1
0
DeRhamComputation/as_covers/template.sage

136 lines
4.2 KiB
Python

class template:
'''Template of a p-group cover'''
def __init__(self, height, field, group, fcts, gp_action):
self.height = height
self.group = group
self.gp_action = gp_action #action of the generators of the group on z[i]'s
self.field = field
n = height
variable_names = ''
for i in range(n):
variable_names += 'z'+str(i)+','
for i in range(n):
variable_names += 'f'+str(i)
if i!=n-1:
variable_names += ','
Rzf = PolynomialRing(field, 2*n, variable_names)
z = Rzf.gens()[:n]
f = Rzf.gens()[n:]
self.fct_field = Rzf, z, f
self.fcts = [Rzf(ff) for ff in fcts] #RHSs of the Artin-Schreier equations
def elementary_template(p, n):
group = elementary_gp(p, n)
field = GF(p)
variable_names = ''
for i in range(n):
variable_names += 'z'+str(i)+','
for i in range(n):
variable_names += 'f'+str(i)
if i!=n-1:
variable_names += ','
R = PolynomialRing(field, 2*n, variable_names)
z = R.gens()[:n]
f = R.gens()[n:]
height = n
fcts = [f[i] for i in range(n)]
gp_action = [[z[j] + (i == j) for j in range(n)] for i in range(n)]
return template(height, field, group, fcts, gp_action)
def heisenberg_template(p):
group = heisenberg(p)
field = GF(p)
variable_names = ''
n = 3
for i in range(n):
variable_names += 'z'+str(i)+','
for i in range(n):
variable_names += 'f'+str(i)
if i!=n-1:
variable_names += ','
R = PolynomialRing(field, 2*n, variable_names)
z = R.gens()[:n]
f = R.gens()[n:]
height = n
fcts = [f[i] for i in range(n)]
fcts[2] += (z[0] - z[1])*f[1]
gp_action = [[z[0] + 1, z[1], z[2] + z[1]], [z[0] + 1, z[1] + 1, z[2]], [z[0], z[1], z[2] - 1]]
return template(height, field, group, fcts, gp_action)
def witt_pol(X, p, n):
n = len(X)
return sum(p^i*X[i]^(p^(n-i-1)) for i in range(0, n))
def witt_sum(p, n):
variables = ''
for i in range(0, n+1):
variables += 'X' + str(i) + ','
for i in range(0, n+1):
variables += 'Y' + str(i)
if i!=n:
variables += ','
RQ = PolynomialRing(QQ, variables, 2*(n+1))
X = RQ.gens()[:n+1]
Y = RQ.gens()[n+1:]
Rpx.<x> = PolynomialRing(GF(p), 1)
RQx.<x> = PolynomialRing(QQ, 1)
if n == 0:
return X[0] + Y[0]
WS = []
for k in range(0, n):
aux = witt_sum(p, k)
Rold = aux.parent()
Xold = Rold.gens()[:k+1]
Yold = Rold.gens()[k+1:]
WS+= [aux.subs({Xold[i] : X[i] for i in range(0, k)} | {Yold[i] : Y[i] for i in range(0, k)})]
return 1/p^n*(witt_pol(X[:n+1], p, n) + witt_pol(Y[:n+1], p, n) - sum(p^k*WS[k]^(p^(n-k)) for k in range(0, n)))
def witt_sum_mod_p(p, n):
variables = ''
for i in range(0, n+1):
variables += 'X' + str(i) + ','
for i in range(0, n+1):
variables += 'Y' + str(i)
if i!=n:
variables += ','
RQ = PolynomialRing(QQ, variables, 2*(n+1))
X = RQ.gens()[:n+1]
Y = RQ.gens()[n+1:]
P = RQ(witt_sum(p, n))
RQp = PolynomialRing(GF(p), variables, 2*(n+1))
Xp = RQp.gens()[:n+1]
Yp = RQp.gens()[n+1:]
return RQp(P)
def witt_template(p, n):
height = n
field = GF(p)
group = cyclic_gp(p, n)
variable_names = ''
for i in range(n):
variable_names += 'z'+str(i)+','
for i in range(n):
variable_names += 'f'+str(i)
if i!=n-1:
variable_names += ','
R = PolynomialRing(field, 2*n, variable_names)
z = R.gens()[:n]
f = R.gens()[n:]
###########
rhs = []
gp_action = []
for i in range(0, n):
aux = witt_sum_mod_p(p, i)
Raux = aux.parent()
Xpn = Raux.gens()[:i+1]
Ypn = Raux.gens()[i+1:]
rhs_aux = aux.subs({Xpn[ii] : z[ii]^p for ii in range(i+1)}|{Ypn[ii] : -z[ii] for ii in range(i+1)})
rhs += [rhs_aux]
gp_action_aux = aux.subs({Xpn[ii] : z[ii] for ii in range(i+1)}|{Ypn[ii] : ii == 0 for ii in range(i+1)})
gp_action += [gp_action_aux]
fcts = [-rhs[i] + z[i]^p - z[i] + f[i] for i in range(n)]
########
aux
gp_action = [gp_action]
return template(height, field, group, fcts, gp_action)