39 lines
1004 B
Python
39 lines
1004 B
Python
p = 3
|
|
m = 2
|
|
F = GF(p^2, 'a')
|
|
a = F.gens()[0]
|
|
Rxx.<x> = PolynomialRing(F)
|
|
#f = (x^3 - x)^3 + x^3 - x
|
|
f = x^3 + a*x + 1
|
|
f1 = f(x = x^p - x)
|
|
C = superelliptic(f, m)
|
|
C1 = superelliptic(f1, m, prec = 500)
|
|
#B = C.crystalline_cohomology_basis(prec = 100, info = 1)
|
|
#B1 = C1.crystalline_cohomology_basis(prec = 100, info = 1)
|
|
|
|
def crystalline_matrix(C, prec = 50):
|
|
B = C.crystalline_cohomology_basis(prec = prec)
|
|
g = C.genus()
|
|
p = C.characteristic
|
|
Zp2 = Integers(p^2)
|
|
M = matrix(Zp2, 2*g, 2*g)
|
|
for i, b in enumerate(B):
|
|
M[i, :] = vector(autom(b).coordinates(basis = B))
|
|
return M
|
|
|
|
#b0 = de_rham_witt_lift(C.de_rham_basis()[0], prec = 100)
|
|
#b1 = de_rham_witt_lift(C1.de_rham_basis()[2], prec = 300)
|
|
#print(b0.regular_form())
|
|
#print(b1.regular_form())
|
|
for b in C1.de_rham_basis():
|
|
print(mult_by_p(b.omega0).regular_form())
|
|
|
|
#for b in B:
|
|
# print(b.regular_form())
|
|
|
|
#for b in B1:
|
|
# print(b.regular_form())
|
|
|
|
#M = crystalline_matrix(C, prec = 150)
|
|
#print(M)
|
|
#print(M^3) |