209 lines
8.0 KiB
Python
209 lines
8.0 KiB
Python
class quaternion_polyform:
|
|
def __init__(self, form, mult):
|
|
self.form = form
|
|
self.curve = form.curve
|
|
self.mult = mult
|
|
|
|
def __add__(self, other):
|
|
return quaternion_polyform(self.form + other.form, self.mult)
|
|
|
|
def __repr__(self):
|
|
return '(' + str(self.form) + ') dx⊗' + str(self.mult)
|
|
|
|
def expansion_at_infty(self):
|
|
return self.form.expansion_at_infty()*(self.curve.dx.expansion_at_infty())^(self.mult)
|
|
|
|
def coordinates(self, basis = 0):
|
|
"""Find coordinates of the given holomorphic form self in terms of the basis forms in a list holo."""
|
|
AS = self.curve
|
|
if basis == 0:
|
|
basis = AS.holo_polydifferentials_basis(mult = self.mult)
|
|
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
|
# We need to have only polynomials to use monomial_coefficients in linear_representation_polynomials,
|
|
# and sometimes basis elements have denominators. Thus we multiply by them.
|
|
denom = LCM([denominator(omega.form.function) for omega in basis])
|
|
basis = [denom*omega.form.function for omega in basis]
|
|
self_with_no_denominator = denom*self.form.function
|
|
return linear_representation_polynomials(Rxyz(self_with_no_denominator), [Rxyz(omega) for omega in basis])
|
|
|
|
|
|
def quaternion_holo_polydifferentials_basis(AS, mult, threshold = 8):
|
|
v = AS.dx.valuation()
|
|
result = AS.at_most_poles(mult*v, threshold=threshold)
|
|
result = [quaternion_polyform(omega, mult) for omega in result]
|
|
if mult == 1 and len(result) < AS.genus():
|
|
raise ValueError('Increase threshold, not all forms found.')
|
|
if mult > 1 and len(result) < (2*mult - 1)*(AS.genus() - 1):
|
|
raise ValueError('Increase threshold, not all forms found.')
|
|
return result
|
|
|
|
quaternion_cover.holo_polydifferentials_basis = quaternion_holo_polydifferentials_basis
|
|
|
|
def quaternion_symmetric_power_basis(AS, n, threshold = 8):
|
|
g = AS.genus()
|
|
B0 = AS.holomorphic_differentials_basis(threshold=threshold)
|
|
from itertools import product
|
|
indices = [list(range(g)) for i in range(n)]
|
|
indices_nonrepeating = []
|
|
for i in product(*indices):
|
|
if non_decreasing(i):
|
|
indices_nonrepeating += [i]
|
|
result = []
|
|
for i in indices_nonrepeating:
|
|
tensor_form = [B0[i[j]] for j in range(n)]
|
|
tensor_form = [1] + tensor_form
|
|
result += [tensor_form]
|
|
result = [quaternion_symmetric_product_forms([a]) for a in result]
|
|
return result
|
|
|
|
def quaternion_canonical_ideal(AS, n, threshold=8):
|
|
B0 = AS.holomorphic_differentials_basis(threshold=threshold)
|
|
F = AS.base_ring
|
|
g = AS.genus()
|
|
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
|
from itertools import product
|
|
B1 = quaternion_symmetric_power_basis(AS, n, threshold = 8)
|
|
B2 = AS.holo_polydifferentials_basis(n, threshold = threshold)
|
|
g = AS.genus()
|
|
r = len(B2)
|
|
M = matrix(F, len(B1), r)
|
|
for i in range(0, len(B1)):
|
|
c = B1[i].multiply()
|
|
#return M, c.coordinates(basis=B2)
|
|
M[i, :] = vector(c.coordinates(basis=B2))
|
|
K = M.kernel().basis()
|
|
result = []
|
|
for v in K:
|
|
kernel_vector = 0*B1[0]
|
|
for i in range(len(v)):
|
|
kernel_vector += v[i]*B1[i]
|
|
result += [kernel_vector]
|
|
return result
|
|
|
|
quaternion_cover.canonical_ideal = quaternion_canonical_ideal
|
|
|
|
def quaternion_canonical_ideal_polynomials(AS, n, threshold=8):
|
|
return [a.polynomial() for a in AS.canonical_ideal(n, threshold=threshold)]
|
|
|
|
quaternion_cover.canonical_ideal_polynomials = quaternion_canonical_ideal_polynomials
|
|
|
|
class quaternion_symmetric_product_forms:
|
|
def __init__(self, forms_and_coeffs):
|
|
'''Elements of forms_and_coeffs are of the form [coeff, form1, ..., formn]'''
|
|
self.n = len(forms_and_coeffs[0]) - 1
|
|
forms_and_coeffs1 = []
|
|
for atuple in forms_and_coeffs:
|
|
if atuple[0] != 0 and atuple[1:] not in [a[1:] for a in forms_and_coeffs1]:
|
|
forms_and_coeffs1 += [atuple]
|
|
elif atuple[1:] in [a[1:] for a in forms_and_coeffs1]:
|
|
i = [a[1:] for a in forms_and_coeffs1].index(atuple[1:])
|
|
forms_and_coeffs1[i][0] += atuple[0]
|
|
if len(forms_and_coeffs1) == 0:
|
|
forms_and_coeffs1 = [[0] + forms_and_coeffs[0][1:]]
|
|
self.tuples = forms_and_coeffs1
|
|
self.curve = forms_and_coeffs1[0][1].curve
|
|
|
|
def coordinates(self, basis = 0):
|
|
AS = self.curve
|
|
g = AS.genus()
|
|
n = self.n
|
|
F = AS.base_ring
|
|
if basis == 0:
|
|
basis = AS.holomorphic_differentials_basis()
|
|
from itertools import product
|
|
indices = [list(range(g)) for i in range(self.n)]
|
|
result = {i : 0 for i in product(*indices)}
|
|
for atuple in self.tuples:
|
|
coors = [omega.coordinates(basis = basis) for omega in atuple[1:]]
|
|
for i in product(*indices):
|
|
aux_product = 1
|
|
for j in range(n):
|
|
aux_product *= coors[j][i[j]]
|
|
result[i] += atuple[0]*aux_product
|
|
return result
|
|
|
|
def __repr__(self):
|
|
result = ''
|
|
for atuple in self.tuples:
|
|
if atuple[0] !=0:
|
|
result += str(atuple[0]) + ' * '
|
|
for j in range(1, self.n+1):
|
|
result += "(" + str(atuple[j]) + ")"
|
|
if j != self.n:
|
|
result + '⊗'
|
|
result += ' + '
|
|
return result
|
|
|
|
def __add__(self, other):
|
|
return quaternion_symmetric_product_forms(self.tuples + other.tuples)
|
|
|
|
def __rmul__(self, other):
|
|
AS = self.curve
|
|
F = AS.base_ring
|
|
if isinstance(other, int) or other in ZZ or other in F:
|
|
aux_tuples = []
|
|
for atuple in self.tuples:
|
|
atuple1 = [other * atuple[0]] + atuple[1:]
|
|
aux_tuples += [atuple1]
|
|
return quaternion_symmetric_product_forms(aux_tuples)
|
|
|
|
def multiply(self):
|
|
n = self.n
|
|
AS = self.curve
|
|
RxyzQ, Rxyz, x, y, z = AS.fct_field
|
|
result = quaternion_polyform(0*AS.x, n)
|
|
for atuple in self.tuples:
|
|
aux_product = Rxyz(1)
|
|
for fct in atuple[1:]:
|
|
aux_product = aux_product * fct.form
|
|
aux_product = quaternion_function(AS, aux_product)
|
|
aux_product = quaternion_reduction(AS, aux_product)
|
|
aux_product = quaternion_function(AS, aux_product)
|
|
result += quaternion_polyform(atuple[0]*aux_product, n)
|
|
return result
|
|
|
|
def polynomial(self):
|
|
AS = self.curve
|
|
F = AS.base_ring
|
|
g = AS.genus()
|
|
M = self.coordinates()
|
|
n = self.n
|
|
Rg = PolynomialRing(F, 'X', g)
|
|
X = Rg.gens()
|
|
from itertools import product
|
|
indices = [list(range(g)) for i in range(self.n)]
|
|
result = Rg(0)
|
|
for i in product(*indices):
|
|
aux_product = Rg(1)
|
|
for j in range(n):
|
|
aux_product *= X[i[j]]
|
|
result += M[i] * aux_product
|
|
return result
|
|
|
|
def group_action(self, elt):
|
|
p = self.curve.base_ring.characteristic()
|
|
n = self.curve.height
|
|
aux_tuples = []
|
|
for atuple in self.tuples:
|
|
aux_tuple = [atuple[0]] + [a.group_action(elt) for a in atuple[1:]]
|
|
aux_tuples += [aux_tuple]
|
|
return quaternion_symmetric_product_forms(aux_tuples)
|
|
|
|
def non_decreasing(L):
|
|
return all(x<=y for x, y in zip(L, L[1:]))
|
|
|
|
def quaternion_matrices_group_action_canonical_ideal(AS, mult, threshold = 8):
|
|
K = quaternion_canonical_ideal(AS, mult, threshold = threshold)
|
|
n = AS.height
|
|
F = AS.base_ring
|
|
K_polynomials = [a.polynomial() for a in K]
|
|
r = len(K)
|
|
matrices = []
|
|
for i in range(2):
|
|
Qgens = QuaternionGroup().gens()
|
|
M = matrix(F, r, r)
|
|
K_group_action_polynomials = [a.group_action(Qgens[i]).polynomial() for a in K]
|
|
for i in range(r):
|
|
M[i, :] = vector(linear_representation_polynomials(K_group_action_polynomials[i], K_polynomials))
|
|
matrices += [M]
|
|
return matrices |