class as_polyform: def __init__(self, form, mult): '''Elements of H^0(Ω^⊗n). Usage: mult is n, form should be as_function.''' self.form = form self.curve = form.curve self.mult = mult def __add__(self, other): return as_polyform(self.form + other.form, self.mult) def __repr__(self): return '(' + str(self.form) + ') dx⊗' + str(self.mult) def expansion_at_infty(self, place): return self.form.expansion_at_infty(place=place)*(self.curve.dx.expansion_at_infty(place=place))^(self.mult) def reduce(self): AS = self.curve reduced = self.form.reduce() return as_polyform(reduced, self.mult) def coordinates(self, basis = 0): """Find coordinates of the given holomorphic form self in terms of the basis forms in a list holo.""" AS = self.curve if basis == 0: basis = AS.holo_polydifferentials_basis(mult = self.mult) RxyzQ, Rxyz, x, y, z = AS.fct_field # We need to have only polynomials to use monomial_coefficients in linear_representation_polynomials, # and sometimes basis elements have denominators. Thus we multiply by them. denom = LCM([denominator(omega.form.function) for omega in basis]) basis = [denom*omega.form.function for omega in basis] self_reduced = self.reduce() self_with_no_denominator = denom*self_reduced.form.function return linear_representation_polynomials(Rxyz(self_with_no_denominator), [Rxyz(omega) for omega in basis]) def group_action(self, elt): return as_polyform(self.form.group_action(elt), self.mult) def as_holo_polydifferentials_basis(AS, mult, threshold = 8): '''Give the basis of H^0(Ω^⊗n) for n = mult.''' v = AS.dx.valuation() result = AS.at_most_poles(mult*v, threshold=threshold) result = [as_polyform(omega, mult) for omega in result] if mult == 1 and len(result) < AS.genus(): raise ValueError('Increase threshold, not all forms found.') if mult > 1 and len(result) < (2*mult - 1)*(AS.genus() - 1): raise ValueError('Increase threshold, not all forms found.') return result as_cover.holo_polydifferentials_basis = as_holo_polydifferentials_basis def as_symmetric_power_basis(AS, n, threshold = 8): '''Give the basis of H^0(Ω)^⊙n for n = mult.''' g = AS.genus() B0 = AS.holomorphic_differentials_basis(threshold=threshold) from itertools import product indices = [list(range(g)) for i in range(n)] indices_nonrepeating = [] for i in product(*indices): if non_decreasing(i): indices_nonrepeating += [i] result = [] for i in indices_nonrepeating: tensor_form = [B0[i[j]] for j in range(n)] tensor_form = [1] + tensor_form result += [tensor_form] result = [as_symmetric_product_forms([a]) for a in result] return result def as_canonical_ideal(AS, n, threshold=8): '''Return the n-th homogeneous part of the canonical ideal.''' B0 = AS.holomorphic_differentials_basis(threshold=threshold) F = AS.base_ring g = AS.genus() RxyzQ, Rxyz, x, y, z = AS.fct_field from itertools import product B1 = as_symmetric_power_basis(AS, n, threshold = threshold) B2 = AS.holo_polydifferentials_basis(n, threshold = threshold) g = AS.genus() r = len(B2) M = matrix(F, len(B1), r) for i in range(0, len(B1)): c = B1[i].multiply() #return M, c.coordinates(basis=B2) M[i, :] = vector(c.coordinates(basis=B2)) K = M.kernel().basis() result = [] for v in K: kernel_vector = 0*B1[0] for i in range(len(v)): kernel_vector += v[i]*B1[i] result += [kernel_vector] return result as_cover.canonical_ideal = as_canonical_ideal def as_canonical_ideal_polynomials(AS, n, threshold=8): '''Return the polynomials defining n-th homogeneous part of the canonical ideal.''' return [a.polynomial() for a in AS.canonical_ideal(n, threshold=threshold)] as_cover.canonical_ideal_polynomials = as_canonical_ideal_polynomials class as_symmetric_product_forms: def __init__(self, forms_and_coeffs): '''Elements of forms_and_coeffs are of the form [coeff, form_1, ..., form_n]''' self.n = len(forms_and_coeffs[0]) - 1 forms_and_coeffs1 = [] for atuple in forms_and_coeffs: if atuple[0] != 0 and atuple[1:] not in [a[1:] for a in forms_and_coeffs1]: forms_and_coeffs1 += [atuple] elif atuple[1:] in [a[1:] for a in forms_and_coeffs1]: i = [a[1:] for a in forms_and_coeffs1].index(atuple[1:]) forms_and_coeffs1[i][0] += atuple[0] if len(forms_and_coeffs1) == 0: forms_and_coeffs1 = [[0] + forms_and_coeffs[0][1:]] self.tuples = forms_and_coeffs1 self.curve = forms_and_coeffs1[0][1].curve def coordinates(self, basis = 0): AS = self.curve g = AS.genus() n = self.n F = AS.base_ring if basis == 0: basis = AS.holomorphic_differentials_basis() from itertools import product indices = [list(range(g)) for i in range(self.n)] result = {i : 0 for i in product(*indices)} for atuple in self.tuples: coors = [omega.coordinates(basis = basis) for omega in atuple[1:]] for i in product(*indices): aux_product = 1 for j in range(n): aux_product *= coors[j][i[j]] result[i] += atuple[0]*aux_product return result def __repr__(self): result = '' for atuple in self.tuples: if atuple[0] !=0: result += str(atuple[0]) + ' * ' for j in range(1, self.n+1): result += "(" + str(atuple[j]) + ")" if j != self.n: result + '⊗' result += ' + ' return result def __add__(self, other): return as_symmetric_product_forms(self.tuples + other.tuples) def __rmul__(self, other): AS = self.curve F = AS.base_ring if isinstance(other, int) or other in ZZ or other in F: aux_tuples = [] for atuple in self.tuples: atuple1 = [other * atuple[0]] + atuple[1:] aux_tuples += [atuple1] return as_symmetric_product_forms(aux_tuples) def multiply(self): '''The map H^0(Ω)^⊙n ---> H^0(Ω^⊗n)''' n = self.n AS = self.curve RxyzQ, Rxyz, x, y, z = AS.fct_field result = as_polyform(0*AS.x, n) for atuple in self.tuples: aux_product = Rxyz(1) for fct in atuple[1:]: aux_product = aux_product * fct.form aux_product = as_function(AS, aux_product) aux_product = as_reduction(AS, aux_product) aux_product = as_function(AS, aux_product) result += as_polyform(atuple[0]*aux_product, n) return result def polynomial(self): '''Return the associated polynomial.''' AS = self.curve F = AS.base_ring g = AS.genus() M = self.coordinates() n = self.n Rg = PolynomialRing(F, 'X', g) X = Rg.gens() from itertools import product indices = [list(range(g)) for i in range(self.n)] result = Rg(0) for i in product(*indices): aux_product = Rg(1) for j in range(n): aux_product *= X[i[j]] result += M[i] * aux_product return result def group_action(self, elt): p = self.curve.base_ring.characteristic() n = self.curve.height aux_tuples = [] for atuple in self.tuples: aux_tuple = [atuple[0]] + [a.group_action(elt) for a in atuple[1:]] aux_tuples += [aux_tuple] return as_symmetric_product_forms(aux_tuples) def non_decreasing(L): return all(x<=y for x, y in zip(L, L[1:])) def as_matrices_group_action_canonical_ideal(AS, mult, threshold = 8): '''Return the group action matrices for the n-th homogeneous part of the canonical ideal.''' K = as_canonical_ideal(AS, mult, threshold = threshold) n = AS.height F = AS.base_ring K_polynomials = [a.polynomial() for a in K] r = len(K) matrices = [] for i in range(n): M = matrix(F, r, r) K_group_action_polynomials = [a.group_action([j == i for j in range(n)]).polynomial() for a in K] for i in range(r): M[i, :] = vector(linear_representation_polynomials(K_group_action_polynomials[i], K_polynomials)) matrices += [M] return matrices as_cover.group_action_canonical_ideal = as_matrices_group_action_canonical_ideal