def holomorphic_combinations(S): """Given a list S of pairs (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt.""" C_AS = S[0][0].curve p = C_AS.characteristic F = C_AS.base_ring prec = C_AS.prec Rt. = LaurentSeriesRing(F, default_prec=prec) RtQ = FractionField(Rt) minimal_valuation = min([g[1].valuation() for g in S]) if minimal_valuation >= 0: return [s[0] for s in S] list_of_lists = [] #to będzie lista złożona z list współczynników część nieholomorficznych rozwinięcia form z S for eta, eta_exp in S: a = -minimal_valuation + eta_exp.valuation() list_coeffs = a*[0] + eta_exp.list() + (-minimal_valuation)*[0] list_coeffs = list_coeffs[:-minimal_valuation] list_of_lists += [list_coeffs] M = matrix(F, list_of_lists) V = M.kernel() #chcemy wyzerować części nieholomorficzne, biorąc kombinacje form z S # Sprawdzamy, jakim formom odpowiadają elementy V. forms = [] for vec in V.basis(): forma_holo = 0*S[0][0] forma_holo_power_series = Rt(0) for vec_wspolrzedna, elt_S in zip(vec, S): eta = elt_S[0] #eta_exp = elt_S[1] forma_holo += vec_wspolrzedna*eta #forma_holo_power_series += vec_wspolrzedna*eta_exp forms += [forma_holo] return forms def holomorphic_combinations_mixed(S): """Given a list S of pairs (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt.""" C_AS = S[0][0].curve p = C_AS.characteristic F = C_AS.base_ring prec = C_AS.prec Rt. = LaurentSeriesRing(F, default_prec=prec) RtQ = FractionField(Rt) minimal_valuation = min([g[1].valuation() for g in S]) if minimal_valuation >= 0: return [s[0] for s in S] list_of_lists = [] #to będzie lista złożona z list współczynników część nieholomorficznych rozwinięcia form z S for eta, eta_exp in S: a = -minimal_valuation + eta_exp.valuation() list_coeffs = a*[0] + eta_exp.list() + (-minimal_valuation)*[0] list_coeffs = list_coeffs[:-minimal_valuation] list_of_lists += [list_coeffs] M = matrix(F, list_of_lists) V = M.kernel() #chcemy wyzerować części nieholomorficzne, biorąc kombinacje form z S # Sprawdzamy, jakim formom odpowiadają elementy V. forms = [] for vec in V.basis(): forma_holo = 0*S[0][0] forma_holo_power_series = Rt(0) res1 = 0*C_AS.dx res2 = 0*C_AS.x res = 0*C_AS.dx for vec_wspolrzedna, elt_S in zip(vec, S): eta = elt_S[0] if isinstance(eta, as_form): res += vec_wspolrzedna*eta res1 += vec_wspolrzedna*eta if isinstance(eta, as_function): res += vec_wspolrzedna*eta.diffn() res2 += vec_wspolrzedna*eta #eta_exp = elt_S[1] #forma_holo_power_series += vec_wspolrzedna*eta_exp forms += [(res1, res2)] return forms def holomorphic_combinations_fcts(S, pole_order): '''given a set S of (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt''' C_AS = S[0][0].curve p = C_AS.characteristic F = C_AS.base_ring prec = C_AS.prec Rt. = LaurentSeriesRing(F, default_prec=prec) RtQ = FractionField(Rt) minimal_valuation = min([Rt(g[1]).valuation() for g in S]) if minimal_valuation >= -pole_order: return [s[0] for s in S] list_of_lists = [] #to będzie lista złożona z list współczynników część nieholomorficznych rozwinięcia form z S for eta, eta_exp in S: a = -minimal_valuation + Rt(eta_exp).valuation() if eta_exp !=0: list_coeffs = a*[0] + Rt(eta_exp).list() + (-minimal_valuation)*[0] list_coeffs = list_coeffs[:-minimal_valuation - pole_order] else: list_coeffs = (-minimal_valuation - pole_order)*[0] list_of_lists += [list_coeffs] M = matrix(F, list_of_lists) V = M.kernel() #chcemy wyzerować części nieholomorficzne, biorąc kombinacje form z S # Sprawdzamy, jakim formom odpowiadają elementy V. forms = [] for vec in V.basis(): forma_holo = 0*C_AS.x forma_holo_power_series = Rt(0) for vec_wspolrzedna, elt_S in zip(vec, S): eta = elt_S[0] #eta_exp = elt_S[1] forma_holo += vec_wspolrzedna*eta #forma_holo_power_series += vec_wspolrzedna*eta_exp forms += [forma_holo] return forms def holomorphic_combinations_forms(S, pole_order): '''given a set S of (form, corresponding Laurent series at some pt), find their combinations holomorphic at that pt''' C_AS = S[0][0].curve p = C_AS.characteristic F = C_AS.base_ring prec = C_AS.prec Rt. = LaurentSeriesRing(F, default_prec=prec) RtQ = FractionField(Rt) minimal_valuation = min([Rt(g[1]).valuation() for g in S]) if minimal_valuation >= -pole_order: return [s[0] for s in S] list_of_lists = [] #to będzie lista złożona z list współczynników część nieholomorficznych rozwinięcia form z S for eta, eta_exp in S: a = -minimal_valuation + Rt(eta_exp).valuation() list_coeffs = a*[0] + Rt(eta_exp).list() + (-minimal_valuation)*[0] list_coeffs = list_coeffs[:-minimal_valuation - pole_order] list_of_lists += [list_coeffs] M = matrix(F, list_of_lists) V = M.kernel() #chcemy wyzerować części nieholomorficzne, biorąc kombinacje form z S # Sprawdzamy, jakim formom odpowiadają elementy V. forms = [] for vec in V.basis(): forma_holo = 0*C_AS.dx forma_holo_power_series = Rt(0) for vec_wspolrzedna, elt_S in zip(vec, S): eta = elt_S[0] #eta_exp = elt_S[1] forma_holo += vec_wspolrzedna*eta #forma_holo_power_series += vec_wspolrzedna*eta_exp forms += [forma_holo] return forms #print only forms that are log at the branch pts, but not holomorphic