class as_cech: def __init__(self, C, omega, f): self.curve = C n = C.height F = C.base_ring variable_names = 'x, y' for i in range(n): variable_names += ', z' + str(i) Rxyz = PolynomialRing(F, n+2, variable_names) x, y = Rxyz.gens()[:2] z = Rxyz.gens()[2:] RxyzQ = FractionField(Rxyz) self.omega0 = omega self.f = f self.omega8 = self.omega0 - self.f.diffn() #if self.omega0.form not in Rxyz or self.omega8.valuation() < 0: # raise ValueError('cech cocycle not regular') def __repr__(self): return "( " + str(self.omega0)+", " + str(self.f) + " )" def __add__(self, other): C = self.curve omega = self.omega0 f = self.f omega1 = other.omega0 f1 = other.f return as_cech(C, omega + omega1, f+f1) def __sub__(self, other): C = self.curve omega = self.omega0 f = self.f omega1 = other.omega0 f1 = other.f return as_cech(C, omega - omega1, f - f1) def __neg__(self): C = self.curve omega = self.omega0 f = self.f return as_cech(C, -omega, -f) def __rmul__(self, constant): C = self.curve omega = self.omega0 f = self.f return as_cech(C, constant*omega, constant*f) def reduce(self): return as_cech(self.curve, self.omega0.reduce(), self.f.reduce()) def coordinates(self, threshold=10, basis = 0): '''Find coordinates of self in the de Rham cohomology basis. Threshold is an argument passed to AS.de_rham_basis().''' AS = self.curve C = AS.quotient m = C.exponent r = C.polynomial.degree() n = AS.height p = AS.characteristic delta = AS.nb_of_pts_at_infty RxyzQ, Rxyz, x, y, z = AS.fct_field if basis == 0: basis = [AS.holomorphic_differentials_basis(), AS.cohomology_of_structure_sheaf_basis(), AS.de_rham_basis(threshold=threshold)] holo_diffs = basis[0] coh_basis = basis[1] dR = basis[2] F = AS.base_ring fct = self.f coh_coordinates = fct.coordinates(basis = [holo_diffs, coh_basis]) #coeficients of self in the basis elts coming from cohomology of OX for i in range(AS.genus()): self -= coh_coordinates[i]*dR[i+AS.genus()] coh_coordinates = AS.genus()*[0] + list(coh_coordinates) if self.f.function not in Rxyz: #We remove now from f the summands which are obviously regular at infty pr = [list(GF(p)) for _ in range(n)] S = [] from itertools import product for i in range(0, threshold*r): for j in range(0, m): for k in product(*pr): g = (AS.x)^i*prod((AS.z[i1])^(k[i1]) for i1 in range(n))*(AS.y)^j S += [(g, g.expansion_at_infty())] S += [(self.f, self.f.expansion_at_infty())] S = holomorphic_combinations_fcts(S, 0) ######## for i in range(delta): for g in AS.fiber(place = i): if i!=0 or g != AS.group.one: S = [(omega, omega.group_action(g).expansion_at_infty(place = i)) for omega in S] S = holomorphic_combinations_fcts(S, 0) ###### for g in S: if g.function not in Rxyz: for a in F: if (self.f.function - a*g.function in Rxyz): self.f.function = self.f.function - a*g.function return vector(coh_coordinates)+vector(self.coordinates(threshold=threshold, basis = basis)) else: self.omega0 -= self.f.diffn() return vector(coh_coordinates) + vector(list(self.omega0.coordinates(basis=holo_diffs))+AS.genus()*[0]) raise ValueError("Increase threshold.") def group_action(self, g): AS = self.curve omega = self.omega0 f = self.f return as_cech(self.curve, omega.group_action(g), f.group_action(g)) def trace(self): AS = self.curve return as_cech(AS, self.omega0.trace(), self.f.trace())