arbitrary p-gp covers, pt 1
This commit is contained in:
parent
498e55d11b
commit
e05bf77824
@ -24,3 +24,35 @@ def magma_module_decomposition(A, B, text = False, prefix="", sufix="", matrices
|
||||
if text:
|
||||
return result
|
||||
return(magma_free(result))
|
||||
|
||||
def magma_is_isomorphic(A1, B1, A2, B2, text=0):
|
||||
q = parent(A1).base_ring().order()
|
||||
p = q.factor()[0][0]
|
||||
n = A1.dimensions()[0]
|
||||
A1 = str(list(A1))
|
||||
B1 = str(list(B1))
|
||||
A2 = str(list(A2))
|
||||
B2 = str(list(B2))
|
||||
A1 = A1.replace("(", "")
|
||||
A1 = A1.replace(")", "")
|
||||
A2 = A2.replace("(", "")
|
||||
A2 = A2.replace(")", "")
|
||||
B1 = B1.replace("(", "")
|
||||
B1 = B1.replace(")", "")
|
||||
B2 = B2.replace("(", "")
|
||||
B2 = B2.replace(")", "")
|
||||
result = ""
|
||||
if q != p:
|
||||
result += "F<a> := GF(" + str(q) + ");"
|
||||
result += "A1 := MatrixAlgebra<GF("+str(q) + "),"+ str(n) + "|"
|
||||
result += A1 + "," + B1
|
||||
result += ">;"
|
||||
result += "M1 := RModule(RSpace(GF("+str(q)+")," + str(n) + "), A1);"
|
||||
result += "A2 := MatrixAlgebra<GF("+str(q) + "),"+ str(n) + "|"
|
||||
result += A2 + "," + B2
|
||||
result += ">;"
|
||||
result += "M2 := RModule(RSpace(GF("+str(q)+")," + str(n) + "), A2);"
|
||||
result += "IsIsomorphic(M1, M2);"
|
||||
if text:
|
||||
return result
|
||||
return(magma_free(result))
|
@ -47,6 +47,9 @@ class as_cech:
|
||||
f = self.f
|
||||
return as_cech(C, constant*omega, constant*f)
|
||||
|
||||
def reduce(self):
|
||||
return as_cech(self.curve, self.omega0.reduce(), self.f.reduce())
|
||||
|
||||
def coordinates(self, threshold=10, basis = 0):
|
||||
'''Find coordinates of self in the de Rham cohomology basis. Threshold is an argument passed to AS.de_rham_basis().'''
|
||||
AS = self.curve
|
||||
@ -94,11 +97,16 @@ class as_cech:
|
||||
return vector(coh_coordinates)+vector(self.coordinates(threshold=threshold, basis = basis))
|
||||
else:
|
||||
self.omega0 -= self.f.diffn()
|
||||
return vector(coh_coordinates) + vector(list(self.omega0.coordinates())+AS.genus()*[0])
|
||||
return vector(coh_coordinates) + vector(list(self.omega0.coordinates(basis=holo_diffs))+AS.genus()*[0])
|
||||
|
||||
raise ValueError("Increase threshold.")
|
||||
|
||||
def group_action(self, g):
|
||||
AS = self.curve
|
||||
omega = self.omega0
|
||||
f = self.f
|
||||
return as_cech(self.curve, omega.group_action(g), f.group_action(g))
|
||||
return as_cech(self.curve, omega.group_action(g), f.group_action(g))
|
||||
|
||||
def trace(self):
|
||||
AS = self.curve
|
||||
return as_cech(AS, self.omega0.trace(), self.f.trace())
|
@ -384,6 +384,50 @@ class as_cover:
|
||||
if (a*omega + fct.diffn()).is_regular_on_U0():
|
||||
return a*omega + fct.diffn()
|
||||
raise ValueError("Unknown.")
|
||||
|
||||
def lift_to_de_rham_form(self, eta, threshold = 20):
|
||||
'''Given form eta regular on affine part find fct such that eta - d(fct) is regular in infty. (Works for one place at infty now)'''
|
||||
from itertools import product
|
||||
x_series = self.x_series
|
||||
y_series = self.y_series
|
||||
z_series = self.z_series
|
||||
dx_series = self.dx_series
|
||||
delta = self.nb_of_pts_at_infty
|
||||
p = self.characteristic
|
||||
n = self.height
|
||||
prec = self.prec
|
||||
C = self.quotient
|
||||
F = self.base_ring
|
||||
m = C.exponent
|
||||
r = C.polynomial.degree()
|
||||
RxyzQ, Rxyz, x, y, z = self.fct_field
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
|
||||
S = [(eta, eta.expansion_at_infty())]
|
||||
pr = [list(GF(p)) for _ in range(n)]
|
||||
for i in range(0, threshold*r):
|
||||
for j in range(0, m):
|
||||
for k in product(*pr):
|
||||
ff = as_function(self, prod(z[i1]^(k[i1]) for i1 in range(n))/x^i*y^j)
|
||||
ff_exp = ff.diffn().expansion_at_infty()
|
||||
if ff_exp != 0*ff_exp:
|
||||
S += [(ff, ff_exp)]
|
||||
for i in range(0, threshold*r):
|
||||
for j in range(0, m):
|
||||
for k in product(*pr):
|
||||
ff = as_function(self, prod(z[i1]^(k[i1]) for i1 in range(n))*x^i*y^j)
|
||||
ff_exp = ff.diffn().expansion_at_infty()
|
||||
if ff_exp != 0*ff_exp:
|
||||
S += [(ff, ff_exp)]
|
||||
forms = holomorphic_combinations_mixed(S)
|
||||
if len(forms) <= self.genus():
|
||||
raise ValueError("Increase threshold!")
|
||||
result = []
|
||||
for ff in forms:
|
||||
if ff[0] != 0*self.dx:
|
||||
result += [as_cech(self, ff[0], -ff[1])]
|
||||
return result
|
||||
raise ValueError("Unknown.")
|
||||
|
||||
def de_rham_basis(self, holo_basis = 0, cohomology_basis = 0, threshold = 30):
|
||||
if holo_basis == 0:
|
||||
|
@ -15,6 +15,9 @@ class as_form:
|
||||
def __repr__(self):
|
||||
return "(" + str(self.form)+") * dx"
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.expansion_at_infty() == other.expansion_at_infty()
|
||||
|
||||
def expansion_at_infty(self, place = 0):
|
||||
C = self.curve
|
||||
delta = C.nb_of_pts_at_infty
|
||||
@ -80,6 +83,10 @@ class as_form:
|
||||
C = self.curve
|
||||
omega = self.form
|
||||
return as_form(C, constant*omega)
|
||||
|
||||
def reduce(self):
|
||||
aux = as_reduction(self.curve, self.form)
|
||||
return as_form(self.curve, aux)
|
||||
|
||||
def group_action(self, ZN_tuple):
|
||||
C = self.curve
|
||||
@ -121,7 +128,7 @@ class as_form:
|
||||
result = result.form
|
||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||
Qxy = FractionField(Rxy)
|
||||
result = as_reduction(AS, result)
|
||||
result = as_reduction(C, result)
|
||||
return superelliptic_form(C_super, Qxy(result))
|
||||
|
||||
def residue(self, place=0):
|
||||
|
@ -132,6 +132,10 @@ class as_function:
|
||||
g = self.function
|
||||
return as_function(C, g.substitute(sub_list))
|
||||
|
||||
def reduce(self):
|
||||
aux = as_reduction(self.curve, self.function)
|
||||
return as_function(self.curve, aux)
|
||||
|
||||
def trace(self):
|
||||
C = self.curve
|
||||
C_super = C.quotient
|
||||
@ -151,7 +155,7 @@ class as_function:
|
||||
result = result.function
|
||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||
Qxy = FractionField(Rxy)
|
||||
result = as_reduction(AS, result)
|
||||
result = as_reduction(C, result)
|
||||
return superelliptic_function(C_super, Qxy(result))
|
||||
|
||||
def coordinates(self, prec = 100, basis = 0):
|
||||
|
@ -11,8 +11,8 @@ class as_polyform:
|
||||
def __repr__(self):
|
||||
return '(' + str(self.form) + ') dx⊗' + str(self.mult)
|
||||
|
||||
def expansion_at_infty(self):
|
||||
return self.form.expansion_at_infty()*(self.curve.dx.expansion_at_infty())^(self.mult)
|
||||
def expansion_at_infty(self, place):
|
||||
return self.form.expansion_at_infty(place=place)*(self.curve.dx.expansion_at_infty(place=place))^(self.mult)
|
||||
|
||||
def coordinates(self, basis = 0):
|
||||
"""Find coordinates of the given holomorphic form self in terms of the basis forms in a list holo."""
|
||||
@ -27,6 +27,9 @@ class as_polyform:
|
||||
self_with_no_denominator = denom*self.form.function
|
||||
return linear_representation_polynomials(Rxyz(self_with_no_denominator), [Rxyz(omega) for omega in basis])
|
||||
|
||||
def group_action(self, elt):
|
||||
return as_polyform(self.form.group_action(elt), self.mult)
|
||||
|
||||
|
||||
def as_holo_polydifferentials_basis(AS, mult, threshold = 8):
|
||||
'''Give the basis of H^0(Ω^⊗n) for n = mult.'''
|
||||
|
@ -23,18 +23,19 @@ def as_group_action_matrices_holo(AS, basis=0, threshold=10):
|
||||
|
||||
as_cover.group_action_matrices_holo = as_group_action_matrices_holo
|
||||
|
||||
def as_group_action_matrices_dR(AS, threshold=8):
|
||||
def as_group_action_matrices_dR(AS, basis = 0, threshold=8):
|
||||
n = AS.height
|
||||
generators = []
|
||||
F = AS.base_ring
|
||||
for i in range(n):
|
||||
ei = n*[0]
|
||||
ei[i] = 1
|
||||
generators += [ei]
|
||||
holo_basis = AS.holomorphic_differentials_basis(threshold = threshold)
|
||||
str_basis = AS.cohomology_of_structure_sheaf_basis(holo_basis = holo_basis, threshold = threshold)
|
||||
dr_basis = AS.de_rham_basis(holo_basis = holo_basis, cohomology_basis = str_basis, threshold=threshold)
|
||||
F = AS.base_ring
|
||||
basis = [holo_basis, str_basis, dr_basis]
|
||||
if basis == 0:
|
||||
holo_basis = AS.holomorphic_differentials_basis(threshold = threshold)
|
||||
str_basis = AS.cohomology_of_structure_sheaf_basis(holo_basis = holo_basis, threshold = threshold)
|
||||
dr_basis = AS.de_rham_basis(holo_basis = holo_basis, cohomology_basis = str_basis, threshold=threshold)
|
||||
basis = [holo_basis, str_basis, dr_basis]
|
||||
return as_group_action_matrices(F, basis[2], generators, basis = basis)
|
||||
|
||||
as_cover.group_action_matrices_dR = as_group_action_matrices_dR
|
||||
|
@ -22,7 +22,7 @@ def holomorphic_combinations(S):
|
||||
# Sprawdzamy, jakim formom odpowiadają elementy V.
|
||||
forms = []
|
||||
for vec in V.basis():
|
||||
forma_holo = 0*C_AS.dx
|
||||
forma_holo = 0*S[0][0]
|
||||
forma_holo_power_series = Rt(0)
|
||||
for vec_wspolrzedna, elt_S in zip(vec, S):
|
||||
eta = elt_S[0]
|
||||
@ -32,6 +32,49 @@ def holomorphic_combinations(S):
|
||||
forms += [forma_holo]
|
||||
return forms
|
||||
|
||||
def holomorphic_combinations_mixed(S):
|
||||
"""Given a list S of pairs (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt."""
|
||||
C_AS = S[0][0].curve
|
||||
p = C_AS.characteristic
|
||||
F = C_AS.base_ring
|
||||
prec = C_AS.prec
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
RtQ = FractionField(Rt)
|
||||
minimal_valuation = min([g[1].valuation() for g in S])
|
||||
print(minimal_valuation)
|
||||
if minimal_valuation >= 0:
|
||||
return [s[0] for s in S]
|
||||
list_of_lists = [] #to będzie lista złożona z list współczynników część nieholomorficznych rozwinięcia form z S
|
||||
for eta, eta_exp in S:
|
||||
a = -minimal_valuation + eta_exp.valuation()
|
||||
list_coeffs = a*[0] + eta_exp.list() + (-minimal_valuation)*[0]
|
||||
list_coeffs = list_coeffs[:-minimal_valuation]
|
||||
list_of_lists += [list_coeffs]
|
||||
M = matrix(F, list_of_lists)
|
||||
V = M.kernel() #chcemy wyzerować części nieholomorficzne, biorąc kombinacje form z S
|
||||
|
||||
|
||||
# Sprawdzamy, jakim formom odpowiadają elementy V.
|
||||
forms = []
|
||||
for vec in V.basis():
|
||||
forma_holo = 0*S[0][0]
|
||||
forma_holo_power_series = Rt(0)
|
||||
res1 = 0*C_AS.dx
|
||||
res2 = 0*C_AS.x
|
||||
res = 0*C_AS.dx
|
||||
for vec_wspolrzedna, elt_S in zip(vec, S):
|
||||
eta = elt_S[0]
|
||||
if isinstance(eta, as_form):
|
||||
res += vec_wspolrzedna*eta
|
||||
res1 += vec_wspolrzedna*eta
|
||||
if isinstance(eta, as_function):
|
||||
res += vec_wspolrzedna*eta.diffn()
|
||||
res2 += vec_wspolrzedna*eta
|
||||
#eta_exp = elt_S[1]
|
||||
#forma_holo_power_series += vec_wspolrzedna*eta_exp
|
||||
forms += [(res1, res2)]
|
||||
return forms
|
||||
|
||||
def holomorphic_combinations_fcts(S, pole_order):
|
||||
'''given a set S of (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt'''
|
||||
C_AS = S[0][0].curve
|
||||
|
@ -10,7 +10,7 @@ def naive_hensel(fct, F, start = 1, prec=10):
|
||||
#while fct not in RptW:
|
||||
# print(fct)
|
||||
# fct *= W
|
||||
alpha = (fct.derivative())(W = start)
|
||||
alpha = (fct.derivative())(W = RtQ(start))
|
||||
w0 = Rt(start)
|
||||
i = 1
|
||||
while(i < prec):
|
||||
|
58
elementary_covers/as_auxilliary.sage
Normal file
58
elementary_covers/as_auxilliary.sage
Normal file
@ -0,0 +1,58 @@
|
||||
def magma_module_decomposition(A, B, text = False, prefix="", sufix="", matrices=True):
|
||||
"""Find decomposition of Z/p^2-module given by matrices A, B into indecomposables using magma.
|
||||
If text = True, print the command for Magma. Else - return the output of Magma free."""
|
||||
q = parent(A).base_ring().order()
|
||||
p = q.factor()[0][0]
|
||||
n = A.dimensions()[0]
|
||||
A = str(list(A))
|
||||
B = str(list(B))
|
||||
A = A.replace("(", "")
|
||||
A = A.replace(")", "")
|
||||
B = B.replace("(", "")
|
||||
B = B.replace(")", "")
|
||||
result = prefix
|
||||
if q != p:
|
||||
result += "F<a> := GF(" + str(q) + ");"
|
||||
result += "A := MatrixAlgebra<GF("+str(q) + "),"+ str(n) + "|"
|
||||
result += A + "," + B
|
||||
result += ">;"
|
||||
result += "M := RModule(RSpace(GF("+str(q)+")," + str(n) + "), A);"
|
||||
result += "L := IndecomposableSummands(M); L;"
|
||||
if matrices:
|
||||
result += "for i in [1 .. #L] do print(Generators(Action(L[i]))); end for;"
|
||||
result += sufix
|
||||
if text:
|
||||
return result
|
||||
return(magma_free(result))
|
||||
|
||||
def magma_is_isomorphic(A1, B1, A2, B2, text=0):
|
||||
q = parent(A1).base_ring().order()
|
||||
p = q.factor()[0][0]
|
||||
n = A1.dimensions()[0]
|
||||
A1 = str(list(A1))
|
||||
B1 = str(list(B1))
|
||||
A2 = str(list(A2))
|
||||
B2 = str(list(B2))
|
||||
A1 = A1.replace("(", "")
|
||||
A1 = A1.replace(")", "")
|
||||
A2 = A2.replace("(", "")
|
||||
A2 = A2.replace(")", "")
|
||||
B1 = B1.replace("(", "")
|
||||
B1 = B1.replace(")", "")
|
||||
B2 = B2.replace("(", "")
|
||||
B2 = B2.replace(")", "")
|
||||
result = ""
|
||||
if q != p:
|
||||
result += "F<a> := GF(" + str(q) + ");"
|
||||
result += "A1 := MatrixAlgebra<GF("+str(q) + "),"+ str(n) + "|"
|
||||
result += A1 + "," + B1
|
||||
result += ">;"
|
||||
result += "M1 := RModule(RSpace(GF("+str(q)+")," + str(n) + "), A1);"
|
||||
result += "A2 := MatrixAlgebra<GF("+str(q) + "),"+ str(n) + "|"
|
||||
result += A2 + "," + B2
|
||||
result += ">;"
|
||||
result += "M2 := RModule(RSpace(GF("+str(q)+")," + str(n) + "), A2);"
|
||||
result += "IsIsomorphic(M1, M2);"
|
||||
if text:
|
||||
return result
|
||||
return(magma_free(result))
|
112
elementary_covers/as_cech_class.sage
Normal file
112
elementary_covers/as_cech_class.sage
Normal file
@ -0,0 +1,112 @@
|
||||
class as_cech:
|
||||
def __init__(self, C, omega, f):
|
||||
self.curve = C
|
||||
n = C.height
|
||||
F = C.base_ring
|
||||
variable_names = 'x, y'
|
||||
for i in range(n):
|
||||
variable_names += ', z' + str(i)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
self.omega0 = omega
|
||||
self.f = f
|
||||
self.omega8 = self.omega0 - self.f.diffn()
|
||||
#if self.omega0.form not in Rxyz or self.omega8.valuation() < 0:
|
||||
# raise ValueError('cech cocycle not regular')
|
||||
|
||||
def __repr__(self):
|
||||
return "( " + str(self.omega0)+", " + str(self.f) + " )"
|
||||
|
||||
def __add__(self, other):
|
||||
C = self.curve
|
||||
omega = self.omega0
|
||||
f = self.f
|
||||
omega1 = other.omega0
|
||||
f1 = other.f
|
||||
return as_cech(C, omega + omega1, f+f1)
|
||||
|
||||
def __sub__(self, other):
|
||||
C = self.curve
|
||||
omega = self.omega0
|
||||
f = self.f
|
||||
omega1 = other.omega0
|
||||
f1 = other.f
|
||||
return as_cech(C, omega - omega1, f - f1)
|
||||
|
||||
def __neg__(self):
|
||||
C = self.curve
|
||||
omega = self.omega0
|
||||
f = self.f
|
||||
return as_cech(C, -omega, -f)
|
||||
|
||||
def __rmul__(self, constant):
|
||||
C = self.curve
|
||||
omega = self.omega0
|
||||
f = self.f
|
||||
return as_cech(C, constant*omega, constant*f)
|
||||
|
||||
def reduce(self):
|
||||
return as_cech(self.curve, self.omega0.reduce(), self.f.reduce())
|
||||
|
||||
def coordinates(self, threshold=10, basis = 0):
|
||||
'''Find coordinates of self in the de Rham cohomology basis. Threshold is an argument passed to AS.de_rham_basis().'''
|
||||
AS = self.curve
|
||||
C = AS.quotient
|
||||
m = C.exponent
|
||||
r = C.polynomial.degree()
|
||||
n = AS.height
|
||||
p = AS.characteristic
|
||||
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
||||
if basis == 0:
|
||||
basis = [AS.holomorphic_differentials_basis(), AS.cohomology_of_structure_sheaf_basis(), AS.de_rham_basis(threshold=threshold)]
|
||||
holo_diffs = basis[0]
|
||||
coh_basis = basis[1]
|
||||
dR = basis[2]
|
||||
F = AS.base_ring
|
||||
f_products = []
|
||||
for f in coh_basis:
|
||||
f_products += [[omega.serre_duality_pairing(f) for omega in holo_diffs]]
|
||||
product_of_fct_and_omegas = []
|
||||
fct = self.f
|
||||
product_of_fct_and_omegas = [omega.serre_duality_pairing(fct) for omega in holo_diffs]
|
||||
|
||||
V = (F^(AS.genus())).span_of_basis([vector(a) for a in f_products])
|
||||
coh_coordinates = V.coordinates(product_of_fct_and_omegas) #coeficients of self in the basis elts coming from cohomology of OX
|
||||
for i in range(AS.genus()):
|
||||
self -= coh_coordinates[i]*dR[i+AS.genus()]
|
||||
coh_coordinates = AS.genus()*[0] + list(coh_coordinates)
|
||||
if self.f.function not in Rxyz:
|
||||
#We remove now from f the summands which are obviously regular at infty
|
||||
pr = [list(GF(p)) for _ in range(n)]
|
||||
S = []
|
||||
from itertools import product
|
||||
for i in range(0, threshold*r):
|
||||
for j in range(0, m):
|
||||
for k in product(*pr):
|
||||
g = (AS.x)^i*prod((AS.z[i1])^(k[i1]) for i1 in range(n))*(AS.y)^j
|
||||
S += [(g, g.expansion_at_infty())]
|
||||
S += [(self.f, self.f.expansion_at_infty())]
|
||||
fcts = holomorphic_combinations_fcts(S, 0)
|
||||
for g in fcts:
|
||||
if g.function not in Rxyz:
|
||||
for a in F:
|
||||
if (self.f.function - a*g.function in Rxyz):
|
||||
self.f.function = self.f.function - a*g.function
|
||||
return vector(coh_coordinates)+vector(self.coordinates(threshold=threshold, basis = basis))
|
||||
else:
|
||||
self.omega0 -= self.f.diffn()
|
||||
return vector(coh_coordinates) + vector(list(self.omega0.coordinates(basis=holo_diffs))+AS.genus()*[0])
|
||||
|
||||
raise ValueError("Increase threshold.")
|
||||
|
||||
def group_action(self, g):
|
||||
AS = self.curve
|
||||
omega = self.omega0
|
||||
f = self.f
|
||||
return as_cech(self.curve, omega.group_action(g), f.group_action(g))
|
||||
|
||||
def trace(self):
|
||||
AS = self.curve
|
||||
return as_cech(AS, self.omega0.trace(), self.f.trace())
|
444
elementary_covers/as_cover_class.sage
Normal file
444
elementary_covers/as_cover_class.sage
Normal file
@ -0,0 +1,444 @@
|
||||
class as_cover:
|
||||
def __init__(self, C, list_of_fcts, branch_points = [], prec = 10):
|
||||
self.quotient = C
|
||||
self.functions = list_of_fcts
|
||||
self.height = len(list_of_fcts)
|
||||
F = C.base_ring
|
||||
self.base_ring = F
|
||||
p = C.characteristic
|
||||
self.characteristic = p
|
||||
self.prec = prec
|
||||
#group acting
|
||||
n = self.height
|
||||
from itertools import product
|
||||
pr = [list(GF(p)) for _ in range(n)]
|
||||
group = []
|
||||
for a in product(*pr):
|
||||
group += [a]
|
||||
self.group = group
|
||||
#########
|
||||
f = C.polynomial
|
||||
m = C.exponent
|
||||
r = f.degree()
|
||||
delta = GCD(m, r)
|
||||
self.nb_of_pts_at_infty = delta
|
||||
self.branch_points = list(range(delta)) + branch_points
|
||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
|
||||
all_x_series = {}
|
||||
all_y_series = {}
|
||||
all_z_series = {}
|
||||
all_dx_series = {}
|
||||
all_jumps = {}
|
||||
|
||||
for pt in self.branch_points:
|
||||
x_series = superelliptic_function(C, x).expansion(pt=pt, prec=prec)
|
||||
y_series = superelliptic_function(C, y).expansion(pt=pt, prec=prec)
|
||||
z_series = []
|
||||
jumps = []
|
||||
n = len(list_of_fcts)
|
||||
list_of_power_series = [g.expansion(pt=pt, prec=prec) for g in list_of_fcts]
|
||||
for j in range(n):
|
||||
power_series = list_of_power_series[j]
|
||||
jump, correction, t_old, z = artin_schreier_transform(power_series, prec = prec)
|
||||
x_series = x_series(t = t_old)
|
||||
y_series = y_series(t = t_old)
|
||||
z_series = [zi(t = t_old) for zi in z_series]
|
||||
z_series += [z]
|
||||
jumps += [jump]
|
||||
list_of_power_series = [g(t = t_old) for g in list_of_power_series]
|
||||
|
||||
all_jumps[pt] = jumps
|
||||
all_x_series[pt] = x_series
|
||||
all_y_series[pt] = y_series
|
||||
all_z_series[pt] = z_series
|
||||
all_dx_series[pt] = x_series.derivative()
|
||||
self.jumps = all_jumps
|
||||
self.x_series = all_x_series
|
||||
self.y_series = all_y_series
|
||||
self.z_series = all_z_series
|
||||
self.dx_series = all_dx_series
|
||||
##############
|
||||
#Function field
|
||||
variable_names = 'x, y'
|
||||
for i in range(n):
|
||||
variable_names += ', z' + str(i)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
self.fct_field = (RxyzQ, Rxyz, x, y, z)
|
||||
self.x = as_function(self, x)
|
||||
self.y = as_function(self, y)
|
||||
self.z = [as_function(self, z[j]) for j in range(n)]
|
||||
self.dx = as_form(self, 1)
|
||||
self.one = as_function(self, 1)
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
n = self.height
|
||||
p = self.characteristic
|
||||
if n==1:
|
||||
return "(Z/p)-cover of " + str(self.quotient)+" with the equation:\n z^" + str(p) + " - z = " + str(self.functions[0])
|
||||
|
||||
result = "(Z/p)^"+str(self.height)+ "-cover of " + str(self.quotient)+" with the equations:\n"
|
||||
for i in range(n):
|
||||
result += 'z' + str(i) + "^" + str(p) + " - z" + str(i) + " = " + str(self.functions[i]) + "\n"
|
||||
return result
|
||||
|
||||
def genus(self):
|
||||
jumps = self.jumps
|
||||
gY = self.quotient.genus()
|
||||
n = self.height
|
||||
branch_pts = self.branch_points
|
||||
p = self.characteristic
|
||||
return p^n*gY + (p^n - 1)*(len(branch_pts) - 1) + sum(p^(n-j-1)*(jumps[pt][j]-1)*(p-1)/2 for j in range(n) for pt in branch_pts)
|
||||
|
||||
def exponent_of_different(self, place = 0):
|
||||
jumps = self.jumps
|
||||
n = self.height
|
||||
delta = self.nb_of_pts_at_infty
|
||||
p = self.characteristic
|
||||
return sum(p^(n-j-1)*(jumps[place][j]+1)*(p-1) for j in range(n))
|
||||
|
||||
def exponent_of_different_prim(self, place = 0):
|
||||
jumps = self.jumps
|
||||
n = self.height
|
||||
delta = self.nb_of_pts_at_infty
|
||||
p = self.characteristic
|
||||
return sum(p^(n-j-1)*(jumps[place][j])*(p-1) for j in range(n))
|
||||
|
||||
def holomorphic_differentials_basis(self, threshold = 8):
|
||||
from itertools import product
|
||||
x_series = self.x_series
|
||||
y_series = self.y_series
|
||||
z_series = self.z_series
|
||||
dx_series = self.dx_series
|
||||
delta = self.nb_of_pts_at_infty
|
||||
p = self.characteristic
|
||||
n = self.height
|
||||
prec = self.prec
|
||||
C = self.quotient
|
||||
F = self.base_ring
|
||||
m = C.exponent
|
||||
r = C.polynomial.degree()
|
||||
RxyzQ, Rxyz, x, y, z = self.fct_field
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
|
||||
S = []
|
||||
pr = [list(GF(p)) for _ in range(n)]
|
||||
for i in range(0, threshold*r):
|
||||
for j in range(0, m):
|
||||
for k in product(*pr):
|
||||
eta = as_form(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))/y^j)
|
||||
eta_exp = eta.expansion(pt=self.branch_points[0])
|
||||
S += [(eta, eta_exp)]
|
||||
|
||||
forms = holomorphic_combinations(S)
|
||||
|
||||
for pt in self.branch_points[1:]:
|
||||
forms = [(omega, omega.expansion(pt=pt)) for omega in forms]
|
||||
forms = holomorphic_combinations(forms)
|
||||
|
||||
if len(forms) < self.genus():
|
||||
print("I haven't found all forms, only ", len(forms), " of ", self.genus())
|
||||
return holomorphic_differentials_basis(self, threshold = threshold + 1)
|
||||
if len(forms) > self.genus():
|
||||
raise ValueError("Increase precision.")
|
||||
return forms
|
||||
|
||||
def cartier_matrix(self, prec=50):
|
||||
g = self.genus()
|
||||
F = self.base_ring
|
||||
M = matrix(F, g, g)
|
||||
for i, omega in enumerate(self.holomorphic_differentials_basis()):
|
||||
M[:, i] = vector(omega.cartier().coordinates())
|
||||
return M
|
||||
|
||||
def at_most_poles(self, pole_order, threshold = 8):
|
||||
""" Find fcts with pole order in infty's at most pole_order. Threshold gives a bound on powers of x in the function.
|
||||
If you suspect that you haven't found all the functions, you may increase it."""
|
||||
from itertools import product
|
||||
x_series = self.x_series
|
||||
y_series = self.y_series
|
||||
z_series = self.z_series
|
||||
delta = self.nb_of_pts_at_infty
|
||||
p = self.characteristic
|
||||
n = self.height
|
||||
prec = self.prec
|
||||
C = self.quotient
|
||||
F = self.base_ring
|
||||
m = C.exponent
|
||||
r = C.polynomial.degree()
|
||||
RxyzQ, Rxyz, x, y, z = self.fct_field
|
||||
F = C.base_ring
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
|
||||
S = []
|
||||
RQxyz = FractionField(Rxyz)
|
||||
pr = [list(GF(p)) for _ in range(n)]
|
||||
for i in range(0, threshold*r):
|
||||
for j in range(0, m):
|
||||
for k in product(*pr):
|
||||
eta = as_function(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))*y^j)
|
||||
eta_exp = eta.expansion_at_infty()
|
||||
S += [(eta, eta_exp)]
|
||||
|
||||
forms = holomorphic_combinations_fcts(S, pole_order)
|
||||
|
||||
for i in range(1, delta):
|
||||
forms = [(omega, omega.expansion_at_infty(place = i)) for omega in forms]
|
||||
forms = holomorphic_combinations_fcts(forms, pole_order)
|
||||
|
||||
return forms
|
||||
|
||||
def magical_element(self, threshold = 8):
|
||||
list_of_elts = self.at_most_poles(self.exponent_of_different_prim(), threshold)
|
||||
result = []
|
||||
for a in list_of_elts:
|
||||
if a.trace().function != 0:
|
||||
result += [a]
|
||||
return result
|
||||
|
||||
def pseudo_magical_element(self, threshold = 8):
|
||||
list_of_elts = self.at_most_poles(self.exponent_of_different(), threshold)
|
||||
result = []
|
||||
for a in list_of_elts:
|
||||
if a.trace().function != 0:
|
||||
result += [a]
|
||||
return result
|
||||
|
||||
def at_most_poles_forms(self, pole_order, threshold = 8):
|
||||
"""Find forms with pole order in all the points at infty equat at most to pole_order. Threshold gives a bound on powers of x in the form.
|
||||
If you suspect that you haven't found all the functions, you may increase it."""
|
||||
from itertools import product
|
||||
x_series = self.x_series
|
||||
y_series = self.y_series
|
||||
z_series = self.z_series
|
||||
delta = self.nb_of_pts_at_infty
|
||||
p = self.characteristic
|
||||
n = self.height
|
||||
prec = self.prec
|
||||
C = self.quotient
|
||||
F = self.base_ring
|
||||
m = C.exponent
|
||||
r = C.polynomial.degree()
|
||||
RxyzQ, Rxyz, x, y, z = self.fct_field
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
|
||||
S = []
|
||||
RQxyz = FractionField(Rxyz)
|
||||
pr = [list(GF(p)) for _ in range(n)]
|
||||
for i in range(0, threshold*r):
|
||||
for j in range(0, m):
|
||||
for k in product(*pr):
|
||||
eta = as_form(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))/y^j)
|
||||
eta_exp = eta.expansion_at_infty()
|
||||
S += [(eta, eta_exp)]
|
||||
|
||||
forms = holomorphic_combinations_forms(S, pole_order)
|
||||
|
||||
for pt in self.branch_points[1:]:
|
||||
forms = [(omega, omega.expansion(pt=pt)) for omega in forms]
|
||||
forms = holomorphic_combinations_forms(forms, pole_order)
|
||||
|
||||
return forms
|
||||
|
||||
def uniformizer(self, place = 0):
|
||||
'''Return uniformizer of curve self at place-th place at infinity.'''
|
||||
p = self.characteristic
|
||||
n = self.height
|
||||
F = self.base_ring
|
||||
RxyzQ, Rxyz, x, y, z = self.fct_field
|
||||
fx = as_function(self, x)
|
||||
z = [as_function(self, zi) for zi in z]
|
||||
# We create a list of functions. We add there all variables...
|
||||
list_of_fcts = [fx]+z
|
||||
vfx = fx.valuation(place)
|
||||
vz = [zi.valuation(place) for zi in z]
|
||||
|
||||
# Then we subtract powers of variables with the same valuation (so that 1/t^(kp) cancels) and add to this list.
|
||||
for j1 in range(n):
|
||||
for j2 in range(n):
|
||||
if j1>j2:
|
||||
a = gcd(vz[j1] , vz[j2])
|
||||
vz1 = vz[j1]/a
|
||||
vz2 = vz[j2]/a
|
||||
for b in F:
|
||||
if (z[j1]^(vz2) - b*z[j2]^(vz1)).valuation(place) > (z[j2]^(vz1)).valuation(place):
|
||||
list_of_fcts += [z[j1]^(vz2) - b*z[j2]^(vz1)]
|
||||
for j1 in range(n):
|
||||
a = gcd(vz[j1], vfx)
|
||||
vzj = vz[j1] /a
|
||||
vfx = vfx/a
|
||||
for b in F:
|
||||
if (fx^(vzj) - b*z[j1]^(vfx)).valuation(place) > (z[j1]^(vfx)).valuation(place):
|
||||
list_of_fcts += [fx^(vzj) - b*z[j1]^(vfx)]
|
||||
#Finally, we check if on the list there are two elements with the same valuation.
|
||||
for f1 in list_of_fcts:
|
||||
for f2 in list_of_fcts:
|
||||
d, a, b = xgcd(f1.valuation(place), f2.valuation(place))
|
||||
if d == 1:
|
||||
return f1^a*f2^b
|
||||
raise ValueError("My method of generating fcts with relatively prime valuation failed.")
|
||||
|
||||
|
||||
def ith_ramification_gp(self, i, place = 0):
|
||||
'''Find ith ramification group at place at infty of nb place.'''
|
||||
G = self.group
|
||||
t = self.uniformizer(place)
|
||||
Gi = [G[0]]
|
||||
for g in G:
|
||||
if g != G[0]:
|
||||
tg = t.group_action(g)
|
||||
v = (tg - t).valuation(place)
|
||||
if v >= i+1:
|
||||
Gi += [g]
|
||||
return Gi
|
||||
|
||||
def ramification_jumps(self, place = 0):
|
||||
'''Return list of lower ramification jumps at at place at infty of nb place.'''
|
||||
G = self.group
|
||||
ramification_jps = []
|
||||
i = 0
|
||||
while len(G) > 1:
|
||||
Gi = self.ith_ramification_gp(i+1, place)
|
||||
if len(Gi) < len(G):
|
||||
ramification_jps += [i]
|
||||
G = Gi
|
||||
i+=1
|
||||
return ramification_jps
|
||||
|
||||
def a_number(self):
|
||||
g = self.genus()
|
||||
return g - self.cartier_matrix().rank()
|
||||
|
||||
def cohomology_of_structure_sheaf_basis(self, holo_basis = 0, threshold = 8):
|
||||
if holo_basis == 0:
|
||||
holo_basis = self.holomorphic_differentials_basis(threshold = threshold)
|
||||
from itertools import product
|
||||
x_series = self.x_series
|
||||
y_series = self.y_series
|
||||
z_series = self.z_series
|
||||
delta = self.nb_of_pts_at_infty
|
||||
p = self.characteristic
|
||||
n = self.height
|
||||
prec = self.prec
|
||||
C = self.quotient
|
||||
F = self.base_ring
|
||||
m = C.exponent
|
||||
r = C.polynomial.degree()
|
||||
RxyzQ, Rxyz, x, y, z = self.fct_field
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
|
||||
result_fcts = []
|
||||
V = VectorSpace(F,self.genus())
|
||||
S = V.subspace([])
|
||||
RQxyz = FractionField(Rxyz)
|
||||
pr = [list(GF(p)) for _ in range(n)]
|
||||
i = 0
|
||||
while len(result_fcts) < self.genus():
|
||||
for j in range(0, m):
|
||||
for k in product(*pr):
|
||||
f = as_function(self, prod(z[i1]^(k[i1]) for i1 in range(n))/x^i*y^j)
|
||||
f_products = [omega.serre_duality_pairing(f) for omega in holo_basis]
|
||||
if vector(f_products) not in S:
|
||||
S = S+V.subspace([V(f_products)])
|
||||
result_fcts += [f]
|
||||
i += 1
|
||||
return result_fcts
|
||||
|
||||
def lift_to_de_rham(self, fct, threshold = 30):
|
||||
'''Given function fct, find form eta regular on affine part such that eta - d(fct) is regular in infty. (Works for one place at infty now)'''
|
||||
from itertools import product
|
||||
x_series = self.x_series
|
||||
y_series = self.y_series
|
||||
z_series = self.z_series
|
||||
dx_series = self.dx_series
|
||||
delta = self.nb_of_pts_at_infty
|
||||
p = self.characteristic
|
||||
n = self.height
|
||||
prec = self.prec
|
||||
C = self.quotient
|
||||
F = self.base_ring
|
||||
m = C.exponent
|
||||
r = C.polynomial.degree()
|
||||
RxyzQ, Rxyz, x, y, z = self.fct_field
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
|
||||
S = [(fct.diffn(), fct.diffn().expansion_at_infty())]
|
||||
pr = [list(GF(p)) for _ in range(n)]
|
||||
holo = self.holomorphic_differentials_basis(threshold = threshold)
|
||||
for i in range(0, threshold*r):
|
||||
for j in range(0, m):
|
||||
for k in product(*pr):
|
||||
eta = as_form(self, x^i*prod(z[i1]^(k[i1]) for i1 in range(n))/y^j)
|
||||
eta_exp = eta.expansion_at_infty()
|
||||
S += [(eta, eta_exp)]
|
||||
forms = holomorphic_combinations(S)
|
||||
if len(forms) <= self.genus():
|
||||
raise ValueError("Increase threshold!")
|
||||
for omega in forms:
|
||||
for a in F:
|
||||
if (a*omega + fct.diffn()).is_regular_on_U0():
|
||||
return a*omega + fct.diffn()
|
||||
raise ValueError("Unknown.")
|
||||
|
||||
def lift_to_de_rham_form(self, eta, threshold = 20):
|
||||
'''Given form eta regular on affine part find fct such that eta - d(fct) is regular in infty. (Works for one place at infty now)'''
|
||||
from itertools import product
|
||||
x_series = self.x_series
|
||||
y_series = self.y_series
|
||||
z_series = self.z_series
|
||||
dx_series = self.dx_series
|
||||
delta = self.nb_of_pts_at_infty
|
||||
p = self.characteristic
|
||||
n = self.height
|
||||
prec = self.prec
|
||||
C = self.quotient
|
||||
F = self.base_ring
|
||||
m = C.exponent
|
||||
r = C.polynomial.degree()
|
||||
RxyzQ, Rxyz, x, y, z = self.fct_field
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
|
||||
S = [(eta, eta.expansion_at_infty())]
|
||||
pr = [list(GF(p)) for _ in range(n)]
|
||||
for i in range(0, threshold*r):
|
||||
for j in range(0, m):
|
||||
for k in product(*pr):
|
||||
ff = as_function(self, prod(z[i1]^(k[i1]) for i1 in range(n))/x^i*y^j)
|
||||
ff_exp = ff.diffn().expansion_at_infty()
|
||||
if ff_exp != 0*ff_exp:
|
||||
S += [(ff, ff_exp)]
|
||||
for i in range(0, threshold*r):
|
||||
for j in range(0, m):
|
||||
for k in product(*pr):
|
||||
ff = as_function(self, prod(z[i1]^(k[i1]) for i1 in range(n))*x^i*y^j)
|
||||
ff_exp = ff.diffn().expansion_at_infty()
|
||||
if ff_exp != 0*ff_exp:
|
||||
S += [(ff, ff_exp)]
|
||||
forms = holomorphic_combinations_mixed(S)
|
||||
if len(forms) <= self.genus():
|
||||
raise ValueError("Increase threshold!")
|
||||
result = []
|
||||
for ff in forms:
|
||||
if ff[0] != 0*self.dx:
|
||||
result += [as_cech(self, ff[0], -ff[1])]
|
||||
return result
|
||||
raise ValueError("Unknown.")
|
||||
|
||||
def de_rham_basis(self, holo_basis = 0, cohomology_basis = 0, threshold = 30):
|
||||
if holo_basis == 0:
|
||||
holo_basis = self.holomorphic_differentials_basis(threshold = threshold)
|
||||
if cohomology_basis == 0:
|
||||
cohomology_basis = self.cohomology_of_structure_sheaf_basis(holo_basis = holo_basis, threshold = threshold)
|
||||
result = []
|
||||
for omega in holo_basis:
|
||||
result += [as_cech(self, omega, as_function(self, 0))]
|
||||
for f in cohomology_basis:
|
||||
omega = self.lift_to_de_rham(f, threshold = threshold)
|
||||
result += [as_cech(self, omega, f)]
|
||||
return result
|
||||
|
205
elementary_covers/as_form_class.sage
Normal file
205
elementary_covers/as_form_class.sage
Normal file
@ -0,0 +1,205 @@
|
||||
class as_form:
|
||||
def __init__(self, C, g):
|
||||
self.curve = C
|
||||
n = C.height
|
||||
F = C.base_ring
|
||||
variable_names = 'x, y'
|
||||
for i in range(n):
|
||||
variable_names += ', z' + str(i)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
self.form = RxyzQ(g)
|
||||
|
||||
def __repr__(self):
|
||||
return "(" + str(self.form)+") * dx"
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.expansion_at_infty() == other.expansion_at_infty()
|
||||
|
||||
def expansion_at_infty(self, place = 0):
|
||||
C = self.curve
|
||||
delta = C.nb_of_pts_at_infty
|
||||
F = C.base_ring
|
||||
x_series = C.x_series[place]
|
||||
y_series = C.y_series[place]
|
||||
z_series = C.z_series[place]
|
||||
dx_series = C.dx_series[place]
|
||||
n = C.height
|
||||
variable_names = 'x, y'
|
||||
for j in range(n):
|
||||
variable_names += ', z' + str(j)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
prec = C.prec
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
g = self.form
|
||||
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
||||
return g.substitute(sub_list)*dx_series
|
||||
|
||||
def expansion(self, pt = 0):
|
||||
'''Same code as expansion_at_infty.'''
|
||||
C = self.curve
|
||||
F = C.base_ring
|
||||
x_series = C.x_series[pt]
|
||||
y_series = C.y_series[pt]
|
||||
z_series = C.z_series[pt]
|
||||
dx_series = C.dx_series[pt]
|
||||
n = C.height
|
||||
variable_names = 'x, y'
|
||||
for j in range(n):
|
||||
variable_names += ', z' + str(j)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
prec = C.prec
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
g = self.form
|
||||
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
||||
return g.substitute(sub_list)*dx_series
|
||||
|
||||
def __add__(self, other):
|
||||
C = self.curve
|
||||
g1 = self.form
|
||||
g2 = other.form
|
||||
return as_form(C, g1 + g2)
|
||||
|
||||
def __sub__(self, other):
|
||||
C = self.curve
|
||||
g1 = self.form
|
||||
g2 = other.form
|
||||
return as_form(C, g1 - g2)
|
||||
|
||||
def __neg__(self):
|
||||
C = self.curve
|
||||
g = self.form
|
||||
return as_form(C, -g)
|
||||
|
||||
def __rmul__(self, constant):
|
||||
C = self.curve
|
||||
omega = self.form
|
||||
return as_form(C, constant*omega)
|
||||
|
||||
def reduce(self):
|
||||
aux = as_reduction(self.curve, self.form)
|
||||
return as_form(self.curve, aux)
|
||||
|
||||
def group_action(self, ZN_tuple):
|
||||
C = self.curve
|
||||
n = C.height
|
||||
RxyzQ, Rxyz, x, y, z = C.fct_field
|
||||
sub_list = {x : x, y : y} | {z[j] : z[j]+ZN_tuple[j] for j in range(n)}
|
||||
g = self.form
|
||||
return as_form(C, g.substitute(sub_list))
|
||||
|
||||
def coordinates(self, basis = 0):
|
||||
"""Find coordinates of the given holomorphic form self in terms of the basis forms in a list holo."""
|
||||
C = self.curve
|
||||
if basis == 0:
|
||||
basis = C.holomorphic_differentials_basis()
|
||||
RxyzQ, Rxyz, x, y, z = C.fct_field
|
||||
# We need to have only polynomials to use monomial_coefficients in linear_representation_polynomials,
|
||||
# and sometimes basis elements have denominators. Thus we multiply by them.
|
||||
denom = LCM([denominator(omega.form) for omega in basis])
|
||||
basis = [denom*omega for omega in basis]
|
||||
self_with_no_denominator = denom*self
|
||||
return linear_representation_polynomials(Rxyz(self_with_no_denominator.form), [Rxyz(omega.form) for omega in basis])
|
||||
|
||||
def trace(self):
|
||||
C = self.curve
|
||||
C_super = C.quotient
|
||||
n = C.height
|
||||
F = C.base_ring
|
||||
variable_names = 'x, y'
|
||||
for j in range(n):
|
||||
variable_names += ', z' + str(j)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
result = as_form(C, 0)
|
||||
G = C.group
|
||||
for a in G:
|
||||
result += self.group_action(a)
|
||||
result = result.form
|
||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||
Qxy = FractionField(Rxy)
|
||||
result = as_reduction(C, result)
|
||||
return superelliptic_form(C_super, Qxy(result))
|
||||
|
||||
def residue(self, place=0):
|
||||
return self.expansion_at_infty(place = place).residue()
|
||||
|
||||
def valuation(self, place=0):
|
||||
return self.expansion_at_infty(place = place).valuation()
|
||||
|
||||
def serre_duality_pairing(self, fct):
|
||||
AS = self.curve
|
||||
return sum((fct*self).residue(place = _) for _ in range(AS.nb_of_pts_at_infty))
|
||||
|
||||
def cartier(self):
|
||||
C = self.curve
|
||||
F = C.base_ring
|
||||
n = C.height
|
||||
ff = C.functions
|
||||
p = F.characteristic()
|
||||
C_super = C.quotient
|
||||
(RxyzQ, Rxyz, x, y, z) = C.fct_field
|
||||
fct = self.form
|
||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||
RxyQ = FractionField(Rxy)
|
||||
x, y = Rxyz.gens()[0], Rxyz.gens()[1]
|
||||
z = Rxyz.gens()[2:]
|
||||
num = Rxyz(fct.numerator())
|
||||
den = Rxyz(fct.denominator())
|
||||
result = RxyzQ(0)
|
||||
#return (num, den, z, fct)
|
||||
if den in Rxy:
|
||||
sub_list = {x : x, y : y} | {z[j] : (z[j]^p - RxyzQ(ff[j].function)) for j in range(n)}
|
||||
num = RxyzQ(num.substitute(sub_list))
|
||||
den1 = Rxyz(num.denominator())
|
||||
num = Rxyz(num*den1^p)
|
||||
for monomial in Rxyz(num).monomials():
|
||||
degrees = [monomial.degree(z[i]) for i in range(n)]
|
||||
product_of_z = prod(z[i]^(degrees[i]) for i in range(n))
|
||||
monomial_divided_by_z = monomial/product_of_z
|
||||
product_of_z_no_p = prod(z[i]^(degrees[i]/p) for i in range(n))
|
||||
aux_form = superelliptic_form(C_super, RxyQ(monomial_divided_by_z/den))
|
||||
aux_form = aux_form.cartier()
|
||||
result += product_of_z_no_p * Rxyz(num).monomial_coefficient(monomial) * aux_form.form/den1
|
||||
return as_form(C, result)
|
||||
raise ValueError("Please present first your form as sum z^i omega_i, where omega_i are forms on quotient curve.")
|
||||
|
||||
def is_regular_on_U0(self):
|
||||
AS = self.curve
|
||||
C = AS.quotient
|
||||
m = C.exponent
|
||||
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
||||
if y^(m-1)*self.form in Rxyz:
|
||||
return True
|
||||
return False
|
||||
|
||||
def are_forms_linearly_dependent(set_of_forms):
|
||||
from sage.rings.polynomial.toy_variety import is_linearly_dependent
|
||||
C = set_of_forms[0].curve
|
||||
F = C.base_ring
|
||||
n = C.height
|
||||
variable_names = 'x, y'
|
||||
for i in range(n):
|
||||
variable_names += ', z' + str(i)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
denominators = prod(denominator(omega.form) for omega in set_of_forms)
|
||||
return is_linearly_dependent([Rxyz(denominators*omega.form) for omega in set_of_forms])
|
||||
|
||||
def only_log_forms(C_AS):
|
||||
list1 = AS.at_most_poles_forms(0)
|
||||
list2 = AS.at_most_poles_forms(1)
|
||||
result = []
|
||||
for a in list2:
|
||||
if not(are_forms_linearly_dependent(list1 + result + [a])):
|
||||
result += [a]
|
||||
return result
|
202
elementary_covers/as_function_class.sage
Normal file
202
elementary_covers/as_function_class.sage
Normal file
@ -0,0 +1,202 @@
|
||||
class as_function:
|
||||
def __init__(self, C, g):
|
||||
self.curve = C
|
||||
F = C.base_ring
|
||||
n = C.height
|
||||
variable_names = 'x, y'
|
||||
for i in range(n):
|
||||
variable_names += ', z' + str(i)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
self.function = RxyzQ(g)
|
||||
#self.function = as_reduction(AS, RxyzQ(g))
|
||||
|
||||
def __repr__(self):
|
||||
return str(self.function)
|
||||
|
||||
def __eq__(self, other):
|
||||
AS = self.curve
|
||||
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
||||
aux = self - other
|
||||
aux = RxyzQ(aux.function)
|
||||
aux = aux.numerator()
|
||||
aux = as_function(AS, aux)
|
||||
aux = aux.expansion_at_infty()
|
||||
if aux.valuation() >= 1:
|
||||
return True
|
||||
return False
|
||||
|
||||
def __add__(self, other):
|
||||
C = self.curve
|
||||
g1 = self.function
|
||||
g2 = other.function
|
||||
return as_function(C, g1 + g2)
|
||||
|
||||
def __sub__(self, other):
|
||||
C = self.curve
|
||||
g1 = self.function
|
||||
g2 = other.function
|
||||
return as_function(C, g1 - g2)
|
||||
|
||||
def __rmul__(self, constant):
|
||||
C = self.curve
|
||||
g = self.function
|
||||
return as_function(C, constant*g)
|
||||
|
||||
def __neg__(self):
|
||||
C = self.curve
|
||||
g = self.function
|
||||
return as_function(C, -g)
|
||||
|
||||
def __mul__(self, other):
|
||||
if isinstance(other, as_function):
|
||||
C = self.curve
|
||||
g1 = self.function
|
||||
g2 = other.function
|
||||
return as_function(C, g1*g2)
|
||||
if isinstance(other, as_form):
|
||||
C = self.curve
|
||||
g1 = self.function
|
||||
g2 = other.form
|
||||
return as_form(C, g1*g2)
|
||||
|
||||
def __truediv__(self, other):
|
||||
C = self.curve
|
||||
g1 = self.function
|
||||
g2 = other.function
|
||||
return as_function(C, g1/g2)
|
||||
|
||||
def __pow__(self, exponent):
|
||||
C = self.curve
|
||||
g1 = self.function
|
||||
return as_function(C, g1^(exponent))
|
||||
|
||||
def expansion_at_infty(self, place = 0):
|
||||
C = self.curve
|
||||
delta = C.nb_of_pts_at_infty
|
||||
F = C.base_ring
|
||||
x_series = C.x_series[place]
|
||||
y_series = C.y_series[place]
|
||||
z_series = C.z_series[place]
|
||||
n = C.height
|
||||
variable_names = 'x, y'
|
||||
for j in range(n):
|
||||
variable_names += ', z' + str(j)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
prec = C.prec
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
g = self.function
|
||||
g = RxyzQ(g)
|
||||
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
||||
return g.substitute(sub_list)
|
||||
|
||||
def expansion(self, pt = 0):
|
||||
C = self.curve
|
||||
delta = C.nb_of_pts_at_infty
|
||||
F = C.base_ring
|
||||
x_series = C.x_series[pt]
|
||||
y_series = C.y_series[pt]
|
||||
z_series = C.z_series[pt]
|
||||
n = C.height
|
||||
variable_names = 'x, y'
|
||||
for j in range(n):
|
||||
variable_names += ', z' + str(j)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
prec = C.prec
|
||||
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
||||
g = self.function
|
||||
g = RxyzQ(g)
|
||||
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
||||
return g.substitute(sub_list)
|
||||
|
||||
def group_action(self, ZN_tuple):
|
||||
C = self.curve
|
||||
n = C.height
|
||||
F = C.base_ring
|
||||
variable_names = 'x, y'
|
||||
for j in range(n):
|
||||
variable_names += ', z' + str(j)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
sub_list = {x : x, y : y} | {z[j] : z[j]+ZN_tuple[j] for j in range(n)}
|
||||
g = self.function
|
||||
return as_function(C, g.substitute(sub_list))
|
||||
|
||||
def reduce(self):
|
||||
aux = as_reduction(self.curve, self.function)
|
||||
return as_function(self.curve, aux)
|
||||
|
||||
def trace(self):
|
||||
C = self.curve
|
||||
C_super = C.quotient
|
||||
n = C.height
|
||||
F = C.base_ring
|
||||
variable_names = 'x, y'
|
||||
for j in range(n):
|
||||
variable_names += ', z' + str(j)
|
||||
Rxyz = PolynomialRing(F, n+2, variable_names)
|
||||
x, y = Rxyz.gens()[:2]
|
||||
z = Rxyz.gens()[2:]
|
||||
RxyzQ = FractionField(Rxyz)
|
||||
result = as_function(C, 0)
|
||||
G = C.group
|
||||
for a in G:
|
||||
result += self.group_action(a)
|
||||
result = result.function
|
||||
Rxy.<x, y> = PolynomialRing(F, 2)
|
||||
Qxy = FractionField(Rxy)
|
||||
result = as_reduction(C, result)
|
||||
return superelliptic_function(C_super, Qxy(result))
|
||||
|
||||
def coordinates(self, prec = 100, basis = 0):
|
||||
"Return coordinates in H^1(X, OX)."
|
||||
AS = self.curve
|
||||
if |