class superelliptic_drw_cech: def __init__(self, omega0, f): self.curve = omega0.curve self.omega0 = omega0 self.omega8 = omega0 - f.diffn() self.f = f def reduce(self): C = self.curve fct = self.f f_first_comp = fct.t f_second_comp = fct.f decomp_first_comp = decomposition_g0_g8(f_first_comp) decomp_second_comp = decomposition_g0_g8(f_second_comp) new = self new.omega0 -= decomposition_g0_g8(f_first_comp)[0].teichmuller().diffn() new.omega0 -= decomposition_g0_g8(f_second_comp)[0].verschiebung().diffn() new.f = decomposition_g0_g8(f_first_comp)[2].teichmuller() + decomposition_g0_g8(f_second_comp)[2].verschiebung() new.omega8 = new.omega0 - new.f.diffn() return new def __repr__(self): return("(" + str(self.omega0) + ", "+ str(self.f) + ", " + str(self.omega8) + ")") def __add__(self, other): C = self.curve omega0 = self.omega0 f = self.f omega0_1 = other.omega0 f_1 = other.f return superelliptic_drw_cech(omega0 + omega0_1, f + f_1) def __sub__(self, other): C = self.curve omega0 = self.omega0 f = self.f omega0_1 = other.omega0 f_1 = other.f return superelliptic_drw_cech(omega0 - omega0_1, f - f_1) def __neg__(self): C = self.curve omega0 = self.omega0 f = self.f return superelliptic_drw_cech(-omega0, -f) def __rmul__(self, other): omega0 = self.omega0 f = self.f return superelliptic_drw_cech(other*omega0, other*f) def r(self): omega0 = self.omega0 f = self.f C = self.curve return superelliptic_cech(C, omega0.h1*C.dx, f.t) def coordinates(self, basis = 0): C = self.curve g = C.genus() coord_mod_p = self.r().coordinates() print(coord_mod_p) coord_lifted = [lift(a) for a in coord_mod_p] if basis == 0: basis = C.crystalline_cohomology_basis() aux = self for i, a in enumerate(basis): aux -= coord_lifted[i]*a print('aux before reduce', aux) #aux = aux.reduce() # Now aux = p*cech class. # Now aux should be of the form (V(smth), V(smth), V(smth)) print('aux V(smth)', aux) aux_divided_by_p = superelliptic_cech(C, aux.omega0.omega.cartier(), aux.f.f.pth_root()) print('aux.omega0.omega.cartier()', aux.omega0.omega.cartier()) coord_aux_divided_by_p = aux_divided_by_p.coordinates() coord_aux_divided_by_p = [ZZ(a) for a in coord_aux_divided_by_p] coordinates = [ (coord_lifted[i] + p*coord_aux_divided_by_p[i])%p^2 for i in range(2*g)] return coordinates def is_regular(self): print(self.omega0.r().is_regular_on_U0(), self.omega8.r().is_regular_on_Uinfty(), self.omega0.frobenius().is_regular_on_U0(), self.omega8.frobenius().is_regular_on_Uinfty()) eq1 = self.omega0.r().is_regular_on_U0() and self.omega8.r().is_regular_on_Uinfty() eq2 = self.omega0.frobenius().is_regular_on_U0() and self.omega8.frobenius().is_regular_on_Uinfty() return eq1 and eq2