class as_cover: def __init__(self, C, cover_template, list_of_fcts, branch_points = [], prec = 10): self.quotient = C self.cover_template = cover_template self.functions = list_of_fcts self.height = len(list_of_fcts) F = C.base_ring self.base_ring = F p = C.characteristic self.characteristic = p self.prec = prec #group acting self.height = cover_template.height self.group = cover_template.group ######### f = C.polynomial m = C.exponent r = f.degree() delta = GCD(m, r) self.nb_of_pts_at_infty = delta self.branch_points = list(range(delta)) + branch_points Rxy. = PolynomialRing(F, 2) Rt. = LaurentSeriesRing(F, default_prec=prec) Rzf, zgen, fgen, xgen, ygen = cover_template.fct_field all_x_series = {} all_y_series = {} all_z_series = {} all_dx_series = {} all_jumps = {} for pt in self.branch_points: x_series = superelliptic_function(C, x).expansion(pt=pt, prec=prec) y_series = superelliptic_function(C, y).expansion(pt=pt, prec=prec) z_series = [] jumps = [] n = len(list_of_fcts) list_of_power_series = [g.expansion(pt=pt, prec=prec) for g in list_of_fcts] for j in range(n): #### # power_series = Rzf(cover_template.fcts[j]).subs({zgen[i] : z_series[i] for i in range(j)} | {zgen[i] : 0 for i in range(j, n)} | {fgen[i] : list_of_power_series[i] for i in range(n)}) #### jump, correction, t_old, z = artin_schreier_transform(power_series, prec = prec) x_series = x_series(t = t_old) y_series = y_series(t = t_old) z_series = [zi(t = t_old) for zi in z_series] z_series += [z] jumps += [jump] list_of_power_series = [g(t = t_old) for g in list_of_power_series] all_jumps[pt] = jumps all_x_series[pt] = x_series all_y_series[pt] = y_series all_z_series[pt] = z_series all_dx_series[pt] = x_series.derivative() self.jumps = all_jumps self.x_series = all_x_series self.y_series = all_y_series self.z_series = all_z_series self.dx_series = all_dx_series ############## #Function field variable_names = 'x, y' for i in range(n): variable_names += ', z' + str(i) Rxyz = PolynomialRing(F, n+2, variable_names) x, y = Rxyz.gens()[:2] z = Rxyz.gens()[2:] RxyzQ = FractionField(Rxyz) self.fct_field = (RxyzQ, Rxyz, x, y, z) self.x = as_function(self, x) self.y = as_function(self, y) self.z = [as_function(self, z[j]) for j in range(n)] self.dx = as_form(self, 1) self.one = as_function(self, 1) Rzf, zgen, fgen, xgen, ygen = cover_template.fct_field subs_fs = {zgen[i] : z[i]}| {fgen[i] : RxyzQ(list_of_fcts[i].function) for i in range(n)}|{xgen:x, ygen:y} self.rhs = [RxyzQ(cover_template.fcts[i].subs(subs_fs)) for i in range(n)] ##### ##### We compute now the differentials dz[i] y_super = superelliptic_function(C, y) dy_super = y_super.diffn().form dz = [] for i in range(n): aux_fct = self.rhs[i] result = 0 for j in range(i): result += aux_fct.derivative(z[j])*dz[j] result += aux_fct.derivative(x) result += aux_fct.derivative(y)*dy_super dz += [-result] self.dz = dz def __repr__(self): n = self.height p = self.characteristic result = "("+self.group.short_name+")" result += "-cover of " + str(self.quotient)+" with the equations: \n" for i in range(n): result += 'z'+str(i)+'^p - z'+str(i) + ' = ' aux = str(self.cover_template.fcts[i]) for t in range(n): aux = aux.replace("f"+str(t), "(" + str(self.functions[t]) + ")") result += aux + '\n' return result def genus(self): jumps = self.jumps gY = self.quotient.genus() n = self.height p = self.characteristic return p^n*(gY-1) + 1 + 1/2*sum(self.exponent_of_different(place)*len(self.fiber(place)) for place in self.branch_points) def exponent_of_different(self, place = 0): jumps = self.jumps n = self.height p = self.characteristic dd = [0] for i in range(1, n+1): if jumps[place][i-1] == 0: dd += [dd[i-1]] else: dd += [(jumps[place][i-1]+1)*(p-1) + p*dd[i-1]] return dd[n] def exponent_of_different_prim(self, place = 0): jumps = self.jumps n = self.height p = self.characteristic dd = [0] for i in range(1, n+1): if jumps[place][i-1] == 0: dd += [dd[i-1]] else: dd += [jumps[place][i-1]*(p-1) + p*dd[i-1]] return dd[n] def exponent_of_different_bis(self, place = 0): jumps = self.jumps n = self.height p = self.characteristic dd = [0] for i in range(1, n+1): if jumps[place][i-1] == 0: dd += [dd[i-1]] else: dd += [(jumps[place][i-1]-1)*(p-1) + p*dd[i-1]] return dd[n] def holomorphic_differentials_basis(self, threshold = 8): from itertools import product x_series = self.x_series y_series = self.y_series z_series = self.z_series dx_series = self.dx_series delta = self.nb_of_pts_at_infty p = self.characteristic n = self.height prec = self.prec C = self.quotient F = self.base_ring m = C.exponent r = C.polynomial.degree() RxyzQ, Rxyz, x, y, z = self.fct_field Rt. = LaurentSeriesRing(F, default_prec=prec) #Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y S = [] pr = [list(GF(p)) for _ in range(n)] for i in range(0, threshold*r): for j in range(0, m): for k in product(*pr): eta = as_form(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))/y^j) eta_exp = eta.expansion(pt=self.branch_points[0]) S += [(eta, eta_exp)] forms = holomorphic_combinations(S) for i in range(delta): for g in self.fiber(place = i): if i!=0 or g != self.group.one: forms = [(omega, omega.group_action(g).expansion_at_infty(i)) for omega in forms] forms = holomorphic_combinations(forms) if len(forms) < self.genus(): print("I haven't found all forms, only ", len(forms), " of ", self.genus()) raise ValueError("Increase threshold.") #return holomorphic_differentials_basis(self, threshold = threshold + 1) if len(forms) > self.genus(): print(len(forms), forms) raise ValueError("Increase precision.") return forms def cartier_matrix(self, prec=50): g = self.genus() F = self.base_ring M = matrix(F, g, g) for i, omega in enumerate(self.holomorphic_differentials_basis()): M[:, i] = vector(omega.cartier().coordinates()) return M def at_most_poles(self, pole_order, threshold = 8): """ Find fcts with pole order in infty's at most pole_order. Threshold gives a bound on powers of x in the function. If you suspect that you haven't found all the functions, you may increase it.""" from itertools import product x_series = self.x_series y_series = self.y_series z_series = self.z_series delta = self.nb_of_pts_at_infty p = self.characteristic n = self.height prec = self.prec C = self.quotient F = self.base_ring m = C.exponent r = C.polynomial.degree() RxyzQ, Rxyz, x, y, z = self.fct_field F = C.base_ring Rt. = LaurentSeriesRing(F, default_prec=prec) #Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y S = [] RQxyz = FractionField(Rxyz) pr = [list(GF(p)) for _ in range(n)] for i in range(0, threshold*r): for j in range(0, m): for k in product(*pr): eta = as_function(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))*y^j) eta_exp = eta.expansion_at_infty() S += [(eta, eta_exp)] forms = holomorphic_combinations_fcts(S, pole_order) for i in range(1, delta): forms = [(omega, omega.expansion_at_infty(place = i)) for omega in forms] forms = holomorphic_combinations_fcts(forms, pole_order) return forms def magical_element(self, threshold = 8): list_of_elts = self.at_most_poles(self.exponent_of_different_prim(), threshold) result = [] for a in list_of_elts: if a.trace().function != 0: result += [a] return result def pseudo_magical_element(self, threshold = 8): list_of_elts = self.at_most_poles(self.exponent_of_different(), threshold) result = [] for a in list_of_elts: if a.trace().function != 0: result += [a] return result def at_most_poles_forms(self, pole_order, threshold = 8): """Find forms with pole order in all the points at infty equat at most to pole_order. Threshold gives a bound on powers of x in the form. If you suspect that you haven't found all the functions, you may increase it.""" from itertools import product x_series = self.x_series y_series = self.y_series z_series = self.z_series delta = self.nb_of_pts_at_infty p = self.characteristic n = self.height prec = self.prec C = self.quotient F = self.base_ring m = C.exponent r = C.polynomial.degree() RxyzQ, Rxyz, x, y, z = self.fct_field Rt. = LaurentSeriesRing(F, default_prec=prec) #Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y S = [] RQxyz = FractionField(Rxyz) pr = [list(GF(p)) for _ in range(n)] for i in range(0, threshold*r): for j in range(0, m): for k in product(*pr): eta = as_form(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))/y^j) eta_exp = eta.expansion_at_infty() S += [(eta, eta_exp)] forms = holomorphic_combinations_forms(S, pole_order) for pt in self.branch_points[1:]: forms = [(omega, omega.expansion(pt=pt)) for omega in forms] forms = holomorphic_combinations_forms(forms, pole_order) return forms def uniformizer(self, place = 0, threshold = 10): '''Return uniformizer of curve self at place-th place at infinity.''' p = self.characteristic n = self.height F = self.base_ring list_of_fcts = self.at_most_poles(threshold) list_of_fcts2 = self.z + [self.x, self.y] for f1 in list_of_fcts: for f2 in list_of_fcts2: d, a, b = xgcd(f1.valuation(place), f2.valuation(place)) if d == 1: return f1^a*f2^b raise ValueError("Increase threshold.") def quasiuniformizer(self, place = 0, threshold = 10): '''Return an element with valuation coprime to p.''' p = self.characteristic n = self.height F = self.base_ring rr_space = self.at_most_poles(threshold, threshold=int(sqrt(threshold))) #there are two thresholds, how to pick them? we picked sqrt randomly list_of_fcts = [ff for ff in rr_space if ff.valuation(place)%p != 0] list_of_fcts2 = [len(str(ff)) for ff in list_of_fcts] i_min = list_of_fcts2.index(min(list_of_fcts2)) result = list_of_fcts.pop(i_min) flag = 1 while flag == 1: flag = 0 for g in self.group.elts: if result.group_action(g) == result and g != self.group.one: flag = 1 if flag == 1: list_of_fcts2 = [len(str(ff)) for ff in list_of_fcts] i_min = list_of_fcts2.index(min(list_of_fcts2)) result = list_of_fcts.pop(i_min) return result def stabilizer(self, place = 0): result = [] for g in self.group.elts: flag = 1 for i in range(self.height): if self.z[i].valuation(place = place) > 0: fct = self.z[i] elif self.z[i].valuation(place = place) < 0: fct = self.one/self.z[i] if fct.group_action(g).valuation(place = place) <= 0: flag = 0 if flag: result += [g] return result def fiber(self, place = 0): 'Gives representatives for the quotient G/G_P for given place. Those are in bijection with the fiber.' result = [self.group.one] p = self.characteristic G = self.group H = self.stabilizer(place = place) for g in self.group.elts: if g != self.group.one: flag = 1 for v in result: if (G.elt(g)*(-G.elt(v))).as_tuple in H: flag = 0 if flag: result += [g] return result def ith_ramification_gp(self, i, place = 0, quasiuniformizer = 0, threshold = 20): '''Find ith ramification group at place at infty of nb place.''' G = self.group.elts p = self.characteristic Gi = [G[0]] # list_of_fcts = self.z #[self.one/zz for zz in AS.z if zz.valuation(place) < 0] # list_of_fcts += [zz^2 for zz in self.z] if isinstance(quasiuniformizer, int) or isinstance(quasiuniformizer, Integer): t = self.quasiuniformizer(place, threshold=threshold) else: t = quasiuniformizer for g in G: if g != G[0]: tg = t.group_action(g) v = (tg - t).valuation(place) if v >= i + t.valuation(place): Gi += [g] return Gi def ramification_jumps(self, place = 0, quasiuniformizer = 0, threshold = 20): '''Return list of lower ramification jumps at at place at infty of nb place.''' G = self.stabilizer(place=place) p = self.characteristic Gi = [G[0]] # list_of_fcts = self.z #[self.one/zz for zz in AS.z if zz.valuation(place) < 0] # list_of_fcts += [zz^2 for zz in self.z] if isinstance(quasiuniformizer, int) or isinstance(quasiuniformizer, Integer): t = self.quasiuniformizer(place, threshold=threshold) else: t = quasiuniformizer result = [] i = 0 while len(G) > 1: Gi = [G[0]] for g in G: if g != G[0]: tg = t.group_action(g) v = (tg - t).valuation(place) if v >= i + t.valuation(place): Gi += [g] if len(Gi) < len(G): result += [i-1] G = Gi i+=1 return result def upper_ramification_jumps(self, place = 0, quasiuniformizer = 0, threshold = 20): lj = self.ramification_jumps(place = place, quasiuniformizer = quasiuniformizer, threshold = threshold) result = [] result += [lj[0]] for j in range(1, len(lj)): aux = len(self.stabilizer(place=place))//len(self.ith_ramification_gp(lj[j], place = place, quasiuniformizer = quasiuniformizer, threshold = threshold)) result += [result[j-1] + (lj[j] - lj[j-1])//aux] return result def a_number(self): g = self.genus() return g - self.cartier_matrix().rank() def cohomology_of_structure_sheaf_basis(self, holo_basis = 0, threshold = 8): if holo_basis == 0: holo_basis = self.holomorphic_differentials_basis(threshold = threshold) from itertools import product x_series = self.x_series y_series = self.y_series z_series = self.z_series delta = self.nb_of_pts_at_infty p = self.characteristic n = self.height prec = self.prec C = self.quotient F = self.base_ring m = C.exponent r = C.polynomial.degree() RxyzQ, Rxyz, x, y, z = self.fct_field Rt. = LaurentSeriesRing(F, default_prec=prec) #Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y result_fcts = [] V = VectorSpace(F,self.genus()) S = V.subspace([]) RQxyz = FractionField(Rxyz) pr = [list(GF(p)) for _ in range(n)] i = 0 while len(result_fcts) < self.genus(): for j in range(0, m): for k in product(*pr): f = as_function(self, prod(z[i1]^(k[i1]) for i1 in range(n))/x^i*y^j) f_products = [omega.serre_duality_pairing(f) for omega in holo_basis] if vector(f_products) not in S: S = S+V.subspace([V(f_products)]) result_fcts += [f] i += 1 return result_fcts def lift_to_de_rham(self, fct, threshold = 30): '''Given function fct, find form eta regular on affine part such that eta - d(fct) is regular in infty. (Works for one place at infty now)''' from itertools import product x_series = self.x_series y_series = self.y_series z_series = self.z_series dx_series = self.dx_series delta = self.nb_of_pts_at_infty p = self.characteristic n = self.height prec = self.prec C = self.quotient F = self.base_ring m = C.exponent r = C.polynomial.degree() RxyzQ, Rxyz, x, y, z = self.fct_field Rt. = LaurentSeriesRing(F, default_prec=prec) #Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y S = [(fct.diffn(), fct.diffn().expansion_at_infty())] pr = [list(GF(p)) for _ in range(n)] holo = self.holomorphic_differentials_basis(threshold = threshold) for i in range(0, threshold*r): for j in range(0, m): for k in product(*pr): eta = as_form(self, x^i*prod(z[i1]^(k[i1]) for i1 in range(n))/y^j) eta_exp = eta.expansion_at_infty() S += [(eta, eta_exp)] forms = holomorphic_combinations(S) if len(forms) <= self.genus(): raise ValueError("Increase threshold!") for omega in forms: for a in F: if (a*omega + fct.diffn()).is_regular_on_U0(): return a*omega + fct.diffn() raise ValueError("Unknown.") def lift_to_de_rham_form(self, eta, threshold = 20): '''Given form eta regular on affine part find fct such that eta - d(fct) is regular in infty. (Works for one place at infty now)''' from itertools import product x_series = self.x_series y_series = self.y_series z_series = self.z_series dx_series = self.dx_series delta = self.nb_of_pts_at_infty p = self.characteristic n = self.height prec = self.prec C = self.quotient F = self.base_ring m = C.exponent r = C.polynomial.degree() RxyzQ, Rxyz, x, y, z = self.fct_field Rt. = LaurentSeriesRing(F, default_prec=prec) #Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y S = [(eta, eta.expansion_at_infty())] pr = [list(GF(p)) for _ in range(n)] for i in range(0, threshold*r): for j in range(0, m): for k in product(*pr): ff = as_function(self, prod(z[i1]^(k[i1]) for i1 in range(n))/x^i*y^j) ff_exp = ff.diffn().expansion_at_infty() if ff_exp != 0*ff_exp: S += [(ff, ff_exp)] for i in range(0, threshold*r): for j in range(0, m): for k in product(*pr): ff = as_function(self, prod(z[i1]^(k[i1]) for i1 in range(n))*x^i*y^j) ff_exp = ff.diffn().expansion_at_infty() if ff_exp != 0*ff_exp: S += [(ff, ff_exp)] forms = holomorphic_combinations_mixed(S) if len(forms) <= self.genus(): raise ValueError("Increase threshold!") result = [] for ff in forms: if ff[0] != 0*self.dx: result += [as_cech(self, ff[0], -ff[1])] return result raise ValueError("Unknown.") def de_rham_basis(self, holo_basis = 0, cohomology_basis = 0, threshold = 30): if holo_basis == 0: holo_basis = self.holomorphic_differentials_basis(threshold = threshold) if cohomology_basis == 0: cohomology_basis = self.cohomology_of_structure_sheaf_basis(holo_basis = holo_basis, threshold = threshold) result = [] for omega in holo_basis: result += [as_cech(self, omega, as_function(self, 0))] for f in cohomology_basis: omega = self.lift_to_de_rham(f, threshold = threshold) result += [as_cech(self, omega, f)] return result def group_action_matrices_holo(AS, basis=0, threshold=10): n = AS.height if basis == 0: basis = AS.holomorphic_differentials_basis(threshold=threshold) F = AS.base_ring return as_group_action_matrices(F, basis, AS.group.gens, basis = basis) def group_action_matrices_poly(AS, mult, basis=0, threshold=10): n = AS.height if basis == 0: basis = AS.holo_polydifferentials_basis(mult = mult, threshold=threshold) F = AS.base_ring return as_group_action_matrices(F, basis, AS.group.gens, basis = basis) def group_action_matrices_dR(AS, basis = 0, threshold=8): n = AS.height if basis == 0: holo_basis = AS.holomorphic_differentials_basis(threshold = threshold) str_basis = AS.cohomology_of_structure_sheaf_basis(holo_basis = holo_basis, threshold = threshold) dr_basis = AS.de_rham_basis(holo_basis = holo_basis, cohomology_basis = str_basis, threshold=threshold) basis = [holo_basis, str_basis, dr_basis] return as_group_action_matrices(F, basis[2], AS.group.gens, basis = basis) def group_action_matrices_log_holo(AS): n = AS.height F = AS.base_ring return as_group_action_matrices(F, AS.at_most_poles_forms(1), AS.group.gens, basis = AS.at_most_poles_forms(1)) def riemann_roch_space(self, pole_orders, threshold = 8): """ Find fcts with pole order in infty's at most pole_order from the given dictionary. The keys of the dictionary are pairs (place_at_infty, group element). The items are the poles orders at those places. Threshold gives a bound on powers of x in the function. If you suspect that you haven't found all the functions, you may increase it.""" from itertools import product x_series = self.x_series y_series = self.y_series z_series = self.z_series delta = self.nb_of_pts_at_infty p = self.characteristic n = self.height prec = self.prec C = self.quotient F = self.base_ring m = C.exponent r = C.polynomial.degree() RxyzQ, Rxyz, x, y, z = self.fct_field F = C.base_ring Rt. = LaurentSeriesRing(F, default_prec=prec) #Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y S = [] RQxyz = FractionField(Rxyz) pr = [list(GF(p)) for _ in range(n)] for i in range(0, threshold*r): for j in range(0, m): for k in product(*pr): eta = as_function(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))*y^j) eta_exp = eta.expansion_at_infty() S += [(eta, eta_exp)] forms = holomorphic_combinations_fcts(S, pole_orders[(0, self.group.one)]) for i in range(delta): for g in self.fiber(place = i): if i!=0 or g != self.group.one: forms = [(omega, omega.group_action(g).expansion_at_infty(place = i)) for omega in forms] forms = holomorphic_combinations_fcts(forms, pole_orders[(i, g)]) return forms def riemann_roch_space_forms(self, pole_orders, threshold = 8): """ Find fcts with pole order in infty's at most pole_order from the given dictionary. The keys of the dictionary are pairs (place_at_infty, group element). The items are the poles orders at those places. Threshold gives a bound on powers of x in the function. If you suspect that you haven't found all the functions, you may increase it.""" from itertools import product x_series = self.x_series y_series = self.y_series z_series = self.z_series delta = self.nb_of_pts_at_infty p = self.characteristic n = self.height prec = self.prec C = self.quotient F = self.base_ring m = C.exponent r = C.polynomial.degree() RxyzQ, Rxyz, x, y, z = self.fct_field F = C.base_ring Rt. = LaurentSeriesRing(F, default_prec=prec) #Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y S = [] RQxyz = FractionField(Rxyz) pr = [list(GF(p)) for _ in range(n)] for i in range(0, threshold*r): for j in range(0, m): for k in product(*pr): eta = as_form(self, x^i * prod(z[i1]^(k[i1]) for i1 in range(n))/y^j) eta_exp = eta.expansion_at_infty() S += [(eta, eta_exp)] forms = holomorphic_combinations_forms(S, pole_orders[(0, self.group.one)]) for i in range(delta): for g in self.fiber(place = i): if i!=0 or g != self.group.one: forms = [(omega, omega.group_action(g).expansion_at_infty(place = i)) for omega in forms] forms = holomorphic_combinations_forms(forms, pole_orders[(i, g)]) return forms