{ "cells": [ { "cell_type": "code", "execution_count": 219, "metadata": {}, "outputs": [], "source": [ "class superelliptic:\n", " def __init__(self, f, m, p):\n", " R. = PolynomialRing(GF(p))\n", " self.polynomial = R(f)\n", " self.exponent = m\n", " self.characteristic = p\n", " \n", " \n", " def __repr__(self):\n", " f = self.polynomial\n", " m = self.exponent\n", " p = self.characteristic\n", " return 'Superelliptic curve with the equation y^' + str(m) + ' = ' + str(f)+' over finite field with ' + str(p) + ' elements.'\n", " \n", " def genus(self):\n", " r = self.polynomial.degree()\n", " m = self.exponent\n", " delta = GCD(r, m)\n", " return 1/2*((r-1)*(m-1) - delta + 1)\n", " \n", " def basis_holomorphic_differentials(self, j = 'all'):\n", " f = self.polynomial\n", " m = self.exponent\n", " p = self.characteristic\n", " r = f.degree()\n", " delta = GCD(r, m)\n", " \n", " basis = {}\n", " if j == 'all':\n", " k = 0\n", " for i in range(1, r):\n", " for j in range(1, m):\n", " if (r*j - m*i >= delta):\n", " basis[k] = superelliptic_form(C, x^(i-1)/y^j)\n", " k = k+1\n", " return basis\n", " else:\n", " k = 0\n", " for i in range(1, r):\n", " if (r*j - m*i >= delta):\n", " basis[k] = superelliptic_form(C, x^(i-1)/y^j)\n", " k = k+1\n", " return basis\n", " \n", "def reduction(C, g):\n", " p = C.characteristic\n", " R. = PolynomialRing(GF(p), 2)\n", " RR = FractionField(R)\n", " f = C.polynomial\n", " r = f.degree()\n", " m = C.exponent\n", " g = RR(g)\n", " g1 = g.numerator()\n", " g2 = g.denominator()\n", " \n", " R1. = PolynomialRing(GF(p))\n", " R2 = FractionField(R1)\n", " R3. = PolynomialRing(R2) \n", " (A, B, C) = xgcd(R3(g2), R3(y^m - f))\n", " g = R3(g1*B/A)\n", " \n", " while(g.degree(R(y)) >= m):\n", " d = g.degree(R(y))\n", " G = g.coefficient(R(y^d))\n", " i = floor(d/m)\n", " g = g - G*y^d + f^i * y^(d%m) *G\n", " \n", " return(R3(g))\n", "\n", "def reduction_form(C, g):\n", " p = C.characteristic\n", " R. = PolynomialRing(GF(p), 2)\n", " RR = FractionField(R)\n", " f = C.polynomial\n", " r = f.degree()\n", " m = C.exponent\n", " g = reduction(C, g)\n", "\n", " g1 = RR(0)\n", " R1. = PolynomialRing(GF(p))\n", " R2 = FractionField(R1)\n", " R3. = PolynomialRing(R2)\n", " \n", " g = R3(g)\n", " for j in range(0, m):\n", " G = g.coefficients(sparse = false)[j]\n", " g1 += RR(y^(j-m)*f*G)\n", " \n", " return(g1)\n", " \n", "class superelliptic_function:\n", " def __init__(self, C, g):\n", " R. = PolynomialRing(GF(p), 2)\n", " RR = FractionField(R)\n", " f = C.polynomial\n", " r = f.degree()\n", " m = C.exponent\n", " \n", " self.curve = C\n", " g = reduction(C, g)\n", " self.function = g\n", " \n", " def __repr__(self):\n", " return str(self.function)\n", " \n", " def jth_component(self, j):\n", " g = self.function\n", " R. = PolynomialRing(GF(p), 2)\n", " g = R(g)\n", " return g.coefficient(y^j)\n", " \n", " def __add__(self, other):\n", " C = self.curve\n", " g1 = self.function\n", " g2 = other.function\n", " g = reduction(C, g1 + g2)\n", " return superelliptic_function(C, g)\n", " \n", " def __sub__(self, other):\n", " C = self.curve\n", " g1 = self.function\n", " g2 = other.function\n", " g = reduction(C, g1 - g2)\n", " return superelliptic_function(C, g)\n", " \n", " def __mul__(self, other):\n", " C = self.curve\n", " g1 = self.function\n", " g2 = other.function\n", " g = reduction(C, g1 * g2)\n", " return superelliptic_function(C, g)\n", " \n", " def __truediv__(self, other):\n", " C = self.curve\n", " g1 = self.function\n", " g2 = other.function\n", " g = reduction(C, g1 / g2)\n", " return superelliptic_function(C, g)\n", " \n", "def diffn(self):\n", " C = self.curve\n", " f = C.polynomial\n", " m = C.exponent\n", " g = self.function\n", " A = g.derivative(x)\n", " B = g.derivative(y)*f.derivative(x)/(m*y^(m-1))\n", " return superelliptic_form(C, A+B)\n", " \n", "class superelliptic_form:\n", " def __init__(self, C, g):\n", " R. = PolynomialRing(GF(p), 2)\n", " RR = FractionField(R)\n", " g = RR(reduction_form(C, g))\n", " self.form = g\n", " self.curve = C \n", " \n", " def __add__(self, other):\n", " C = self.curve\n", " g1 = self.form\n", " g2 = other.form\n", " g = reduction(C, g1 + g2)\n", " return superelliptic_form(C, g)\n", " \n", " def __sub__(self, other):\n", " C = self.curve\n", " g1 = self.form\n", " g2 = other.form\n", " g = reduction(C, g1 - g2)\n", " return superelliptic_form(C, g)\n", " \n", " def __repr__(self):\n", " g = self.form\n", " if len(str(g)) == 1:\n", " return str(g) + ' dx'\n", " return '('+str(g) + ') dx'\n", " \n", " def jth_component(self, j):\n", " g = self.form\n", " R. = PolynomialRing(GF(p), 2)\n", " g = R(g)\n", " return g.coefficient(y^j)" ] }, { "cell_type": "code", "execution_count": 220, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{0: (1/y) dx}" ] }, "execution_count": 220, "metadata": {}, "output_type": "execute_result" } ], "source": [ "C = superelliptic(x^3 + x + 2, 2, 5)\n", "C.basis_holomorphic_differentials()" ] }, { "cell_type": "code", "execution_count": 179, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 179, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A.degree(y)" ] }, { "cell_type": "code", "execution_count": 180, "metadata": {}, "outputs": [], "source": [ "p = 5\n", "R. = PolynomialRing(GF(p), 2)\n", "g = x^6*y^2 + y^2" ] }, { "cell_type": "code", "execution_count": 181, "metadata": {}, "outputs": [], "source": [ "omega = diffn(superelliptic_function(C, y^2))" ] }, { "cell_type": "code", "execution_count": 183, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-2*x^2 + 1" ] }, "execution_count": 183, "metadata": {}, "output_type": "execute_result" } ], "source": [ "omega.jth_component(0)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "y" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "R. = PolynomialRing(GF(p), 2)\n", "g1 = x^3*y^7 + x^2*y^9\n", "g2 = x^2*y + y^6\n", "R1. = PolynomialRing(GF(p))\n", "R2 = FractionField(R1)\n", "R3. = PolynomialRing(R2)\n", "\n", "xgcd(R3(g1), R3(g2))[1]*R3(g1) + xgcd(R3(g1), R3(g2))[2]*R3(g2)" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "H = HyperellipticCurve(x^5 - x + 1)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Hyperelliptic Curve over Finite Field of size 5 defined by y^2 = x^5 + 4*x + 1" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "H" ] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [], "source": [ "f = x^3 + x + 2" ] }, { "cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-2*x^2 + 1" ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f.derivative(x)" ] }, { "cell_type": "code", "execution_count": 213, "metadata": {}, "outputs": [], "source": [ "R1. = PolynomialRing(GF(p))\n", "R2 = FractionField(R1)\n", "R3. = PolynomialRing(R2)\n", "g = y^2/x + y/(x+1) " ] }, { "cell_type": "code", "execution_count": 218, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[0, 1/(x + 1), 1/x]" ] }, "execution_count": 218, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g.coefficients(sparse = false)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.1", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }