praca nad as_cech coordinate; przed poprawa drugiej czesci
This commit is contained in:
parent
6494187dfe
commit
d77addeaf8
11662
sage/.run.term-0.term
11662
sage/.run.term-0.term
File diff suppressed because one or more lines are too long
@ -12,6 +12,9 @@ class as_cech:
|
|||||||
RxyzQ = FractionField(Rxyz)
|
RxyzQ = FractionField(Rxyz)
|
||||||
self.omega0 = omega
|
self.omega0 = omega
|
||||||
self.f = f
|
self.f = f
|
||||||
|
self.omega8 = self.omega0 - self.f.diffn()
|
||||||
|
if self.omega0.form not in Rxyz or self.omega8.valuation() < 0:
|
||||||
|
raise ValueError('cech cocycle not regular')
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return "( " + str(self.omega0)+", " + str(self.f) + " )"
|
return "( " + str(self.omega0)+", " + str(self.f) + " )"
|
||||||
@ -41,6 +44,7 @@ class as_cech:
|
|||||||
def coordinates(self, threshold=10, basis = 0):
|
def coordinates(self, threshold=10, basis = 0):
|
||||||
'''Find coordinates of self in the de Rham cohomology basis. Threshold is an argument passed to AS.de_rham_basis().'''
|
'''Find coordinates of self in the de Rham cohomology basis. Threshold is an argument passed to AS.de_rham_basis().'''
|
||||||
AS = self.curve
|
AS = self.curve
|
||||||
|
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
||||||
if basis == 0:
|
if basis == 0:
|
||||||
basis = [AS.holomorphic_differentials_basis(), AS.cohomology_of_structure_sheaf_basis(), AS.de_rham_basis(threshold=threshold)]
|
basis = [AS.holomorphic_differentials_basis(), AS.cohomology_of_structure_sheaf_basis(), AS.de_rham_basis(threshold=threshold)]
|
||||||
holo_diffs = basis[0]
|
holo_diffs = basis[0]
|
||||||
@ -48,25 +52,37 @@ class as_cech:
|
|||||||
dR = basis[2]
|
dR = basis[2]
|
||||||
F = AS.base_ring
|
F = AS.base_ring
|
||||||
f_products = []
|
f_products = []
|
||||||
for i, f in enumerate(coh_basis):
|
for f in coh_basis:
|
||||||
f_products += [[]]
|
f_products += [[omega.serre_duality_pairing(f) for omega in holo_diffs]]
|
||||||
for omega in holo_diffs:
|
print(f_products)
|
||||||
f_products[i] += [sum((f*omega).residue(place = _) for _ in range(AS.nb_of_pts_at_infty))]
|
|
||||||
|
|
||||||
product_of_fct_and_omegas = []
|
product_of_fct_and_omegas = []
|
||||||
fct = self.f
|
fct = self.f
|
||||||
for omega in holo_diffs:
|
product_of_fct_and_omegas = [omega.serre_duality_pairing(fct) for omega in holo_diffs]
|
||||||
product_of_fct_and_omegas += [sum((fct*omega).residue(place = _) for _ in range(AS.nb_of_pts_at_infty))]
|
|
||||||
|
|
||||||
V = (F^(AS.genus())).span_of_basis([vector(a) for a in f_products])
|
V = (F^(AS.genus())).span_of_basis([vector(a) for a in f_products])
|
||||||
coh_coordinates = V.coordinates(product_of_fct_and_omegas) #coeficients of self in the basis elts coming from cohomology of OX
|
coh_coordinates = V.coordinates(product_of_fct_and_omegas) #coeficients of self in the basis elts coming from cohomology of OX
|
||||||
for i in range(AS.genus()):
|
for i in range(AS.genus()):
|
||||||
self -= coh_coordinates[i]*dR[i+AS.genus()]
|
self -= coh_coordinates[i]*dR[i+AS.genus()]
|
||||||
|
#We remove now from f the summands which are obviously regular at infty
|
||||||
hol_form = self.omega0 + self.f.diffn() #now this should be a holomorphic form
|
print(self, [])
|
||||||
hol_form = hol_form
|
f_num = numerator(self.f.function)
|
||||||
print(hol_form)
|
f_den = denominator(self.f.function)
|
||||||
|
v_f_den = as_function(AS, f_den).valuation()
|
||||||
|
for a in f_num.monomials():
|
||||||
|
if as_function(AS, a).valuation() >= v_f_den:
|
||||||
|
self.f.function -= f_num.monomial_coefficient(a)*a/f_den
|
||||||
|
f_num = numerator(self.f.function)
|
||||||
|
f_den = denominator(self.f.function)
|
||||||
|
quo, rem = f_num.quo_rem(f_den)
|
||||||
|
if as_function(AS, rem/f_den).valuation() >= 0:
|
||||||
|
self.f = as_function(AS, quo)
|
||||||
|
hol_form = self.omega0 - self.f.diffn() #now this should be a holomorphic form
|
||||||
|
hol_form = as_form(AS, as_reduction(AS, hol_form.form))
|
||||||
|
print('hol_form', hol_form)
|
||||||
return hol_form.coordinates() + coh_coordinates
|
return hol_form.coordinates() + coh_coordinates
|
||||||
|
print(self, [omega.serre_duality_pairing(self.f) for omega in holo_diffs])
|
||||||
|
raise ValueError('I arrived at a form (omega, 0), in which omega is not regular on U0. I hoped this wouldn t happen.')
|
||||||
|
|
||||||
|
|
||||||
def group_action(self, g):
|
def group_action(self, g):
|
||||||
AS = self.curve
|
AS = self.curve
|
||||||
|
@ -54,10 +54,10 @@ class as_cover:
|
|||||||
all_z_series += [z_series]
|
all_z_series += [z_series]
|
||||||
all_dx_series += [x_series.derivative()]
|
all_dx_series += [x_series.derivative()]
|
||||||
self.jumps = all_jumps
|
self.jumps = all_jumps
|
||||||
self.x = all_x_series
|
self.x_series = all_x_series
|
||||||
self.y = all_y_series
|
self.y_series = all_y_series
|
||||||
self.z = all_z_series
|
self.z_series = all_z_series
|
||||||
self.dx = all_dx_series
|
self.dx_series = all_dx_series
|
||||||
##############
|
##############
|
||||||
#Function field
|
#Function field
|
||||||
variable_names = 'x, y'
|
variable_names = 'x, y'
|
||||||
@ -68,6 +68,11 @@ class as_cover:
|
|||||||
z = Rxyz.gens()[2:]
|
z = Rxyz.gens()[2:]
|
||||||
RxyzQ = FractionField(Rxyz)
|
RxyzQ = FractionField(Rxyz)
|
||||||
self.fct_field = (RxyzQ, Rxyz, x, y, z)
|
self.fct_field = (RxyzQ, Rxyz, x, y, z)
|
||||||
|
self.x = as_function(self, x)
|
||||||
|
self.y = as_function(self, y)
|
||||||
|
self.z = [as_function(self, z[i]) for i in range(n)]
|
||||||
|
self.dx = as_form(self, 1)
|
||||||
|
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
n = self.height
|
n = self.height
|
||||||
@ -104,10 +109,10 @@ class as_cover:
|
|||||||
|
|
||||||
def holomorphic_differentials_basis(self, threshold = 8):
|
def holomorphic_differentials_basis(self, threshold = 8):
|
||||||
from itertools import product
|
from itertools import product
|
||||||
x_series = self.x
|
x_series = self.x_series
|
||||||
y_series = self.y
|
y_series = self.y_series
|
||||||
z_series = self.z
|
z_series = self.z_series
|
||||||
dx_series = self.dx
|
dx_series = self.dx_series
|
||||||
delta = self.nb_of_pts_at_infty
|
delta = self.nb_of_pts_at_infty
|
||||||
p = self.characteristic
|
p = self.characteristic
|
||||||
n = self.height
|
n = self.height
|
||||||
@ -145,9 +150,9 @@ class as_cover:
|
|||||||
""" Find fcts with pole order in infty's at most pole_order. Threshold gives a bound on powers of x in the function.
|
""" Find fcts with pole order in infty's at most pole_order. Threshold gives a bound on powers of x in the function.
|
||||||
If you suspect that you haven't found all the functions, you may increase it."""
|
If you suspect that you haven't found all the functions, you may increase it."""
|
||||||
from itertools import product
|
from itertools import product
|
||||||
x_series = self.x
|
x_series = self.x_series
|
||||||
y_series = self.y
|
y_series = self.y_series
|
||||||
z_series = self.z
|
z_series = self.z_series
|
||||||
delta = self.nb_of_pts_at_infty
|
delta = self.nb_of_pts_at_infty
|
||||||
p = self.characteristic
|
p = self.characteristic
|
||||||
n = self.height
|
n = self.height
|
||||||
@ -197,9 +202,9 @@ class as_cover:
|
|||||||
"""Find forms with pole order in all the points at infty equat at most to pole_order. Threshold gives a bound on powers of x in the form.
|
"""Find forms with pole order in all the points at infty equat at most to pole_order. Threshold gives a bound on powers of x in the form.
|
||||||
If you suspect that you haven't found all the functions, you may increase it."""
|
If you suspect that you haven't found all the functions, you may increase it."""
|
||||||
from itertools import product
|
from itertools import product
|
||||||
x_series = self.x
|
x_series = self.x_series
|
||||||
y_series = self.y
|
y_series = self.y_series
|
||||||
z_series = self.z
|
z_series = self.z_series
|
||||||
delta = self.nb_of_pts_at_infty
|
delta = self.nb_of_pts_at_infty
|
||||||
p = self.characteristic
|
p = self.characteristic
|
||||||
n = self.height
|
n = self.height
|
||||||
@ -297,9 +302,9 @@ class as_cover:
|
|||||||
def cohomology_of_structure_sheaf_basis(self, threshold = 8):
|
def cohomology_of_structure_sheaf_basis(self, threshold = 8):
|
||||||
holo_diffs = self.holomorphic_differentials_basis(threshold = threshold)
|
holo_diffs = self.holomorphic_differentials_basis(threshold = threshold)
|
||||||
from itertools import product
|
from itertools import product
|
||||||
x_series = self.x
|
x_series = self.x_series
|
||||||
y_series = self.y
|
y_series = self.y_series
|
||||||
z_series = self.z
|
z_series = self.z_series
|
||||||
delta = self.nb_of_pts_at_infty
|
delta = self.nb_of_pts_at_infty
|
||||||
p = self.characteristic
|
p = self.characteristic
|
||||||
n = self.height
|
n = self.height
|
||||||
@ -321,9 +326,7 @@ class as_cover:
|
|||||||
for j in range(0, m):
|
for j in range(0, m):
|
||||||
for k in product(*pr):
|
for k in product(*pr):
|
||||||
f = as_function(self, prod(z[i1]^(k[i1]) for i1 in range(n))/x^i*y^j)
|
f = as_function(self, prod(z[i1]^(k[i1]) for i1 in range(n))/x^i*y^j)
|
||||||
f_products = []
|
f_products = [omega.serre_duality_pairing(f) for omega in holo_diffs]
|
||||||
for omega in holo_diffs:
|
|
||||||
f_products += [sum((f*omega).residue(place = _) for _ in range(self.nb_of_pts_at_infty))]
|
|
||||||
if vector(f_products) not in S:
|
if vector(f_products) not in S:
|
||||||
S = S+V.subspace([V(f_products)])
|
S = S+V.subspace([V(f_products)])
|
||||||
result_fcts += [f]
|
result_fcts += [f]
|
||||||
@ -334,10 +337,10 @@ class as_cover:
|
|||||||
'''Given function fct, find form eta regular on affine part such that eta - d(fct) is regular in infty. (Works for one place at infty now)'''
|
'''Given function fct, find form eta regular on affine part such that eta - d(fct) is regular in infty. (Works for one place at infty now)'''
|
||||||
print(fct)
|
print(fct)
|
||||||
from itertools import product
|
from itertools import product
|
||||||
x_series = self.x
|
x_series = self.x_series
|
||||||
y_series = self.y
|
y_series = self.y_series
|
||||||
z_series = self.z
|
z_series = self.z_series
|
||||||
dx_series = self.dx
|
dx_series = self.dx_series
|
||||||
delta = self.nb_of_pts_at_infty
|
delta = self.nb_of_pts_at_infty
|
||||||
p = self.characteristic
|
p = self.characteristic
|
||||||
n = self.height
|
n = self.height
|
||||||
@ -363,8 +366,8 @@ class as_cover:
|
|||||||
raise ValueError("Increase threshold!")
|
raise ValueError("Increase threshold!")
|
||||||
for omega in forms:
|
for omega in forms:
|
||||||
for a in F:
|
for a in F:
|
||||||
if (a*omega - fct.diffn()).form in Rxyz:
|
if (a*omega + fct.diffn()).form in Rxyz:
|
||||||
return a*omega
|
return a*omega + fct.diffn()
|
||||||
raise ValueError("Unknown.")
|
raise ValueError("Unknown.")
|
||||||
|
|
||||||
def de_rham_basis(self, threshold = 30):
|
def de_rham_basis(self, threshold = 30):
|
||||||
|
@ -19,10 +19,10 @@ class as_form:
|
|||||||
C = self.curve
|
C = self.curve
|
||||||
delta = C.nb_of_pts_at_infty
|
delta = C.nb_of_pts_at_infty
|
||||||
F = C.base_ring
|
F = C.base_ring
|
||||||
x_series = C.x[i]
|
x_series = C.x_series[i]
|
||||||
y_series = C.y[i]
|
y_series = C.y_series[i]
|
||||||
z_series = C.z[i]
|
z_series = C.z_series[i]
|
||||||
dx_series = C.dx[i]
|
dx_series = C.dx_series[i]
|
||||||
n = C.height
|
n = C.height
|
||||||
variable_names = 'x, y'
|
variable_names = 'x, y'
|
||||||
for j in range(n):
|
for j in range(n):
|
||||||
@ -57,14 +57,7 @@ class as_form:
|
|||||||
def group_action(self, ZN_tuple):
|
def group_action(self, ZN_tuple):
|
||||||
C = self.curve
|
C = self.curve
|
||||||
n = C.height
|
n = C.height
|
||||||
F = C.base_ring
|
RxyzQ, Rxyz, x, y, z = C.fct_field
|
||||||
variable_names = 'x, y'
|
|
||||||
for j in range(n):
|
|
||||||
variable_names += ', z' + str(j)
|
|
||||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
|
||||||
x, y = Rxyz.gens()[:2]
|
|
||||||
z = Rxyz.gens()[2:]
|
|
||||||
RxyzQ = FractionField(Rxyz)
|
|
||||||
sub_list = {x : x, y : y} | {z[j] : z[j]+ZN_tuple[j] for j in range(n)}
|
sub_list = {x : x, y : y} | {z[j] : z[j]+ZN_tuple[j] for j in range(n)}
|
||||||
g = self.form
|
g = self.form
|
||||||
return as_form(C, g.substitute(sub_list))
|
return as_form(C, g.substitute(sub_list))
|
||||||
@ -80,6 +73,7 @@ class as_form:
|
|||||||
denom = LCM([denominator(omega.form) for omega in basis])
|
denom = LCM([denominator(omega.form) for omega in basis])
|
||||||
basis = [denom*omega for omega in basis]
|
basis = [denom*omega for omega in basis]
|
||||||
self_with_no_denominator = denom*self
|
self_with_no_denominator = denom*self
|
||||||
|
print(self_with_no_denominator, basis)
|
||||||
return linear_representation_polynomials(Rxyz(self_with_no_denominator.form), [Rxyz(omega.form) for omega in basis])
|
return linear_representation_polynomials(Rxyz(self_with_no_denominator.form), [Rxyz(omega.form) for omega in basis])
|
||||||
|
|
||||||
def trace(self):
|
def trace(self):
|
||||||
@ -110,6 +104,10 @@ class as_form:
|
|||||||
def valuation(self, place=0):
|
def valuation(self, place=0):
|
||||||
return self.expansion_at_infty(i = place).valuation()
|
return self.expansion_at_infty(i = place).valuation()
|
||||||
|
|
||||||
|
def serre_duality_pairing(self, fct):
|
||||||
|
AS = self.curve
|
||||||
|
return sum((fct*self).residue(place = _) for _ in range(AS.nb_of_pts_at_infty))
|
||||||
|
|
||||||
def artin_schreier_transform(power_series, prec = 10):
|
def artin_schreier_transform(power_series, prec = 10):
|
||||||
"""Given a power_series, find correction such that power_series - (correction)^p +correction has valuation
|
"""Given a power_series, find correction such that power_series - (correction)^p +correction has valuation
|
||||||
-jump non divisible by p. Also, express t (the variable) in terms of the uniformizer at infty on the curve
|
-jump non divisible by p. Also, express t (the variable) in terms of the uniformizer at infty on the curve
|
||||||
|
@ -60,9 +60,9 @@ class as_function:
|
|||||||
C = self.curve
|
C = self.curve
|
||||||
delta = C.nb_of_pts_at_infty
|
delta = C.nb_of_pts_at_infty
|
||||||
F = C.base_ring
|
F = C.base_ring
|
||||||
x_series = C.x[i]
|
x_series = C.x_series[i]
|
||||||
y_series = C.y[i]
|
y_series = C.y_series[i]
|
||||||
z_series = C.z[i]
|
z_series = C.z_series[i]
|
||||||
n = C.height
|
n = C.height
|
||||||
variable_names = 'x, y'
|
variable_names = 'x, y'
|
||||||
for j in range(n):
|
for j in range(n):
|
||||||
|
Loading…
Reference in New Issue
Block a user