182 lines
5.8 KiB
Python
182 lines
5.8 KiB
Python
class as_function:
|
|
def __init__(self, C, g):
|
|
self.curve = C
|
|
F = C.base_ring
|
|
n = C.height
|
|
variable_names = 'x, y'
|
|
for i in range(n):
|
|
variable_names += ', z' + str(i)
|
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
|
x, y = Rxyz.gens()[:2]
|
|
z = Rxyz.gens()[2:]
|
|
RxyzQ = FractionField(Rxyz)
|
|
self.function = RxyzQ(g)
|
|
#self.function = as_reduction(AS, RxyzQ(g))
|
|
|
|
def __repr__(self):
|
|
return str(self.function)
|
|
|
|
def __add__(self, other):
|
|
C = self.curve
|
|
g1 = self.function
|
|
g2 = other.function
|
|
return as_function(C, g1 + g2)
|
|
|
|
def __sub__(self, other):
|
|
C = self.curve
|
|
g1 = self.function
|
|
g2 = other.function
|
|
return as_function(C, g1 - g2)
|
|
|
|
def __rmul__(self, constant):
|
|
C = self.curve
|
|
g = self.function
|
|
return as_function(C, constant*g)
|
|
|
|
def __mul__(self, other):
|
|
if isinstance(other, as_function):
|
|
C = self.curve
|
|
g1 = self.function
|
|
g2 = other.function
|
|
return as_function(C, g1*g2)
|
|
if isinstance(other, as_form):
|
|
C = self.curve
|
|
g1 = self.function
|
|
g2 = other.form
|
|
return as_form(C, g1*g2)
|
|
|
|
def __truediv__(self, other):
|
|
C = self.curve
|
|
g1 = self.function
|
|
g2 = other.function
|
|
return as_function(C, g1/g2)
|
|
|
|
def __pow__(self, exponent):
|
|
C = self.curve
|
|
g1 = self.function
|
|
return as_function(C, g1^(exponent))
|
|
|
|
def expansion_at_infty(self, place = 0):
|
|
C = self.curve
|
|
delta = C.nb_of_pts_at_infty
|
|
F = C.base_ring
|
|
x_series = C.x_series[place]
|
|
y_series = C.y_series[place]
|
|
z_series = C.z_series[place]
|
|
n = C.height
|
|
variable_names = 'x, y'
|
|
for j in range(n):
|
|
variable_names += ', z' + str(j)
|
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
|
x, y = Rxyz.gens()[:2]
|
|
z = Rxyz.gens()[2:]
|
|
RxyzQ = FractionField(Rxyz)
|
|
prec = C.prec
|
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
|
g = self.function
|
|
g = RxyzQ(g)
|
|
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
|
return g.substitute(sub_list)
|
|
|
|
def expansion(self, pt = 0):
|
|
C = self.curve
|
|
delta = C.nb_of_pts_at_infty
|
|
F = C.base_ring
|
|
x_series = C.x_series[pt]
|
|
y_series = C.y_series[pt]
|
|
z_series = C.z_series[pt]
|
|
n = C.height
|
|
variable_names = 'x, y'
|
|
for j in range(n):
|
|
variable_names += ', z' + str(j)
|
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
|
x, y = Rxyz.gens()[:2]
|
|
z = Rxyz.gens()[2:]
|
|
RxyzQ = FractionField(Rxyz)
|
|
prec = C.prec
|
|
Rt.<t> = LaurentSeriesRing(F, default_prec=prec)
|
|
g = self.function
|
|
g = RxyzQ(g)
|
|
sub_list = {x : x_series, y : y_series} | {z[j] : z_series[j] for j in range(n)}
|
|
return g.substitute(sub_list)
|
|
|
|
def group_action(self, ZN_tuple):
|
|
C = self.curve
|
|
n = C.height
|
|
F = C.base_ring
|
|
variable_names = 'x, y'
|
|
for j in range(n):
|
|
variable_names += ', z' + str(j)
|
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
|
x, y = Rxyz.gens()[:2]
|
|
z = Rxyz.gens()[2:]
|
|
RxyzQ = FractionField(Rxyz)
|
|
sub_list = {x : x, y : y} | {z[j] : z[j]+ZN_tuple[j] for j in range(n)}
|
|
g = self.function
|
|
return as_function(C, g.substitute(sub_list))
|
|
|
|
def trace(self):
|
|
C = self.curve
|
|
C_super = C.quotient
|
|
n = C.height
|
|
F = C.base_ring
|
|
variable_names = 'x, y'
|
|
for j in range(n):
|
|
variable_names += ', z' + str(j)
|
|
Rxyz = PolynomialRing(F, n+2, variable_names)
|
|
x, y = Rxyz.gens()[:2]
|
|
z = Rxyz.gens()[2:]
|
|
RxyzQ = FractionField(Rxyz)
|
|
result = as_function(C, 0)
|
|
G = C.group
|
|
for a in G:
|
|
result += self.group_action(a)
|
|
result = result.function
|
|
Rxy.<x, y> = PolynomialRing(F, 2)
|
|
Qxy = FractionField(Rxy)
|
|
result = as_reduction(AS, result)
|
|
return superelliptic_function(C_super, Qxy(result))
|
|
|
|
def coordinates(self, prec = 100, basis = 0):
|
|
"Return coordinates in H^1(X, OX)."
|
|
AS = self.curve
|
|
if basis == 0:
|
|
basis = [AS.holomorphic_differentials_basis(), AS.cohomology_of_structure_sheaf_basis()]
|
|
holo_diffs = basis[0]
|
|
coh_basis = basis[1]
|
|
f_products = []
|
|
for f in coh_basis:
|
|
f_products += [[omega.serre_duality_pairing(f) for omega in holo_diffs]]
|
|
product_of_fct_and_omegas = []
|
|
product_of_fct_and_omegas = [omega.serre_duality_pairing(self) for omega in holo_diffs]
|
|
|
|
V = (F^(AS.genus())).span_of_basis([vector(a) for a in f_products])
|
|
coh_coordinates = V.coordinates(product_of_fct_and_omegas)
|
|
return coh_coordinates
|
|
|
|
def diffn(self):
|
|
C = self.curve
|
|
C_super = C.quotient
|
|
n = C.height
|
|
RxyzQ, Rxyz, x, y, z = C.fct_field
|
|
fcts = C.functions
|
|
f = self.function
|
|
y_super = superelliptic_function(C_super, y)
|
|
dy_super = y_super.diffn().form
|
|
dz = []
|
|
for i in range(n):
|
|
dfct = fcts[i].diffn().form
|
|
dz += [-dfct]
|
|
result = f.derivative(x)
|
|
result += f.derivative(y)*dy_super
|
|
for i in range(n):
|
|
result += f.derivative(z[i])*dz[i]
|
|
return as_form(C, result)
|
|
|
|
def valuation(self, place = 0):
|
|
'''Return valuation at i-th place at infinity.'''
|
|
C = self.curve
|
|
F = C.base_ring
|
|
Rt.<t> = LaurentSeriesRing(F)
|
|
return Rt(self.expansion_at_infty(place = place)).valuation()
|