz, x, y, z = C.fct_field
|
||||
Rzf, zgen, fgen = C.cover_template.fct_field
|
||||
if isinstance(elt, group_elt):
|
||||
elt = elt.as_tuple
|
||||
AS = self.curve
|
||||
n = AS.height
|
||||
G = AS.group
|
||||
|
||||
if elt in G.gens:
|
||||
ind = G.gens.index(elt)
|
||||
gp_action_list = C.cover_template.gp_action[ind]
|
||||
sub_list = {x : x, y : y} | {z[j] : Rxyz(gp_action_list[j].subs({zgen[i] : z[i] for i in range(n)})) for j in range(n)}
|
||||
g = self.function
|
||||
return as_function(C, g.substitute(sub_list))
|
||||
result = self
|
||||
for i in range(n):
|
||||
for j in range(elt[i]):
|
||||
result = result.group_action(G.gens[i])
|
||||
return result
|
||||
|
||||
|
||||
def reduce(self):
|
||||
aux = as_reduction(self.curve, self.function)
|
||||
return as_function(self.curve, aux)
|
||||
|
||||
def trace(self):
|
||||
def trace(self, super=True):
|
||||
C = self.curve
|
||||
C_super = C.quotient
|
||||
n = C.height
|
||||
F = C.base_ring
|
||||
variable_names = 'x, y'
|
||||
for j in range(n):
|
||||
variable_names += ', z' + str(j)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
RxyzQ, Rxyz, x, y, z = C.fct_field
|
||||
result = as_function(C, 0)
|
||||
G = C.group
|
||||
for a in G:
|
||||
@ -156,8 +140,11 @@ class as_function:
|
||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||
Qxy = FractionField(Rxy)
|
||||
result = as_reduction(C, result)
|
||||
return superelliptic_function(C_super, Qxy(result))
|
||||
|
||||
if super:
|
||||
return superelliptic_function(C_super, Qxy(result))
|
||||
return as_function(AS, Qxy(result))
|
||||
|
||||
|
||||
def coordinates(self, prec = 100, basis = 0):
|
||||
"Return coordinates in H^1(X, OX)."
|
||||
AS = self.curve
|
||||
@ -180,14 +167,10 @@ class as_function:
|
||||
C_super = C.quotient
|
||||
n = C.height
|
||||
RxyzQ, Rxyz, x, y, z = C.fct_field
|
||||
fcts = C.functions
|
||||
f = self.function
|
||||
y_super = superelliptic_function(C_super, y)
|
||||
dy_super = y_super.diffn().form
|
||||
dz = []
|
||||
for i in range(n):
|
||||
dfct = fcts[i].diffn().form
|
||||
dz += [-dfct]
|
||||
dz = C.dz
|
||||
result = f.derivative(x)
|
||||
result += f.derivative(y)*dy_super
|
||||
for i in range(n):
|
||||
|
Loading…
Reference in New Issue
Block a user