p = 3 m = 2 F = GF(p) Rx. = PolynomialRing(F) f = x^3 + x C_super = superelliptic(f, m) f1 = C_super.x^2*C_super.y f2 = C_super.x^3 AS = elementary_cover([f1, f2], prec=1000) A, B = AS.group_action_matrices_holo() n = A.dimensions()[0] print(A*B == B*A) print(A^p == identity_matrix(n)) print(B^p == identity_matrix(n)) print(magma_module_decomposition(A, B))