{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Theory\n", "Let $C : y^m = f(x)$. Then:\n", "\n", " - the basis of $H^0(C, \\Omega_{C/k})$ is given by:\n", " $$x^{i-1} dx/y^j,$$\n", " where $1 \\le i \\le r-1$, $1 \\le j \\le m-1$, $-mi + rj \\ge \\delta$ and $\\delta := GCD(m, r)$, $r := \\deg f$.\n", " \n", " - " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# The program computes the basis of holomorphic differentials of y^m = f(x) in char p.\n", "# The coefficient j means that we compute the j-th eigenpart, i.e.\n", "# forms y^j * f(x) dx. Output is [f(x), 0]\n", "\n", "def baza_holo(m, f, j, p):\n", " R. = PolynomialRing(GF(p))\n", " f = R(f)\n", " r = f.degree()\n", " delta = GCD(m, r)\n", " baza = {}\n", " k = 0\n", " for i in range(1, r):\n", " if (r*j - m*i >= delta):\n", " baza[k] = [x^(i-1), R(0)]\n", " k = k+1\n", " return baza" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# The program computes the basis of de Rham cohomology of y^m = f(x) in char p.\n", "# We treat them as pairs [omega, f], where omega is regular on the affine part\n", "# and omega - df is regular on the second atlas.\n", "# The coefficient j means that we compute the j-th eigenpart, i.e.\n", "# [y^j * f(x) dx, g(x)/y^j]. Output is [f(x), g(x)]\n", "\n", "def baza_dr(m, f, j, p):\n", " R. = PolynomialRing(GF(p))\n", " f = R(f) \n", " r = f.degree()\n", " delta = GCD(m, r)\n", " baza = {}\n", " holo = baza_holo(m, f, j, p)\n", " for k in range(0, len(holo)):\n", " baza[k] = holo[k]\n", " \n", " k = len(baza)\n", " \n", " for i in range(1, r):\n", " if (r*(m-j) - m*i >= delta):\n", " s = R(m-j)*R(x)*R(f.derivative()) - R(m)*R(i)*f\n", " psi = R(obciecie(s, i, p))\n", " baza[k] = [psi, R(m)/x^i]\n", " k = k+1\n", " return baza" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "#auxiliary programs\n", "def stopnie_bazy_holo(m, f, j, p):\n", " baza = baza_holo(m, f, j, p)\n", " stopnie = {}\n", " for k in range(0, len(baza)):\n", " stopnie[k] = baza[k][0].degree()\n", " return stopnie\n", "\n", "def stopnie_bazy_dr(m, f, j, p):\n", " baza = baza_dr(m, f, j, p)\n", " stopnie = {}\n", " for k in range(0, len(baza)):\n", " stopnie[k] = baza[k][0].degree()\n", " return stopnie\n", "\n", "def stopnie_drugiej_wspolrzednej_bazy_dr(m, f, j, p):\n", " baza = baza_dr(m, f, j, p)\n", " stopnie = {}\n", " for k in range(0, len(baza)):\n", " if baza[k][1] != 0:\n", " stopnie[k] = baza[k][1].denominator().degree()\n", " return stopnie\n", "\n", "def obciecie(f, i, p):\n", " R. = PolynomialRing(GF(p))\n", " f = R(f)\n", " coeff = f.coefficients(sparse = false)\n", " return sum(x^(j-i-1) * coeff[j] for j in range(i+1, f.degree() + 1))\n", "\n", "\n", "#Any element [f dx, g] is represented as a combination of the basis vectors.\n", "\n", "def zapis_w_bazie_dr(elt, m, f, j, p):\n", " R. = PolynomialRing(GF(p))\n", " f = R(f) \n", " r = f.degree()\n", " delta = GCD(m, r)\n", " baza = baza_dr(m, f, j, p)\n", " wymiar = len(baza)\n", " zapis = vector([GF(p)(0) for i in baza])\n", " stopnie = stopnie_bazy_dr(m, f, j, p)\n", " inv_stopnie = {v: k for k, v in stopnie.items()}\n", " stopnie_holo = stopnie_bazy_holo(m, f, j, p)\n", " inv_stopnie_holo = {v: k for k, v in stopnie_holo.items()} \n", " \n", " ## zmiana\n", " if elt[0]== 0 and elt[1] == 0:\n", " return zapis\n", " \n", " if elt[1] == 0:\n", " d = elt[0].degree()\n", " a = elt[0].coefficients(sparse = false)[d]\n", " k = inv_stopnie_holo[d] #ktory element bazy jest stopnia d? ten o indeksie k\n", " \n", " a1 = baza[k][0].coefficients(sparse = false)[d]\n", " elt1 = [R(0),R(0)]\n", " elt1[0] = elt[0] - a/a1 * baza[k][0]\n", " elt1[1] = R(0)\n", " return zapis_w_bazie_dr(elt1, m, f, j, p) + vector([a/a1*GF(p)(i == k) for i in range(0, len(baza))])\n", "\n", " g = elt[1]\n", " g1 = R(elt[1].numerator())\n", " g2 = R(elt[1].denominator())\n", " d1 = g1.degree()\n", " d2 = g2.degree()\n", " a1 = g1.coefficients(sparse = false)[d1]\n", " a2 = g2.coefficients(sparse = false)[d2]\n", " a = a1/a2\n", " d = d2 - d1\n", " \n", " if (d*m - (m-j)*r >= 0):\n", " elt1 = [R(0), R(0)]\n", " elt1[0] = elt[0]\n", " return zapis_w_bazie_dr(elt1, m, f, j, p)\n", " \n", " \n", " stopnie2 = stopnie_drugiej_wspolrzednej_bazy_dr(m, f, j, p)\n", " inv_stopnie2 = {v: k for k, v in stopnie2.items()} \n", " k = inv_stopnie2[d]\n", " elt1 = [R(0), R(0)]\n", " elt1[0] = elt[0] - a*baza[k][0]\n", " elt1[1] = elt[1] - a*baza[k][1]\n", " return zapis_w_bazie_dr(elt1, m, f, j, p) + vector([a*GF(p)(i == k) for i in range(0, len(baza))])\n", " \n", " \n", "def zapis_w_bazie_holo(elt, m, f, j, p):\n", " R. = PolynomialRing(GF(p))\n", " f = R(f) \n", " r = f.degree()\n", " delta = GCD(m, r)\n", " baza = baza_holo(m, f, j, p)\n", " wymiar = len(baza)\n", " zapis = vector([GF(p)(0) for i in baza])\n", " stopnie = stopnie_bazy_holo(m, f, j, p)\n", " inv_stopnie = {v: k for k, v in stopnie.items()}\n", " \n", " if elt[0] == 0:\n", " return zapis\n", " \n", " d = elt[0].degree()\n", " a = elt[0].coefficients(sparse = false)[d]\n", " \n", " k = inv_stopnie[d] #ktory element bazy jest stopnia d? ten o indeksie k\n", " \n", " a1 = baza[k][0].coefficients(sparse = false)[d]\n", " elt1 = [R(0),R(0)]\n", " elt1[0] = elt[0] - a/a1 * baza[k][0]\n", " \n", " return zapis_w_bazie_holo(elt1, m, f, j, p) + vector([a/a1 * GF(p)(i == k) for i in range(0, len(baza))])\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{0: [x, 2/x], 1: [2, 2/x^2]}" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "baza_dr(2, x^3 + 1, 0, 3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.1", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }